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An axially symmetric solution of Laplace's equation in oblate spher oidal coordin ates is 
found, which may be used as t he gravitaLional po tent ial a bout an oblate planet. This 
p otential, whi ch makes t he H a milton-J acobi equation for a satellite orbi t separable, has a n 
expansion in zonal harmoni cs in whi ch t he a mpli t udes of t he zeroth and seco nd harmon ics 
can be adjusted to agree exactly with t he valu es for a ny axia lly symmetri c pla net and a fourt h 
harmoni c whi ch t hen agrees approximately wit h t he latest value for t hat of t he ear th . 
The net result is t here fore a redu ction of t he problem of satellite mot ion to qu ad ratures, wit h 
use of a potential fi eld t hat is m uch closer to t he empiri cally accepted one for t he earth t ha n 
any heretofore used as t he star t ing point of a calculation. It may t hus be possible to do t he 
gravitational t heory of a satellite orbit very acc urately wit hout use of pe rt urbation t heory. 
T he m et hod can take into acco unt a first harmon ic in t he potent ial, in case observat ions are 
reduced to a center whi ch does not coin cid e wit h t he center of mass of t he planet. 

1. Introduction 

The pur pose of this paper is to develop a method of solu tion of the cen tral problem of 
satellite astronomy, viz , th e theory of the effect of the obla te ness of a planet on the orbit of any 
satellite, bound or unbound, but near enough to the pl anet so tha t the forces of other bodies 
may be neglected. (A preliminary note has appeared in [1).2) 

To do so, let us consider the gravitational poten tial V ou ts ide an axially symmetric obla te 
planet of mass lvl. We call the axis of symm etry the polar axis; Lhis will ordinarily be indistin­
guishable from the axi s of rotation, excep t for entirely negligibJ e periodic effects. vVe also 
choose some point 0 on the polar axis as the "center " or origin of a coordinate system and let r 
be the corresponding posit ion vector of a field poin t. With T = Irl, the declination 0 as the com­
plement of Lhe angle between r and the polar axis, 0 the grav itational co nstant, )J([ the mass of 
the ear th , a nd JJ. = 01\11, the poten tial V(r, 0) can be expressed by means of an expansIOn In 

spherical harmonics: 

(1) 

H ere R is the equatorial radius, i.e ., the radius of a section through 0 perpendicular to the polar 
axis. The notation I n for the coeffi cien ts was in troduced by M erson and King-Hole [2]. 
For points on the polar axis (0= 7r/2) a t the distance R from the cen ter, the ratio of any t wo 
terms in (1) is equal to the ratio of the corresponding J 's. 

If the planet has symmetry wi th respect to the equatorial plane, all the odd harmonics 
drop out ; i .e., J j = J 3= J 5= . . . = 0. (In any case, even if no such symmetry exists, the first 
harmonic drops ou t, i .e., J 1 vanishes, if 0 is chosen at the center of mass.) The coefficients 
J 2 and J 4 are given by 

J 2= 2J /3= (11,- I J IMR2, 

J 4=-8DI35, 

(2. 1) 

(2.2) 

where t he quantities J and D werc in troduced by J effreys [3 ], and where I v a nd I t are the 

1 T his \\,ol'k was supported by tbe U.S. Ai r Force, through the Office of Scientific Hesearch of Lhe Air Rcseareh aLld Development Command. 
' Figures ill brackets indicate tbe literature references at the end of this paper. 
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moments of inertia of the planet about polar and transverse axes through 0 .' For the earth, 
with 0 taken at the center of mass, J effreys [3] gives the values 

J =(1637.5) 10- 6 (3. 1) 

while King-Hele and YIerson [4] derive from recent satellite observations the values 

J = (1624.6 ± 0.3) 10- 6, J 6= CO.l ± 1. 5)10- 6• (3.2) 

I t should be noted that until very recen tly it has always been assumed that the earth has 
symm etry with respect to its equatorial plane- strictly speaking, that the geoid, or smoothed 
earth, has such symmetry. That is, all the odd J 's have been assumed to vanish. R ecently, 
however , there has appeared some evidence [5] for an observable asymmetry with r espect to 
the equatorial plane. Such evidence, if confirmed, would have the following results. If 0 
is taken at the center of mass C, then J 1 would still vanish, but J 3, J 5, ••• would have small 
nonvanishing values. If, on t he other hand, 0 is taken, either by error or by design, as non­
coincident with C, but still on the polar axis, then we should have J1~0 , with J 3, J 5, ... still 
small but nonvanishing. The only con ceivable difficulty that might arise with thi::l latter 
choice for the cen ter has to do with the inertial forces acting on the satellite. This difficulty 
is discussed and removed in the next section. A reason for deliberately choosing 0 as non­
coinciden t with C might be to represent any equatorial asymmetry largely by means of a first 
harmonic, and such a procedure might work if the third and higher odd harmonics then turn 
out to be negligibl e in comparison with the first. 

In the present paper we first derive a solution VL of Laplace's equation, in oblate spheroidal 
coordinates, having axial symmetry and leading to exact separability of the Hamilton-Jacobi 
equation for the mo tion of a satellite. It contains three adjustable constants, bo, bl , and c, 
which may be so chosen that the expansion of VL in spherical harmonics is 

VL=-j.tr- I [1 - J 2(R jr)2P2 (sin O)+ J HR jr)4Pisin O) - J gCR jr)6P6(sin 0) + . .. 

- J I (Rjr)P )Csin 0) + J )J 2 (R jr)3P 3 (sin O) - J\JHR jr)5P s(sin fJ) +. . . J, (4) 

where J 2 is given by (2 .1 ) and where J ) is the same as the J 1 in (1), viz, 

(4. 1) 

o being the northerly displacement of the center of mass C from O. 
Comparison of (4) with (1) shows that the fit is exact for the zero th harmonic, - j.tr - \ 

and for the first and second harmonics. It would be exact through all harmonics if the 
planetary distribu ti.on of mass happened to be such that 

J 6= ,A, 

J S= J I.A, 

.. , 

. . "' 

(5.1) 

(5.2) 

To obtain some idea of the adequacy of the potential (4) let us consider only the even 
harmonics. From (3) and (4) we may construct the following table of their amplitudes, with 
signs. 

T ABLE 1 

Harmonic 
Source 

(Zeroth) 10' -10' J , -106J. -lO'J, 

Jeffreys [3) ___ • _____________ 
From fit of bo aud c to Jef-

10' -1090 2.45 --- -- --- --- - ----
freys' J _______________ ____ 10' - 1090 1. 19 -(1. 30) 10- 3 

King-Hele and M erson [4) __ 
From fit of bo and c to their 

10' - 1080 1. 37±0. 23 - 0. 1± L. 5 
J ____ _______________ ______ 

10' - 1080 1. 17 - (1. 26) 10- 3 
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The fit of the zeroth and secoJld harmo Llic j necessarily exact. If we fit LO J effreys' J , 
the resulting fourLh harmonic has an ampli tude amou nt ing to 49 percenL of thaL given by 
Jeffreys; the result ing error of (4) then amounts to 1.26 ppm, C"olTesponcli ng to an elTor of 1.26 
parts in 1100 for the oblate lless poLential. If we fit to King-H ele and Merson 's J , the r esultino­
fo ur th harmonic has an ampli tude amo unting to (86 ± 16) peree nL of their value for the fourth 
harmonie, so that Lhe agreeme nt is within Lhc observational erro r of their determination . 
Even the sL'{th harmonic as fitted also li es within their estimates, which arc, however, very 
hazy. In any event the resul ting crror of (4) then amounts to only 0.20 ppm, corresponding 
to an eLTor of only oll e part in 5500 for t he oblate ness correction. 

The potential function that we find in th is paper , leading to H amilton-Jacobi separability, 
is thus much closer to the actual potential, at every point of space, than allY heretofore used 
as the s Lalting point of a calculat ion. If the results of King-H ele and M erson [4] are con­
firmed, it may be poss ible to do orbit theory for unretarded satelli tes very accurately without 
perturbations of the solu tion of the Hamiltoll-Jacobi equation . If not, there is s till a good 
cha nce of minimizing the usc of per turbation theory, by d istributing over the zeroth and 
second harmonics the secular effect of tbe fraction of the fourth harmonic that is not accounted 
for. 3 

2. Reference System 

As a reference sys tem we first choose a right-handed sys tem of rectangular coordinates, 
with origin at the cen tel' 0, with Oz pointing towards t he planet's north celestial pole and with 
Ox poi nLing towards the planet's vernal equinox. The directions of the axes are then fixed in 
an inertial system . For the computation of sa LelliLe orbiL a slow precession of the axis of 
symmetry abou t the celestIal polar axis may be di regarded, jf the preeession is sufficiently 
low a nd if the angle of the COlle of precess ion amoun Ls only to abou t 0.1" , as in the case of 

t he ear th [3 , p . 2021. Then Oz m ay be considered coin cident with the ax is of symmetry. 
The forces p Ell' uni L mass actin g on a sa tellite are t hen, relative Lo uch a sys tem and in 

the absence of drag: 

F1= graviLaLional field of the planeL=- \711, (6.1) 

F2 = vector sum of the graviLational field s of the sun and of any moons Lhat the planet 
may h ave, plus the in er tial forces on the atelliLe produced by acceleration of the cen ter of 
mass of the planet by tbe sun and the moon s, (6.2) 

F3= inertial force on the satelli te produced by acceleration of the point 0 in Lhe planet, 
relative to its center of mass 0, =-i , where () is the vector from 0 to O. (6.3) 

If i n (1) we disregard all higher harmonics except the econd and calculate - \711, we find 
that the ratio of the ampli tude of the oblateness force Fo to the total gravitational force is of 
the order 4 .5J2 "'" 1/200 . Thus, for the earth 

Furthermore [6], 

and 

IFo!<5 cm/sec- 2• 

IF2! "'" 10- 4 cm/sec- 2 

! ~ != (27T"/T p) 28 in a"'" (1.4)10- 208 sec- 2 

(7.1) 

(7.2) 

(7.3) 

for a period 'l'p of prece sion ""'433 days [3, p. 202] and for an angle a of tile cone of precession 
"'" 0.1". Thus 

(8 in kilometers), (7.4) 

so that F3 is utterly negligible compared to F2, for any conceivable displacement 8 of 0 from O. 
In turn, F2 amounts to less than 1/50,000 of the maximum oblateness force. 

, The author is indebted to Dr. Boris Garfinkel for this sugges tion. 
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We are thus left with Fl as the only appreciable force in the absence of drag, and we may 
choose our coordinate origin either at the center of mass C or at any near point 0 on the polar 
axis that leaves J 2 essentially unchanged but simplifies the odd harmonic part of (1). 

3. Oblate Spheroidal Coordinates 

We next introduce the oblate spheroidal coordinates ~, 71 , and ¢, defined by 

x= c[(e+ 1) (1- T/ 2)P cos ¢ 

y= c[ (e + 1) (1 - T/ 2)]t sin ¢ (- l~T/~l) , 

(8.1) 

(8.2) 

(8.3) 

where c is a distance to be fixed later. (For many of the following calculations, the book by 
Morse and Feshbach [7] is a very useful reference. ) The surfaces ~= constant are oblate 
spheroids; sections perpendicular to the z-axis are circles and meridian sections are confocal 
ellipses of semiaxes c(e+ l) t and c~, the focal separation being 2c. The locus of the foci is 
thus a circle of radius c in the plane z= O. The surfaces 71 = constant are one-sheet hyperboloids 
of revolution, asymptotic to cones with vertices at the origin, and the surfaces with right 
ascension ¢ = constant are planes containing the polar axis. Note that 71 = ± 1 along Oz or - Oz 
respectively and that for sufficiently large values of r= (X2 +y2+Z2)~ t he coordinates ~ and 71 
behave like ~""'r!c and T/ "", sin (), where () is the declination [7 , p. 1292]. The plane z= O consists 
of the regions 71 = 0 and ~= O , outside and inside the focal circle, respectively. 

The elemen t of arc ds is given by 

where [7, p. 1292] 

hi =c (e+ 1) 2)~(e+ 1) -t 

hz= cCe + 1) 2)! (1 - 1)2r} 

h3= cCe + l )t(l - 1) Z) ' . 

4. Hamilton-Jacobi Equation 

(9) 

(10.1) 

(10 .2) 

(10.3) 

Henceforth all quantities proportional to the mass of the satelli te are taken per unit mass 
of the latter. By (9) the kinetic energy of the satelli te is then given by 

so that 

where the generalized momenta are 

S(~, 1), ¢ ) being the action function . 

p<I>= h§¢= oSjo¢, 
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(13.1 ) 

(13 .2) 

(13.3) 
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For t he case of axial symmetry v= Va, 'Y/ ) and Lhe Hamiltonian H becomes 

(14) 

Th e Hamilton-Jacobi equation is then 

(~2+ 1) (OS/O~)2+ (1- 'Y/ 2) (OSjO'Y/ )2+ (e+~;~;~ 'Y/ 2) (oSjo¢)2+2c2(e+ 'Y/ 2) V(~, 'Y/ ) = 2c2(e+ 'Y/ 2) al' 

(15) 
where al is the co nstant energy. 

To try to separate variables in (15), we express S as 

(16) 

whereupon (15) becomes 

Here 
S; =clSdcl~, (18) 

From (17) it follows Lhat S~2 is expressible as a funcLion of ~ and 'Y/ alon e, so that 

S~=a3=constant. (19) 

I 
~ Further inspection of (17) shows tha t the variables ~ a nd 'Y/ can be separated if and only 

> 

> 

if the potential Va, 'Y/ ) has the form 

(20) 

Th e question then arises: Is it possible to find a solution of Laplace's equation, of the form (20), 
that will adequately represent the known facts about the earth's potential? As indicated in 
t he introduction, the answer is essentially yes. , Ve accordingly devote the next section to 
finding all the possible solutions of Laplace's equation tbat have this form. 

5. Solutions of Laplace's Equation That Lead to Hamilton-Jacobi Separability 

For axial symmetry, Laplace's equation in oblate spheroidal coordinates becomes [7 , p. 
1292] 

(21) 

Insertion of (20) into (21) then shows that the functions}W and g( 'Y/ ) must satisfy the equation 

~2 (e+ 1)J" W -2~W+2)J' W + 2(e + 2)JW + 'Y/ 2(1- 'Y/ 2) g" ('Y/ ) + 2'Y/ (1) 2_2) g' ('Y/ )-2('Y/ 2- 2) g('Y/) 

where 
M(~, 'Y/) == 'Y/ 2F(~)-eG('Y/ ) 

F(~) == (e+ 1 )J"w+2~f' W - 2JW 

+M(~, 'Y/ ) = O , (2 2) 

(23) 

(24.1 ) 

(24.2) 

By (22) a solution of (21) of the form (20) can exist only if M(~, 'Y/ ) is separable. No w the neces-
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sary and sufficicn t conditions that Nf(~, 1]) be separable are t ha t F(~) and G(1] ) have the forms 

F(~) =4B 4Ce 

G(1] ) = - 4A + 4C1]2, 

(25 .1 ) 

(25.2) 

where A , B , and 0 are constants and where the signs and the factor 4 are chosen with a view to 
la ter convenience. The conditions are obviously sufficient ; to show that they are also necessary, 
note that if M(~, 1]) is separable, there must exist fun ctions ¢W and 1/; (1]) such that 

1] 2F(~) - e G(1] ) = 1/;(1]) -¢ ( ~). 

On first placing 1] = 0 in (26) and then ~= O , we find respectively 

</>(~ ) = 1/; (0) + G(O ) e 

1/; (1] ) = </> (0)+ F(0),)2. 

Then, on inserting the expressions (27) into (26), we find 

Pla cing either ~= O or 11 = 0 in (28) now shows that </>(0)= 1/; (0), 
so that 

where 0 is a constant , b:\- a familiar argument. Thus 

FW = F(0 )+4Ce 

G(11 ) = G(O ) + 401]2, 

wbich have the general forms indicated in (25), so tha t the latter are also necessary. 

(26) 

(27 .1) 

(27.2) 

(28) 

(29) 

(30 .1 ) 

(30.2) 

Comparison of (24.] ) and (25. 1) and of (24.2) and (25.2) shows tha t the functionsjW and 
g(1] ) must satisfy 

(e+ l )fll 2~f' - 2j- 4Ce - 4B= 0 (3 1.1 ) 

(3 1.2) 

By (23) and (25) it now follows that 

(32) 

Insertion of (32) into (22) then shows that the fun ctiollsjW and g(11 ) must also satisfy 

~2(e+ l)j" W -2~W+ 2)1' m + 2W+ 2)jm + 4Ae= 

1]2(1]2_ 1 )g" (11) - 211 ( 1]2_ 2)g' (1] ) + 2 (1]2_ 2)g(1] ) - 4Br{ (33) 

The usual argument about separabili ty then shows that each side of (33) is equal to a constant 
4K. ThusjW and g( YJ ) must also satisfy 

1]2(r,z - 1)g" - 211 (1]2_ 2)g' + 2(1'/2- 2)g- 4B1'/2_ 4K= 0. 

ll O 

(34.1 ) 

(34.2) 



We may avoid solving econd-order differ en Lial equation , a follows : To eliminate f" , 
multiply (31.1) by e and subtract the resulting equation from (34.1 ). To eliminate gil, multiply 
(31.2) by 1J2 and subtract the resulting equation from (34.2). The re uHinO' first-order equations 
are the linear one 

U'-f= (e+ 1)-I[C~~ (A + B)e- J< 

1Jg' _ g= (1J2_ 1)-I[C1J4- (A + B)'T}2_K ]. 

Their mo t general solutions are 

(35.1 ) 

(35 .2) 

(36.1 ) 

(36.2) 

where bo and bl arc co nsLants of in tegration. Insertion of (36 .1) into (31. 1) no\ show that 

B = A. (37) 

Then, with B = A , insertion of (36.2) into (31.2) simply yield a check. 

Thus 
.1m = K + M+ ce+ (2A - C+ K)~ tan-l~ (38.1 ) 

(38.2) 

It is easy to verify that these solu tions for fa) and g(T/) satisfy boLh ets of econd-order equft­
tions, viz, (31 ) and (34), as they should . Moreover, sincef(~) and g(1J) must satisfy (35) and 
since the expressions (36) are the mo t general solutions of (35), it follows that there arc no 
other olutions for fa) and g(1J ). 

From (3 ) it now follows that all axially symmetri c solutions of Laplace's equation t l13 t 
have the form (20) in oblate spheroidal coordinate are expressible as 

(39) 

where we have replaced H2A- C+ K ) by b2• The Hamilton-Jacobi equation is separable, 
when t he potential is a solu tion of Laplace 's equation, if and only if the pot~ntial has Lhis 
form in oblate spheroidal coordinates. 

If as usual we take V to be zero at infinity, the constant C vanishes . 'Ve are thus left 
with three explicit adjustable constants, bo, bl , and b2• It is at once clear, however, t haL b2 

must vanish if the solution is to represent the potential outside a planet, for the logarithmic 
term has a singularity everywhere on the polar axis, for which T/ = ± 1. 

We thus fi nally arrive at a solution of Laplace's equation which makes Lhe Hamilton-
i'1 Jacobi equation separable and which con tains two explicit adjustable constants, bo and bl, 

and one implicit adjustable constant c, the latter appearing in the equations of transformation 
from oblate spheroidal to r ectangular coordinates. This solution is 

(40) 

~ Thc rcad cr may l'eadil~r \rcrify that (~+jT/)-1 is a solution of the Laplacc cquaLion (21 ) and thu 
that (40) is a solution. (We here usc j instead of i for the imaginary unit, saving i for usc in 
later papcl'S as orbi tal inclination .) 
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6. Expansion of the Potential in Spherical Harmonics 

From (8) we obtain 

~7) = sr/c, 

where r is the distance from Lhe origin to tho satellite and where 

s= sin 0, 

o being the declination of the satellite. Then 

where 

Then 

(41.1) 

(41.2) 

(41.3) 

(42 .1 ) 

(42 .2) 

( 42.3 ) 

(43) 

Sinoe we shall choose c< < r, it follows that Ihl< l and ( 1 - 2hs+h2)-~ is then the generating 
function for the Legendre polynomials P n(s) . Thus 

<X> <X> 

(~+j7) ) - I = cr- l ~ hnp,, (s)=cr- 1 ~ (_ j)ncnr-nPn(s), (44) 
n-O n-O 

from which there follow the relations 

(45.1) 

ce+ 7)2)-I7) = - Im (~+j7) ) - I = cr- l[cr- 1PI (sin 0) - c3r- 3P 3(sin e) + o5r-5P 5(sin e )- ... J. (45.2) 

From (40) and (45 ) it then follows that 

V = bocr-1[l -c2r- 2P,.(sin 0) + b - 4P 4 (sin 0) - ... J- b1cr- 1[cr- 1P1 (sin 0) -c3r - 3P 3(sin 0)+. .J 
(46) 

7 . Evaluation of the Adjustable Constants 

Comparison of (46) with (1) shows that to fit the zeroth harmonic we must choose 

boc= - jJ., (47.1) 

that to fit the second harmonic we must then choose 

(47.2) 

and that to fit the first harmonic we must choose 

(47.3) 

That is all the flexibility that (46) permits ; the higher harmonics are then all fixed, as indicated 
in the relations (5), which follow from (46). 

These choices lead to the form (4) for the potential, which has been amply discussed in 
the introduction. For R = 6378. 388 km we find from (47.2) and table 1: 

c= 210.7 km 

c= 209. 9 km 

(Jeffreys) , 

(King-Hele and Merson). 
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Although eqs (8) appear to placc this cons tan t c in 0 central a position in thc theory as to make 
numerical prediction s depend s trongly on its accuracy, i t is not r eally so. Actually we shall 
see that a knowledge of the value of c is n eeded only to find the deviations of th e orbiL from a 
conic section. 

From (40) and (47) we obtain as our working expre sion for V, in oblate spheroidal co­
ordinates: 

17= - ,uc- 1(e + 1']2) - l(~+ 1']O/c). (49) 

8. Formal Solution of the Hamilton-Jacobi Equation 

Insertion of (19) and (49) into (17) now results in the fully separa ted equation 

ce+ 1)8;2 - (~2+ 1 ) - la~- 2,uc~- 2alC2e=- (1 - 1'] 2) 8~2 - ( 1 - 1'] 2)-la~+ 2,uo1'] + 2alC21'] 2 = k . (50) 

By the usual argumen t, each side of (50) is equal to a cons tant Ie. 
At this point it is n eeessary to discuss complete and incomplete orbits. vYe define a 

complete orbit as the orbit th a t would be traversed by the sa telli te when the time t is allowed 
to run from - 00 to + 00 , on the assumption that the equations defining th e orbi t hold for all valu es 
of t. In the cases of a planetary sa tellite or of a meLeor comin g in from infinity wi th i ts orbit 
b eing bent around the planet without hitLing it, the ac tual physical orbit is complete. Any 
proj ectile fu'ed from a gun and returning t o earth, however , exemplifies an incomplet e bound 
orbit. Any missile which escapes from the earth exemplifies an incomplete unbound orbit, as 
does any m eteor with en ergy a l> O whicb hits t lle ear th . N ote that th e complete orbi t may or 
m ay not inter sect the planet. If it does, we defin e j t as that complete orbi t which would b e 
described by the satellite, in the absence of plan etary matter , but in a gravitational fleld eor­
r esponding to (49). For r>c, this field can be r epresen ted by the multipole field (46). 

By (50) it follows that 

(51) 

Thus if the plan e 1'] = 0 is r eached by the complete orbi t 

(52) 

In th e case where 0 is ehosen to be zero , th e plan e 1'] = 0 is the ordinary equa torial plane through 
t he center of mass of the pla net. Thus, if this plan e is r eached by the complete orbit, (52) 
is sa tisfted . 

It is clear that (52) is only a n ecessary condition that the complete orbit r each th e plane 
1] = 0 . It is difficult to find a corresponding sufficien t condition . By analogy with th e K epler 
problem (r - 1 potential), we may suspect tha t when 0= 0 the equatorial plane will always be 
r eached by the complete orbit of any bound satellite. If 0~0 , however , the plan e 1'] = 0 may 
no t be r each ed if the orbit is very close to the equator. This latter circumstan ce is illus trated 
in figure 1. 
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The difficulties in finding a condition sufficient for 7] = 0 to be reached are illustrated 
by the existence of cases where the complete orbit may not reach either the region 7] = 0 
outside the focal disk or the region ~= o inside it. For example, if a particle is dropped from 
a point on the polar axis into a matter-free region satisfying (49), so that a3= 0, 7]0= ± 1,170= 0, 
it follows (with 0= 0) that the complete orbit is a piece of the polar axis, penetrating neither 
~= O nor 7] = 0. 

In the rest of the paper we exclude the possibility of orbits that lie only on the polar axis , 
thus ruling out, e.g. , the case of a missile fired vertically from either pole. We then consider 
only those orbits whose completions either reach the plane 7] = 0 or reach at least one gen uine 
extremum 7]1 for which ?7 = O, ~~O . 

From (50) it now follows tha t 

S~m= ± (e+ l)-' [a~+ (k+ 2J.1.c~+ 2a,C2e) (e+ l )]t (53.1) 

(53.2) 

where by (13), (16), and (18) the upper sign is to be used whenever the corresponding co­
ordinate is increasing and the lower sign whenever it is decreasing. Also 

From (53) and (19) it then follows that 

S = a3c/> ± (~(e+ l )-' [a~+(k+ 2J.1.c~+2a,c2e)(e+ l ) ] !d~ 
J ~l 

(19) 

±J~ (1_ 7] 2)-1 [ -a~+ (- k + 2J.1.o7] + 2aIC27] 2) ( 1 - 7] 2) ] ~ d7] + col1st. (54) 
~l 

Before defining the lower limits ~1 and 7]1, it is well to note that eq (54) is somewhat deceptive 
in appearance, because of the presence of the "small" distance c in terms that are clearly very 
important. Let us now remove this difficulty, as follows. R eplace the variable ~ by the 
variable p, where 

(55) 
By (41) it then follows that 

p2=r2_ (1- 7] 2)c2 (56.1 ) 

p7] = r sin e (56 .2) 

e+ l = (p2+C2)C- 2, (56.3) 

o that p ~r on the physically realizable part of any complete orbit. On substituting (55) 
into (54) and dropping the constant term, we obtain 

S=a3c/> ± ( p (p2+c2)-I [c2a~+(k+ 2J.1.p + 2aIP2)(p2+ c2) J !dp 
JP1 

± (~(1_ 7]2)-1[-a~+(-k+ 2J.1.o7] +2alC27] 2) (1- 7] 2)J!d1) , (57) 
J ~l 

where 
(57.1) 

If the complete orbit intersects the plane 7] = 0, we choose the lower limit 7]1 to be zero, 
corresponding to 0= 0, in accord with the usual canonical treatment [8J of a bound orbit for the 
case V =- J.Lr- 1 ; this appears to be a good choice for an unbound orbit also. If the complete 
orbit does not in tersect the equatorial plan e, we choose 7]1 as an extremum of 7] on the complete 
orbit. It will be a zero of the 1)-integrand satisfying 7] ~ - 1. 
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To choose a valu e for PI, we reason as follows. The p-in tegrand of (57) has the fac tor 

(5 .1) 
where 

(5 .2) 

The appropriate real zeros of F (p) will be almos t equal to tho e of j(p) , which always has two 
in any physically realizable case. If al ~ 0, one zero of j (p) will be posi t ive and the other 
negative (approaching- <Xl as al approaches zero). If al< O, both zeros ofj(p) will be positive. 
Any other real zeros of F (p) will occur for inappropriate value of p, of the order c. Thus for 
unbound orbits, we choose PI to be the largest positive zero of F (p), this being the only one 
accessible to complete unbound orbits. For bound orbits, we choose PI to be th e next to the 
largest po itive zero of F(p), equal approximately to the smaller zero ofj(p) . In either case 
PI is then the minimum value of P dynamically accessible to the complete orbit ; the correspond­
ing spheroid may or may no t lie within the earth. (Any value of P less than PI as jus t defined 
is dynamically inaccessible to the complete orbit in the field V (t 7] ), even if the planetary matter 
could be removed without change in V(~, 7]): to r each such values the orbit would ha ve to 
pass through regions in which F (p) is negative and Pi complex.) Of COUI' e PI> R and thus 
outside the earth for an y ordinary satellite in a bound orbit. 

Whenever th e plane 7] = 0 is intersected by t he complete orbit, w(' hav(' seen that k ~ - a~, 
so t hat we can then introduce a real a2 such tha t 

1c=-a~, (59.1 ) 
where we can assume 

a2>0 (59.2) 
without loss of generality. Then 

a~~ a§. (59.3) 

If we put 0= 0 and c= o in (57) and th en use p= 7' , 7] = sin 0, whi clt would th en follow from (56), 
and also use (59.1), we find that (57) reduces [8J to the correct expression for th e action func­
t ion for the case V=- ,w·- I • Thus the terms in (57) tha t con tain c2 or 0 giv(' rise to deviatioll s 
from a conic-sectional orbit. 

From (13 .3) and (19) it follows that the cOlrtant a3 in (57) is the z-component of angular 
momen tum. Tlte constant k has no name, but is related to the magnitude of th e total angular 
momentum, which is, however , not conserved in the non-central field produ ced by oblateness. 
To see the connect ion , note that whenever k ~ - a32, we can write (59.1 ) and (59 .3) . Then 
when 0 and c2 arc both allowed to approach zero in (57), a2 approaches the magni tude of the 
total angular momentum, which is th en conserved. (This result follows most easily from the 
fact already men tion ed, viz, that (57) then reduces to the correct aclion fun ct ion for the case 
V = - fLr- I .) 

9 . Kinetic EquQ tions of Motion 

Implicit equations for p, 7] , and </> as functions of t are now given b~T 

oSj oal = t + {3l 

oS/o1c= {3~ 

oS/ oa3= {33 

(60.1) 

(60.2) 

(60.3) 

where t is the time and the (3's are constants. Since the lower limit PI in (57) is a function of 
ai, k, and a3, the deriva tive of t he p-in tegral with l'('spect to any of t hem i the sum of an in ­
tegral and a term like =F I p(PI) opt/ oal' Here I p(p) is th e p-integrancl , which vanishes for PI, 
so tha t t his second term vanishes. If the complete orbit intersects the plane 7] = 0, 0 that 7]1 
can be taken to be zero, on second t erm arises in a derivative of the 7]-in tegral ; if no t, 7]1 is to be 
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taken as an extremum value of ", on the complete orbit and the second term again vanishes, 
since "'1 is then a zero of the ",-integrand. 

The kinetic equations are thus 

± { p p2[c2a~+ (k + 2j.1p + 2alp2) (p2+C2)]-tdp ± c2 ( ~", 2 [_a~+ (- k + 2j.1o", + 2alc2", 2) (1- ", 2) ]-!d", = t + iJI , 
JP1 J71 1 

(61.1 ) 

± t { P [c2a~+ (k+2j.1p + 2alp2) (p2+ C2)]-!dp :Ft { ~[-a~+ (- k+ 2j.1o", + 2alcz",z) (1- ",2)]-td", = iJ;, 
J P1 J ~l 

cf> ±C2a 3 { p (p2+C2) - 1[c2a§+ (k+ 2,up + 2alp2) (p2+C2) ]-!dp Jp1 

(61.2) 

=j= a3 ( ~(1_",2) -1[ -a~+ (- k+ 2j.10", + 2aIC2", 2) (1- ",2) ]-td", = iJ3' (61.3) j 

J ~l 
If we restrict considerations to those cases where the plane ", = 0 is intersected by the 

complete orbit, then k~ a;. W e can then substitute k=- a~~ -a; in (57) and replace 
(60.2) by 

From (57), (60 .1), (60.3), and (62) there then follow the kinetic equations 

± { p p2 [c2a~+(-a~+2j.1p + 2aIP2)(p2+c2) ] -tdp ±c2 (", ", 2 [- a~+(a~+ 2j.1o", 
J PI Jo 

cf> ± c2a3 { p (p2+C2)-I [c2a~+ (-a~+2,up +2aIP2) (p2+C2)]-tdp 
.J PI 

+ 2alc2", 2) (1- ", 2) ]-td", = t + iJI , 

=j= a3i~ (l _ ",2)-1[ -a~+ (a~+2j.1o", +2alcz",z) (1- ",2) ]-td", = iJ3' 

(62) 

(63.1) 

(63.3) 

Future papers will be devoted to evaluating the integrals in these equations, solving them 
simultaneously for p, "" and cf> as functions of t ime, and deriving the astronomical results that 
they imply, both for bound orbits and unbound orbits. 
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