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An axially symmetric solution of Laplace’s equation in oblate spheroidal coordinates is
found, which may be used as the gravitational potential about an oblate planet. This
potential, which makes the Hamilton-Jacobi equation for a satellite orbit separable, has an
expansion in zonal harmonics in which the amplitudes of the zeroth and second harmonies
can be adjusted to agree exactly with the values for any axially symmetric planet and a fourth
harmonic which then agrees approximately with the latest value for that of the earth.
The net result is therefore a reduction of the problem of satellite motion to quadratures, with
use of a potential field that is much closer to the empirically accepted one for the earth than
any heretofore used as the starting point of a calculation. It may thus be possible to do the
gravitational theory of a satellite orbit very accurately without use of perturbation theory.
The method can take into account a first harmonic in the potential, in case observations are
reduced to a center which does not coincide with the center of mass of the planet.

1. Introduction

The purpose of this paper is to develop a method of solution of the central problem of
satellite astronomy, viz, the theory of the effect of the oblateness of a planet on the orbit of any
satellite, bound or unbound, but near enough to the planet so that the forces of other bodies
may be neglected. (A preliminary note has appeared in [1].%)

To do so, let us consider the gravitational potential V outside an axially symmetric oblate
planet of mass M. We call the axis of symmetry the polar axis; this will ordinarily be indistin-
guishable from the axis of rotation, except for entirely negligible periodic effects. We also
choose some point O on the polar axis as the “center’” or origin of a coordinate system and let r
be the corresponding position vector of a field point.  With »=|r|, the declination 6 as the com-
plement of the angle between r and the polar axis, ¢ the gravitational constant, M the mass of
the earth, and p=GM, the potential V(r, ) can be expressed by means of an expansion in
spherical harmonies:

Ve | 13 LR Posin o) | (1)
n=1

Here I is the equatorial radius, 1.e., the radius of a section through O perpendicular to the polar
axis. The notation o, for the coefficients was introduced by Merson and King-Hele [2].
For points on the polar axis (9==/2) at the distance £ from the center, the ratio of any two
terms in (1) is equal to the ratio of the corresponding J’s.

If the planet has symmetry with respect to the equatorial plane, all the odd harmonics
drop out; i.e., J,=J3=J;=. . .=0. (In any case, even if no such symmetry exists, the first
harmonic drops out, i.e., J; vanishes, if O is chosen at the center of mass.) The coeflicients
J, and J; are given by

Jo—2J)3—(I,—1,)/MR?, (2.1)

J=—8D)/35, (2.2)

where the quantities o/ and D were introduced by Jefireys [3], and where 7, and 7, are the

1 This work was supported by the U.S. Air Force, through the Office of Scientific Research of the Air Research and Development Command.
2 Figures in brackets indicate the literature references at the end of this paper.
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moments of inertia of the planet about polar and transverse axes through 0. For the earth,
with O taken at the center of mass, Jeflreys [3] gives the values

J=(1637.5)10"%  D=(10.7)10~5, (3.1)
while King-Hele and Merson [4] derive from recent satellite observations the values
J=(1624.6+£0.3)10"%,  D=(641)10"%,  Js=(0.141.5)10"° (3.2)

It should be noted that until very recently it has always been assumed that the earth has
symmetry with respect to its equatorial plane—strictly speaking, that the geoid, or smoothed
earth, has such symmetry. That is, all the odd /’s have been assumed to vanish. Recently,
however, there has appeared some evidence [5] for an observable asymmetry with respect to
the equatorial plane. Such evidence, if confirmed, would have the following results. If O
is taken at the center of mass (), then J, would still vanish, but /5, JJ5, . . . would have small
nonvanishing values. 1If, on the other hand, O is taken, either by error or by design, as non-
coincident with ', but still on the polar axis, then we should have JJ,0, with J;, J;, . . . still
small but nonvanishing. The only conceivable difficulty that might arise with this latter
choice for the center has to do with the inertial forces acting on the satellite. This difficulty
is discussed and removed in the next section. A reason for deliberately choosing O as non-
coincident with ' might be to represent any equatorial asymmetry largely by means of a first
harmonic, and such a procedure might work if the third and higher odd harmonics then turn
out to be negligible in comparison with the first.

In the present paper we first derive a solution V, of Laplace’s equation, in oblate spheroidal
coordinates, having axial symmetry and leading to exact separability of the Hamilton-Jacobi
equation for the motion of a satellite. It contains three adjustable constants, by, b;, and ¢,
which may be so chosen that the expansion of V7, in spherical harmonics is

Vi=—ur=1—Jo(B/r)?Py(sin 0) 4 J3(R/r)*Py(sin ) — J3(R[r)*Pg(sin 6)+-. . .
— JI(R/r)P:(sin 8) + J 1 Jo(R/r)3Py(sin 6) — J,J3(R/r)°Ps(sin 6) +. . ], 4)

where ./, is given by (2.1) and where .J; is the same as the JJ; in (1), viz,
J,=—38/R. @.1)

6 being the northerly displacement of the center of mass €' from 0.

Comparison of (4) with (1) shows that the fit is exact for the zeroth harmonic, —pur ™,
and for the first and second harmonics. It would be exact through all harmonics if the
planetary distribution of mass happened to be such that

Ji=—d;, Je=Ji, ..., Ju=(—1""J}, (5.1)
J3:—‘J1J2, Jf,:JlJ%, o e ey J2n+1:(—1)nch]7zl. (52)

To obtain some idea of the adequacy of the potential (4) let us consider only the even
harmonics. From (3) and (4) we may construct the following table of their amplitudes, with
signs.

TaBLE 1
Harmonic
Source
(Zeroth)108 —106J; —108J —108J5

Jeffreys [3] . oo ____ 108 —1090 2.45 ..
From fit of by and ¢ to Jef-

freys’ J oo ____ 108 —1090 1.19 —(1.30)10-
King-Hele and Merson [4]_. 106 —1080 1.3740.23 —0.1£1.5
From fit of b and ¢ to their

Y A R A e 108 —1080 INI7 —(1.26)10-3
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The fit of the zeroth and second harmonics is necessarily exact. If we fit to Jeffreys’ J,
the resulting fourth harmonic has an amplitude amounting to 49 percent of that given by
Jeflreys; the resulting error of (4) then amounts to 1.26 ppm, corresponding to an error of 1.26
partsin 1100 for the oblateness potential. If we fit to King-Hele and Merson’s ./, the resulting
fourth harmonic has an amplitude amounting to (86 -+ 16) percent of their value for the fourth
harmonic, so that the agreement is within the observational error of their determination.
Even the sixth harmonic as fitted also lies within their estimates, which are, however, very
hazy. In any event the resulting error of (4) then amounts to only 0.20 ppm, corresponding
to an error of only one part in 5500 for the oblateness correction.

The potential function that we find in this paper, leading to Hamilton-Jacobi separability,
is thus much closer to the actual potential, at every point of space, than any heretofore used
as the starting point of a calculation. If the results of King-Hele and Merson [4] are con-
firmed, it may be possible to do orbit theory for unretarded satellites very accurately without
perturbations of the solution of the Hamilton-Jacobi equation. If not, there is still a good
chance of minimizing the use of perturbation theory, by distributing over the zeroth and
second harmonies the secular effect of the fraction of the fourth harmonic that is not accounted
for.?

2. Reference System

As a reference system we first choose a right-handed system of rectangular coordinates,
with origin at the center O, with Oz pointing towards the planet’s north celestial pole and with
Ox pointing towards the planet’s vernal equinox. The directions of the axes are then fixed in
an inertial system. For the computation of satellite orbits a slow precession of the axis of
symmetry about the celestial polar axis may be disregarded, if the precession is sufficiently
slow and if the angle of the cone of precession amounts only to about 0.1”7; as in the case of
the earth [3, p. 202]. Then Oz may be considered coincident with the axis of symmetry.

The forces per unit mass acting on a satellite are then, relative to such a system and in
the absence of drag:

F,=gravitational field of the planet=—VV] (6.1)

F,—=vector sum of the gravitational fields of the sun and of any moons that the planet
may have, plus the inertial forces on the satellite produced by acceleration of the center of
mass of the planet by the sun and the moons, (6.2)

F;—inertial force on the satellite produced by acceleration of the point O in the planet,
relative to its center of mass €, =—¢, where 6 is the vector from C to O. (6.3)

If in (1) we disregard all higher harmonics except the second and calculate —VV, we find
that the ratio of the amplitude of the oblateness force Fy to the total gravitational force is of
the order 4.5.J,~1/200. Thus, for the earth

[Fo|<5 cm/sec 2 (7.1)
Furthermore [6],
|Fy|~10-* cm/sec—? (7.2)
and .
|6|= (2n/T,)% sin a= (1.4)10~2 sec—? (7.3)

for a period T, of precession =433 days [3, p. 202] and for an angle « of the cone of precession
~(.1"". Thus
F3/Fy~(1.4)10~5 (6 in kilometers), (7.4)

so that /5 is utterly negligible compared to F, for any conceivable displacement 6 of O from C.
In turn, F, amounts to less than 1/50,000 of the maximum oblateness force.

8 The author is indebted to Dr, Boris Garfinkel for this suggestion.
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We are thus left with F; as the only appreciable force in the absence of drag, and we may
choose our coordinate origin either at the center of mass € or at any near point O on the polar
axis that leaves o/, essentially unchanged but simplifies the odd harmonic part of (1).

3. Oblate Spheroidal Coordinates

We next introduce the oblate spheroidal coordinates £ 5, and ¢, defined by

r=c[(F+1)(A—n)]tcosp  (0<t< ™), (8.1)
y=c[(F+1)(1—7)tsin¢ (—1=7=1), (8.2)
z=cfn, (8.3)

where ¢ is a distance to be fixed later. (For many of the following calculations, the book by
Morse and Feshbach [7] is a very useful reference.) The surfaces §=constant are oblate
spheroids; sections perpendicular to the z-axis are circles and meridian sections are confocal
ellipses of semiaxes ¢(£+1)% and ¢£, the focal separation being 2¢.  The locus of the foci is
thus a circle of radius ¢ in the plane z=0. The surfaces 7=constant are one-sheet hyperboloids
of revolution, asymptotic to cones with vertices at the origin, and the surfaces with right
ascension ¢=constant are planes containing the polar axis. Note that =1 along Oz or — 0z
respectively and that for sufficiently large values of r= (224724 2%)?% the coordinates £ and 7
behave like ¢ =7/c and 5 =sin 6, where 6 is the declination [7, p. 1292]. The plane z=0 consists
of the regions =0 and =0, outside and inside the focal circle, respectively.
The element of arc ds is given by

ds*=hdE +hidn*+hid¢?, (9)
where [7, p. 1292]
hy=c(&+7*)(E+1)? (10.1)
hy=c(§+n%)}(1—n*)7 (10.2)
hs=c(£+1)}(1—n*)%. (10.3)

4. Hamilton-Jacobi Equation

Henceforth all quantities proportional to the mass of the satellite are taken per unit mass
of the latter. By (9) the kinetic energy of the satellite is then given by

1 % . .
T=3 (h3E-+133*+136), a1
so that
1
T=5 (hi*pit-hs *pit-hs °p3), (12)
where the generalized momenta are
pe=h3E=0S/0k (13.1)
Py =h31=0S/0n (13.2)
Ps=h3ep=08/0¢, (13.3)

S(&, 1, ¢) being the action function.
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For the case of axial symmetry V=1(¢, ») and the Hamiltonian 77 becomes

o S| 1—n? 2 .
H=(e)~ | £55 st o it [+ VG- (14)

The Hamilton-Jacobi equation is then

£+7°

ELDA—y (500 +2EE+n) Vigm =26+ n%)an

(8+1)(08/08)*+ (1—7°) (3S/0n)*+

(15)
where «; is the constant energy.
To try to separate variables in (15), we express S as
S=81(8)+8S:(n)+Ss(e), (16)
whereupon (15) becomes
9 19 2\ QI8 1 1 19 ¢ 9 9 > .9/ 82 9
(£41)S1*+(1 —77')5224‘(‘1‘_?‘—@) S +2c*(£+1°) V(En) =2¢*(E+1)u. (17)
Here
S1=dS,/d¢, Sy=dS/»dn S;=dS;/d¢. (18)
From (17) it follows that S;* is expressible as a function of & and 5 alone, so that
S =a;=—constant. (19)

Further inspection of (17) shows that the variables £ and » can be separated if and only
if the potential V(¢ ) has the form

V(g n)=(E+2*) 7' [f(®)+gm)]. (20)
The question then arises: Is it possible to find a solution of Laplace’s equation, of the form (20),
that will adequately represent the known facts about the earth’s potential? As indicated in

the introduction, the answer is essentially yes. We accordingly devote the next section to
finding all the possible solutions of Laplace’s equation that have this form.

5. Solutions of Laplace’'s Equation That Lead to Hamilton-Jacobi Separability

For axial symmetry, Laplace’s equation in oblate spheroidal coordinates becomes [7, p.

1292]
O e OV L0 12V ]_
05[<E aFl) ot +anl:(1 n )577 l 0. (21)

Insertion of (20) into (21) then shows that the functions f(£) and g(n) must satisfy the equation

EE+D7(O)—26E12)f (6)+2E+2f (O +n*(A—1%) g’ (n) +2n(n*—2) g’ () —2(n*—2) g(n)

where _
Mg, n)=n*F(§)—£G (n) (23)
FE=E+1)F"" (&) 428f (6)—2f(¥) (24.1)
Gn)=(n"—1)g"" (n)+2ng" (n) —29(n). (24.2)

By (22) a solution of (21) of the form (20) can exist only if M (£, 5) is separable. Now the neces-
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sary and sufficient conditions that M (g, n) be separable are that F(£) and G(3) have the forms
F(£)=4B+40# (25.1)
G(n)=—4A+407, (25.2)

where A, B, and ( are constants and where the signs and the factor 4 are chosen with a view to
later convenience. The conditions are obviously sufficient; to show that they are also necessary,
note that if M(&, 5) is separable, there must exist functions ¢(£) and ¥(») such that

7 F(§)—EG(n)=¥(n)—¢(£). (26)

On first placing n=—0 in (26) and then =0, we find respectively
#(5)=y¢(0)+G(0) ¢ (27.1)
Y(n)=¢(0)+F(0)r. (27.2)

Then, on inserting the expressions (27) into (26), we find

7'[F(£) — F(0)]— £[G(n) — G(0)]=¢(0) —/(0). (28)
Placing either ¢=0 or =0 in (28) now shows that ¢(0)=y(0),
so that
EPF(§)—F(0)]=£7[G(n—G(0)]=4C, (29)

where (1s a constant, by a familiar argument. Thus
F(&)=F(0)44C¢ (30.1)
G(n) = G(0)+4C, (30.2)
which have the general forms indicated in (25), so that the latter are also necessary.
Comparison of (24.1) and (25.1) and of (24.2) and (25.2) shows that the functions f(¢) and
¢(n) must satisfy
(24 1)+ 2¢f’ —2f—4CE—4B=0 (31.1)
(n*—1)g"" +299’ —29g—4Cn*+4A=0. (31.2)
By (23) and (25) it now follows that
M(g, n)=4AE+4 By’ (32)

Insertion of (32) into (22) then shows that the functions f(¢) and g(n) must also satisfy

EE+ L7 (5)—25E+2)f (5) +2(8+2)f(8) +4A8=
7 (n*—1)g"" (n)—2n(n*—2)g" () +2(n*—2)g (n) —4Bn*.  (33)

The usual argument about separability then shows that each side of (33) is equal to a constant
4K. Thus f(¢) and g(n) must also satisfy

E(E+ 1) —28(842)f +2(8+2)f+448—4K=0 (34.1)

1*(n°—1)g" —2n(n’—2)g’+2(r*—2)g— 4By’ —4K=0. (34.2)
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We may avoid solving second-order differential equations, as follows: To eliminate 1/,
multiply (31.1) by & and subtract the resulting equation from (34.1). To eliminate ¢’/, multiply
(31.2) by #* and subtract the resulting equation from (34.2). The resulting first-order equations
are the linear ones

' —f=(F+1)7CE+ (A+B)E—K] (35.1)
19’ —g=("—1)"[Cn*— (A+B)n’—K]. (35.2)

Their most general solutions are

f(&)=K+bot+C8+ (A+B—O+K)E tan™'¢ (36.1)
, . 1 147 .
gln)=—K—bm+Cn+5 (A+B—C+K)nln 1— (36.2)

where by and b, are constants of integration. Insertion of (36.1) into (31.1) now shows that
1=l (37)
Then, with B=A, insertion of (36.2) into (31.2) simply yields a check.

Thus
f(&)=K+b+C8+ (24— C+K)E tan™'¢ R,

Lt

y(n)Z—K~bm+0n2—I-% @A—C+E)nIng— (38.2)

It 1s easy to verify that these solutions for f(¢) and g(y) satisfy both sets of second-order equa-
tions, viz, (31) and (34), as they should. Moreover, since f(&) and ¢(n) must satisfy (35) and
since the expressions (36) are the most general solutions of (35), it follows that there are no
other solutions for f(£) and g(n).

From (38) it now follows that all axially symmetric solutions of Laplace’s equation that
have the form (20) in oblate spheroidal coordinates are expressible as

V(g =0+ (6 0) 7 Bue b0, (2 tante o 1n 177 | (30)

where we have replaced 3(24—C-+K) by b,. The Hamilton-Jacobi equation is separable,
when the potential is a solution of Laplace’s equation, if and only if the potential has this
form in oblate spheroidal coordinates.

If as usual we take V to be zero at infinity, the constant ' vanishes. We are thus left
with three explicit adjustable constants, by, b;, and b,. It is at once clear, however, that b,
must vanish if the solution is to represent the potential outside a planet, for the logarithmic
term has a singularity everywhere on the polar axis, for which n=4-1.

We thus finally arrive at a solution of Laplace’s equation which makes the Hamilton-
Jacobi equation separable and which contains two explicit adjustable constants, b, and b,
and one implicit adjustable constant ¢, the latter appearing in the equations of transformation
from oblate spheroidal to rectangular coordinates. This solution is

V=(&+7") " (bot—byn) =bo Re (§47n) 7 +b, Im (&47m)~". (40)

The reader may readily verify that (§+475)7" is a solution of the Laplace equation (21) and thus
that (40) is a solution. (We here use j instead of ¢ for the imaginary unit, saving ¢ for use in
later papers as orbital inclination.)
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6. Expansion of the Potential in Spherical Harmonics

From (8) we obtain
g—n’=r}c*—1, (41.1)

En=srfe, (41.2)
where 7 is the distance from the origin to the satellite and where
s=sin 6, (41.3)

6 being the declination of the satellite. Then

(E+gm)'=E—n"+2En=r"c">—1+2jsrc™" (42.1)
—r2e~2(1—2hs+h?), (42.2)

where
=—jer . (42.3)

Then
(E+gm)t=cr~'(1—2hs+h?)%. (43)

Since we shall choose ¢< <7, it follows that |A|< 1 and (1—2hs+Ah?)~% is then the generating
function for the Legendre polynomials P,(s). Thus

Etgm)Ti=er™t 25 WP (s)=er™ §0 (Sl =R (s) (44)
from which there follow the relations
(B+n) E=Re(t+gn) t=cr 1 —c2Py(sin 0)+c'r*Py(sin §)— . . ] (45.1)
(E4+n2) " Ip=—TIm(E+7n) '=cr er Py (sin ) — 2 Py(sin 0) +c’r 2P (sin § )—. . .]. (45.2)
From (40) and (45) it then follows that

V=boer 1 —c*2P;(sin 0)+c'r*Py(sin 8)—. . J—ber Y er 'P(sin 6)—c*r=2Py(sin 0)+. . .]
(46)

7. Evaluation of the Adjustable Constants
Comparison of (46) with (1) shows that to fit the zeroth harmonic we must choose
boe=—u, (47.1)
that to fit the second harmonic we must then choose
=R, (47.2)
and that to fit the first harmonic we must choose
b= —pRJ, = pd. (47.3)

That is all the flexibility that (46) permits; the higher harmonics are then all fixed, as indicated
in the relations (5), which follow from (46).

These choices lead to the form (4) for the potential, which has been amply discussed in
the introduction. For R=6378. 388 km we find from (47. 2) and table 1:

¢=210.7 km (Jeffreys), (48. 1)

¢=209. 9 km (King-Hele and Merson). (48. 2)
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Although eqs (8) appear to place this constant ¢ in so central a position in the theory as to make
numerical predictions depend strongly on its accuracy, it is not really so. Actually we shall
see that a knowledge of the value of ¢ is needed only to find the deviations of the orbit from a
conic section.

From (40) and (47) we obtain as our working expression for V|, in oblate spheroidal co-
ordinates:

V=—pc ' (&+n) " (§+nd/c). (49)
8. Formal Solution of the Hamilton-Jacobi Equation

Insertion of (19) and (49) into (17) now results in the fully separated equation
(£4-1)8 — (£41)'ad— 2uct— 204?82 = — (1 —12) Sy — (1—n?) ~'ad+2udn +2epen’=k.  (50)

By the usual argument, each side of (50) is equal to a constant k.

At this point it is necessary to discuss complete and incomplete orbits. We define a
complete orbit as the orbit that would be traversed by the satellite when the time ¢ is allowed
to run from — to -+, on the assumption that the equations defining the orbit hold for all values
of t. In the cases of a planetary satellite or of a meteor coming in from infinity with its orbit
being bent around the planet without hitting it, the actual physical orbit is complete. Any
projectile fired from a gun and returning to earth, however, exemplifies an incomplete bound
orbit. Any missile which escapes from the earth exemplifies an incomplete unbound orbit, as
does any meteor with energy o, >0 which hits the earth. Note that the complete orbit may or
may not intersect the planet. If it does, we define it as that complete orbit which would be
described by the satellite, in the absence of planetary matter, but in a gravitational field cor-
responding to (49). For r>¢, this field can be represented by the multipole field (46).

By (50) it follows that

k+ad=—(1—1)) 8y —n*(1—1?) o+ 2udn+ 2a16*n>. (51)
Thus if the plane =0 is reached by the complete orbit
k+a? 0. (52)

In the case where 6 is chosen to be zero, the plane n=0 is the ordinary equatorial plane through
the center of mass of the planet. Thus, if this plane is reached by the complete orbit, (52)
is satisfied.

It is clear that (52) is only a necessary condition that the complete orbit reach the plane
n=0. It is difficult to find a corresponding sufficient condition. By analogy with the Kepler
problem (7~ potential), we may suspect that when 6=0 the equatorial plane will always be
reached by the complete orbit of any bound satellite. If 650, however, the plane =0 may
not be reached if the orbit is very close to the equator. This latter circumstance is illustrated
in figure 1.
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POLAR AXIS
|
€ ¥
)/: )
® ! 1

0

|
I
I
:
| ®
I

PLANE 7=0

|
|
|
|
|

519835—59— 4 113



The difficulties in finding a condition sufficient for =0 to be rcached are illustrated
by the existence of cases where the complete orbit may not reach either the region =0
outside the focal disk or the region ¢=0 inside it. For example, if a particle is dropped from
a point on the polar axis into a matter-free region satisfying (49), so that az=0, no=+1, 70=0,
it follows (with 6=0) that the complete orbit is a piece of the polar axis, penetrating neither
£=0 nor n=0.

In the rest of the paper we exclude the possibility of orbits that lie only on the polar axis,
thus ruling out, e.g., the case of a missile fired vertically from either pole. We then consider
only those orbits whose completions either reach the plane n=0 or reach at least one genuine
extremum %, for which 7=0, 55£0.

From (50) it now follows that

S1(8) == (£+1) [+ (k+2uct+2a,c%?) (£2+1)]} (53.1)
Sa(m) =+ (1—1*) "' [—ad+ (—k-+2udn+2a1¢*n’) (1—1%)] (53.2)

where by (13), (16), and (18) the upper sign is to be used whenever the corresponding co-
ordinate is increasing and the lower sign whenever it is decreasing. Also

Si(¢)=as. (19)

From (53) and (19) it then follows that
£ 1
St ||| (€41 e+ (- Zuck-+2ace) (4 D] g

4 f (1 — %)~ [— a3+ (— 4 2ubn -+ 2ac®n?) (1—n?) ] Fdn+comst.  (54)

Before defining the lower limits & and #,, it is well to note that eq (54) is somewhat deceptive
in appearance, because of the presence of the “small”” distance ¢ in terms that are clearly very
important. Let us now remove this difficulty, as follows. Replace the variable ¢ by the
variable p, where

p=cé. (55)
By (41) it then follows that
p*=r*—(1—9%)c? (56.1)
pn="rsin f (56.2)
£+1=(p’+c*c?, (56.3)

so that p=7 on the physically realizable part of any complete orbit. On substituting (55)
nto (54) and dropping the constant term, we obtain

S—ap | (ot e e+ (i 2up-2a00') ()] lp
Py

i [ Q) et (et i 2ae?) (=), GT)

where
PIZC{:I' (571)

If the complete orbit intersects the plane =0, we choose the lower limit 7, to be zero,
corresponding to =0, in accord with the usual canonical treatment [8] of a bound orbit for the
case V= —ur~'; this appears to be a good choice for an unbound orbit also. If the complete
orbit does not intersect the equatorial plane, we choose 7; as an extremum of » on the complete
orbit. It will be a zero of the p-integrand satisfying 5= -1.
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To choose a value for p;, we reason as follows. The p-integrand of (57) has the factor

F(p) =c*a?+ (o*+c1)f(p), (58.1)
where
f(p)=2010*+2up+k. (58.2)

The appropriate real zeros of F(p) will be almost equal to those of f(p), which always has two
in any physically realizable case. If a;=0, one zero of f(p) will be positive and the other
negative (approaching— « as «; approaches zero). If a;< 0, both zeros of f(p) will be positive.
Any other real zeros of F(p) will occur for inappropriate values of p, of the order ¢. Thus for
unbound orbits, we choose p; to be the largest positive zero of F(p), this being the only one
accessible to complete unbound orbits. For bound orbits, we choose p; to be the next to the
largest positive zero of F(p), equal approximately to the smaller zero of f(p). In either case
py is then the minimum value of p dynamically accessible to the complete orbit; the correspond-
ing spheroid may or may not lie within the earth. (Any value of p less than p, as just defined
is dynamically inaccessible to the complete orbit in the field V(¢,7), even if the planetary matter
could be removed without change in V(£7): to reach such values the orbit would have to
pass through regions in which F(p) is negative and p; complex.) Of course p, >R and thus
outside the earth for any ordinary satellite in a bound orbit.

Whenever the plane =0 is intersected by the complete orbit, we have seen that k= —af,
so that we can then introduce a real «, such that

k=—a3, (59.1)
where we can assume
a >0 (59.2)
without loss of generality. Then
4=, (59.3)

If we put 6=0 and ¢=0in (57) and then use p=r, n=sin 6, which would then follow from (56),
and also use (59.1), we find that (57) reduces [8] to the correct expression for the action func-
tion for the case V=—uw~'. Thus the terms in (57) that contain ¢* or é give rise to deviations
from a conic-sectional orbit.

From (13.3) and (19) it follows that the constant «; in (57) is the z-component of angular
momentum. The constant k& has no name, but is related to the magnitude of the total angular
momentum, which is, however, not conserved in the non-central field produced by oblateness.
To see the connection, note that whenever k= —a3?, we can write (59.1) and (59.3). Then
when 6 and ¢? are both allowed to approach zero in (57), a, approaches the magnitude of the
total angular momentum, which is then conserved. (This result follows most easily from the
fact already mentioned, viz, that (57) then reduces to the correct action function for the case
IY:—,u/'_l.)

9. Kinetic Equations of Motion

Implicit equations for p, 7, and ¢ as functions of ¢ are now given by

dS/day =1+, (60.1)
OS/ok=p, (60.2)
0S/daz=ps (60.3)

where ¢ is the time and the g’s are constants. Since the lower limit p; in (57) is a function of
ay, k, and ay, the derivative of the p-integral with respect to any of them is the sum of an in-
tegral and a term like F1,(p;)0p;/0a;. Here I,(p) is the p-integrand, which vanishes for p;,
so that this second term vanishes. If the complete orbit intersects the plane n=0, so that »,
can be taken to be zero, on second term arises in a derivative of the p-integral; if not, 5, is to be

115



taken as an extremum value of 5 on the complete orbit and the second term again vanishes,
since 7, is then a zero of the p-integrand.
The kinetic equations are thus

-+ IPPQ[CQa%—l- (k+2up+200%) (p2+02)]_%(1picz’f"nzl—a§+ (—k+2udn+2a,6°0%) (1—n)) ]~ idn=1t4-6,,
! h (61.1)
1 [ Tcat+ (i 2up-+ 200 (510912 F [ [ (et 2uim + 2y (1=t Hn =,

) h ©61.2)

e f (o) [ cad-+ (k-+ 2up+- 2010 (o2 -¢3)]

a3fn(1—n2)‘1[~a§+ (—k+2udn+2aie’n®) 1 —n?) ] “ddn=p5.  (61.3)
m

If we restrict considerations to those cases where the plane =0 is intersected by the
complete orbit, then k<a;. We can then substitute k=—a3<—aj in (57) and replace
(60.2) by

S/ 00y = ;. (62)

From (57), (60.1), (60.3), and (62) there then follow the kinetic equations

ifp p*lc’ad+ (—ad+2up+2a1p%) (p“rcz)]‘%dpﬂ:c?'ﬁ77 n*[—ad+ (g +2udn
P1
+2a,¢9%) (1—9%)] ~¥dn=1t1-8,, (63.1)

azfp [?od3+ (—a3+2up+2a10%) (p2+¢*)] " Hdp+ ay Joﬂ [—ad+ (3 +-2udn+2a,¢*n?) (1— 9] ~2dn=4,,
' (63.2)
b+ o f * (00~ el (— a3+ 2pp - 200%) (p*-+¢2)]-4dp

asf (1—7°) " [—ai+ (ad+2u0n+20uc*n) (1—77) ] ~2dn=ps. (63.3)

Future papers will be devoted to evaluating the integrals in these equations, solving them
simultaneously for p, 7, and ¢ as functions of time, and deriving the astronomical results that
they imply, both for bound orbits and unbound orbits.
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