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The integration of the storage differential equation at present is usually done mostly by

graphical or numerical procedures.
tion is the subject of this paper.

mathematically tractable expressions is introduced.
function.
storage y’ +cPy?—cy*=0 is derived, with ¢ and & constants for the given reservoir,
shape and type of flow, and P being the inflow hydrograph.
and certain P
The application of the results obtained is discussed at the end of the

is expressed in the form of a power

equation for P=0, P= constant,
to 3, eqs (12) to (29)).
paper.

1. Introduction

The known simple balance equation, with the
inflow minus the outflow in a time interval equal to
the storage change in that interval is

(1)

which is normally derived from the definition itself;
with £ the inflow, ¢ the outflow, S the storage
volume, and ¢ the time.

The two basic differential equations which govern
the unsteady water movement through lakes and
channels are the continuity and the dynamic (or
momentum) equations:
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where
A=cross-sectional flow area,
p=mean velocity of flow,
a=Ilength along the lake or the channel,
{=time,
g=——carth acceleration,
h=level of water surface in a cross sec-
tion with reference to a fixed level,
and
S =frictional slope.

*This work was prepared under a National Bureau of Standards contract with
The American University, with the sponsorship of the Army Map Service.

An approach to the analytical integration of that equa-
A new method of fitting the given background curves by

The storage-outflow discharge relation
A general differential equation for water
outflow
The analytical solutions of this

=f(t) are given for the integrable cases (tables 1
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The applications of eqs (2) and (3) must satisfy
the basic assumptions made by De Saint Venant in
their derivation, and specific: 111\ that the unsteady
flow is gradually varied.

The eq (3) is omitted in many engineering prob-
lems, as in the routing of floods through gr cal reser-
voirs and along channels of small slop(\\ with un-
steady flow very gradually varied, so that only eq (2)
is used.

Two important problems which have not as vet
been completely discussed, and are not considered
here, are: (a) Under what conditions can eqs (2)
and (3) be used, and (b) when can eq (3) be neg-
lected without sensible error.

The first term of eq (2), o(A»)/(0x)=(04)/(dx),

:an, for suitable small Az, be replaced by (AQ)/(Az);
1()1 a given time interval At and a reach of l('mrlh Az,

:an be replaced by AQ/Az=(P—Q)/Ax, w here P is
arrival or inflow discharge and ¢ is the departure or
outflow discharge in m?®/s or in cfs. (Here P and
¢ are used instead of usual 7 and 0O.) The second
term (0A4)/(0t) can be replaced for small At by (AA)/
(At):(A 1,-F AA,)/(2A1), where AA,= A} —A| and
AA,= A, — A, (m(l AA; and AA, are changes of
cross-sectional areas at the beginning, and at the end
of the reach Az during time Af, and Al{ and A, are
areas for the l)wmmng, and A;" and A} areas for the
end of time interval A7, Equation (2) can thus be
expressed as

_AS

At

AA;HAA, Az
P Q21T AL, AT

Q= 2 At
where
during time interval At.

AS 1s the volume change for the reach Az
If now Af—0, this differ-



ential equation becomes eq (1), in which S is the
storage volume for body of water of the considered
reach Az, and dS/dt is the rate of change with time of
this volume. In the case of a reservoir or lake, with
small velocities along the lake and with inflow com-
ing from different tributaries, the reach Az is replaced
by the water body of the lake. Strictly speaking,
some end portions of lakes with shallow water and
high inflow should be considered separately, but their
influence on the outflow hydrograph can be neglected
in comparison with the main influence of great
fluctuating storage space. Kquations (2) and (1)
are identical, and the equation of continuity in its
form of eq (1) will be called the storage differential
equation for water in lakes and along channels of
small slopes with unsteady flow very gradually
varied with time.

The analytical integration of the storage differ-
ential equation would be useful in the solution of
problems in cases where its terms can be approxi-
mated by integrable expressions. Some of these
cases are: (a) Routing of very gradually varied floods
along large channels of small bottom slope; (b) effect
of unregulated lakes on flood waves; (¢) routing of
flood peaks through reservoirs for the inflow dis-
charges higher than that discharge of hydrograph,
which corresponds to the full capacity of open gates
and valves; (d) study of the genesis of hydrograph
and separation of water flow according to its origin
(surface runoff, underground storage, lakes, channel
storage, ete.); (e) outflow through partial openings
in case of rupture of dam with no influence of tail-
race levels on the outflow hydrograph, when the wave
movement along the lake created by rupture can be
neglected; (f) computation of the seepage water out
of reservoirs, ete.

Equation (1) serves generally for the computation
of relations between five functions:

(1) Inflow hydrograph, P=f(f);

(2) outflow hydrograph, Q=1.(?);

(3) stage hydrograph, H=f;(1);

(4) outflow rating curve, Q=f.(H);

(5) storage function, S=f;(H); or area function
A=fy(H), with five variables, @, P, H, S, t.

When three of five functions with boundary condi-
tions are known (three variables can be excluded),
the eq (1) enables the computation of the relation
between two remaining variables.

The usual integration procedures are numerical,
graphical, combined numerical and graphical, and
integration by special devices.

The analytical integration of eq (1) is not usually
feasible in practice, mostly because of the difficulties
of fitting easily three known curves out of five by
tractable and integrable mathematical expressions.

The most common cases in the application of eq
(1) have, as given, the following curves: (1) Storage
or area function (obtained by survey); (2) outflow
rating curve (obtained by gauging, hydraulic com-
putation, model study, ete.); and (3) inflow (or out-
flow) hydrograph. Two other functions are normally
to be computed; (1) outflow (or inflow) hydrograph,
and (2) stage hydrograph.

44

The subject of this paper is the analytical integra-
tion of eq (1) for those cases for which inflow hydro-
graph, storage function and outflow rating curve can
be entirely or partly fitted by simple expressions
which make eq (1) integrable.

2. Fitting of Mathematical Expressions to
Given Curves

2.1. Storage Function

The storage function, which relates lake or channel
volume to its level referred to some datum, can be
approximated either by the function (see references
[1]* to [5]) of the type

S=aH™ (4)
or by the polynomial of the type
S=A+AH+ A+ . .. +A,H" (4a)

where S=storage volume, //=depth of water above
a reference level suitably selected, @ and m, and
Ay, Ay, Ay oL Ay, arve coefficients to be determined
from data of storage function.

The reference level of eq (4) is normally that of
zero storage (lowest level of lake or reservoir, or
river bed, etc.). The level of zero outflow does not
coincide generally with the level of zero storage, and
in that case another form of eq (4) is used:

S=a(H™—HY) (4b)
where IH,=difference of the level of zero outflow
and of the level of zero storage. The coefficients a
and m in eq (4b) are the same as in eq (4). The
use of eq (4), as will be shown later, gives a form to
eq (1) which is integrable in many cases, but eq
(4b) makes it less simple and more complex for
analytical treatment.

Equation (4a) is well-suited to be used as the
storage function, if enough terms (m-1) are in-
volved. It must be supposed that for the level
=0, the storage is A, so that eq (4a) can be used
in case the level of zero outflow coincides with the
level of storage A,. If the level of zero outflow is
changed, the coefficients A4,, 4,, A,, . . ., 4, have
also to be changed.

Instead of using eq (4b) repeatedly with various
values of /1, to cover the entire range of S versus /71,
a family of eqs (4) may be used with continuously
changing ¢ and m as function either of level of zero
outflow or of I, the distance from level of zero
outflow to a reference level. The coefficients a and
m of eq (4) depend on level of zero outflow, or on
difference of levels H,, and are determined by the
condition that =0 of new zero storage coincides
always with the level of zero outflow. This means
that the coefficients @ and m are to be determined
for different levels of zero outflow (and therefore also
of zero storage) as continuous functions. The

1 Figures in brackets indicate the literature references at the end of this paper.



question arises whether eq (4) fits the thus conceived
changing storage function as well as it fits the entire
function from the lowest to the highest level of the
body of water. In some cases eq (4), used in the
manner described above, fits the upper parts of the
storage curve better than the entire curve, but in
other cases the reverse is true.

Figures 1 and 2 show the second case, and figures
3 and 4 the first case. Figures 1 and 3 show the
storage functions S=all™ for the entire range of
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Ficure 1. Storage function S=aHm™, with a and m as functions
of H,, the levels of outflow zero (first example).
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Ficure 2. Storage function of figure 1 in logarithmic scales for
different values H . of zero outflow, where the storage functions
from H. up tothe highest level are fitted by the power functions
S=aHm (first example).
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H=depth of water in reservoir at dam, and the
functions m=f,(H,) and a=f,(I1,) with I, as dis-
tance of level of outflow zero to the sea level, or to
the reservoir bottom at dam /7. TFigures 2 and 4
show the fitting of eq (4) to the parts of storage
curves for different values F7,. When /1, is ex-
pressed as H;, or as distance to the bottom of reser-
voir, it can be used as dimensionless number /=
H;/H,, with I, =maximum depth of reservoir in the
normal operation.
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Ficure 3. Storage function S=aH™, with a and m as functions
of H., the levels of outflow zero (second example).
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Ficure 4. Storage function of figure 3 in logaiithmic scales for
different values H, of level of zero outflow, where the storage
functions from H . up to the highest level are fitted by the power
Junctions S=aHm (second example).



The storage functions in figures (1) and (3) are
given from the reservoir bottom at dam up, and in
figures 2 and 4 from the level of zero outflow up
for each of given curves (as straight lines).

The function m=f,(H,) decreases with higher
value of H,, i.e., higher level of zero outflow, and is
approximately 1 for the highest levels and small
range of level differences, where the storage function
1s nearly a straight line. For lower 77, and for higher
range of storage levels, the value m is greater. The
function a=f,(/{,) has the opposite characteristics.

If only one value of 71, is to be investigated, ¢ and
m are fixed coefficients, but if a range of H., is to be
investigated (dam-breaching problems W]th various
breachings and different lowest outflow levels), the
functions m and a of H, can be easily obtained as in
the case of figures 1 to 4.

When the sedimentation of reservoirs has to be
taken into account, @ and m are not only a function of
level of zero outflow, but also of time (apart from
sediment characteristics they depend on operation
practice of reservoir, inflow hydrographs, ete.). As
a and m make eq (4) less tractable in case they change
with time (which is sometimes rather difficult to
predict), they will be considered here as constants for
a given reservoir, for given level of zero outflow, and
for selected time period of reservoir life.

The coefficient m ranges within the limits 1 to 5,
but for the majority of natural valleys the range is
about 1 to 4. When 7/, is high and the range of
levels is very small, m is mostly 1.0 to 1.5 and rarely
greater than 2; for highest range it is 2 to 5. The m
depends not only on the range of levels, but also on
the shape of reservoir cross sections. When those
sections can be fitted by a power function for width
of type B=2pI, m is function of s. The value a
depends on //,, but apart from that, ¢ is higher for
wider valleys, for lower river slopes, and for lower
values of exponent s.

The property of the storage function to be well-
fitted by an expression of the type of eq (4) can be
used to compute this function in the case where only
two points of the relation storage versus level are
available. These two points can be found in the
literature for practically any reservoir: capacities at
highest and at lowest operational levels. Two pairs
of values (S, H) are sufficient for the computation
of values @ and m in eq (4), thus allowing the deter-
mination of the curves of figures 1 and Taking
into account the errors in the survey of reservoirs
and the fact that the storage function is being con-
stantly changed by sedimentation and littoral erosion,
the values ¢ and m determined by eq (4) and the
figures 1 to 4 are accurate enough for the analytical
solution of practical problems.

2.2. Outflow Rating Curve

The outflow rating curves are relations of the
departure disc hawo to the water level in the res-
ervoir. They can be fitted also in many cases
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either by an expression of type
=Bl (5)

or by a polynomial,

Q=bo+b,H+b,H>+b;H*+}. . .+b.H', (5a)
where @=departure discharge, H=level above the
depth for which Q=b,, b and r or by, by, by, b3,
b, are coefficients depending only on boundary
conditions (outlet shape) and on type of flow (closed
or free outlets). The eq (5a) can be also conceived
as a rating function expressed in power series form.
The range of » in eq (5) for free surface outflow is
1.5—4.0 (usually 1.5 to 3.0) and for pressure type
flow about »=0.5 in most cases. The range r=
0.5—1.5 can be covered also in special cases for
special shapes of outflows.

In case two types of flow, viz, flow under pressure
and free surface flow, occur simultaneously, eq (5)
takes the form

Q=0bH,"+b,H,"=b,(H+H,)"+b.H"”, (5b)
where H,—H and H,=H-+H, are the hydraulic
heads (level differences) to be taken for the former
and latter types of flow respectively, b, and r
correspond to closed pressure flow and b, and 7, to
free surface flow. As r, and 7, are not generally
integers, eq (5b) is different from eq (5a).

The use of eqs (5a) and (5b) instead of eq (5)
makes eq (1) integrable in a much smaller number
of cases. KEquation (5) will be used exclusively
here.

2.3. Inflow Hydrograph

1t is practically impossible to fit an entire natural
inflow hydrograph by a single mathematical expres-
sion, but it is possible to fit some of their parts by
tractable and simple functions.

The simplest forms of function P=f(¢) to be used
for integration are: (a) P=0 (arrival discharge zero
as dry period of year or as water fully stored in
upstream reservoirs, ete.); (b) P=P,=constant (or
nearly constant, with low river flow slowly changing,
regulated constant flow from upstream reservoirs,
short-term operation of reservoirs, when flow could

be placed by constant (hs(hzugc) (c) P=P,—ft
(eradually varied flow); P=Pi~*; P=Pye'"; P
Pytie="" (P, f, and s are different constants in each
case).

2.4. Storage-Outflow Discharge Function

When the lowest outflow level coincides with the
level of zero storage, or when reference levels for
measuring /7 in both’ eqs (4) and (5) are the same
(dd]ustmvnt to this condition is always possible by
taking the corresponding coefficients @ and m from
their functions, fig. 1 to 4), the elimination of /7
gives for the storage-outflow discharge function, or



relation S=7(Q),

S=po Q=2 @, (6)

where ¢=b™" g and n=m/r.

The coefficient n for free surface flow is in the
range % to 4, and for closed pressure flow 2 to 10,

or a little greater.
The use of pairs of eqs (4) and (5a), (4) and (5b),
(4a) and (5a), (4a) and (5b), (4b) and (5), (4b) and

(5a), (4b) and (5b) gives a more complex relation
S=/(¢), in most cases in parametric form with 77/

than the use of (4) and (5) or (4a)
However, in this last case

as the parameter,

and (5)

S:(IO—{—;— (l)l/r—}_% (,2/T+ L. (Zm/rY
1 2

which makes eq (1) less tractable than the use of
eqs (4) and (5).

As eqs (4) and (5) fit well many storage and out-
flow functions, for different value of 7., and as
eq (6) allows the integration of eq (1) in many cases,
eqs (4) and (5), and (6) will be used in this study.

3. General Type of Differential Equations

With the introduction of eq (6) into eq (1), one
obtains n Q"' dQ-+c¢(Q—P) (Zz‘—()
The substitution ]/t() and the replacement

1 7 . 5 .
k:(Qn,—l)/n::Z—;zz—;’— then gives the following
) m

expression:

(7)
This is the general differential equation for storage
reservoirs and storage channels with no artificial
control of outlet flow, under conditions discussed
previously in this paper. For free surface outflows
the range of £ is usually from about —2 for n=14 to
k=7 for n=4, and for the closed type outflows the
range of k is from % to %, or a little greater, but
less than the limit value k=2. Practically, the range
of £ is from —2 to 42, where k=2 is not possible.

The relations of & or n to m and r are given in
figure 5. The most common range for both m
(1 to 4) and » (0.5 and 1.5 to 3) is specially empha-

y' +cPy*—cy*=0.

sized for reservoirs in river valleys. In most
practical cases £ >0, and usually % >1/2.
The eq (7) could also be expressed as
y' +eyt (P—=1)—ey ™ =0. (8)
The general form of eqs (7) and (8) is
y' -+ My"+Nyt=0 9)

where M and N are functions of #; & and ¢ are any
real numbers. By the substitution y=7%#=1) t}e
general form is reduced to

h+g—2

Z'+(h—1)MZ*+(h—1)NZ -1

0

(10)
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obtained by other
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Ficure 5. Values n of storage-outflow discharge relationship

1 . :
S=—Q", and values k=2——, in :elation to m and r (expo-
c L

nents of storage and of rating curve, expressed vn power form).
which is eq (7) under conditions that A—1=
N=—1, M=P, and (h+g—2)/(h—1)=k.

The general analytical solution of the ordinary
differential equations of the type (7) or (10) for any
ke and for any expression of P does not exist.
Chiellini [6] has shown that the solution is possible
for k=3 if the expression (M'N—MN") is different
from M? by a constant factor. When £ is a positive

and integer number higher than 3, Luigi Conte
[6, 7] has given the solution for special cases. As £

1s always less than two here, their procedures can-
not be used for eq (7).

Both facts, (a) that £ is a number derived from
continuously changing natural conditions and is
rarely an integer, and (b) that the function P=f(t)
1s not simple and must be fitted by integrable
expressions, make the analytical integration of eq
(7) possible only in special cases. For k= —2, —1,
0, and 1 and some rational numbers the mtegration
is simpler for some types of 2, but the integration
for intermediate values of & and for the majority
of P functions has to be performed numerically or

graphically. The analytical integration for special
ralues of £ and for selected functions P=f(t) is

useful, because the resulting functions give the type
of curves which can be expected for imtermediate
values of £, Or, when £ and outflow functions are
known, some conclusions can be made about the
inflow functions. The type of functions obtained
in integrable cases can serve for control of curves
procedures.



4. Integration in Special Cases

Equation (7) will be analyzed for some values of
k and some types of the function P. The values
of k taken will be —2, —1, 0, 1 and, tentatively,
—3/2, —1/2, 1/2, 3/2 along with some other rational
numbers.
41. P=

Equation (7) becomes
(11)

with y=1y,=0,"" for t=0, where ¢, is outflow dis-
charge at the time t=0. The solution of eq (11)
with y=0=" is then

1
Q’LAI:QS—I—__(] _ﬁ> Eiko

This is the general expression for outflow hydro-
graphs from storage reservoir with no inflow into the
reservoir. The solution can be obtained from eq
(12) for each value of n except for n=1 (k=1),
but eq (11) gives solution in this case (1ire('tly
(table 1). Therefore, for P=0, or when the constant

?/’_C?/k:();

(12)
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inflow discharge is small and can be neglected in
comparison to the outflow discharges, the analytical
integration of eq (7) gives solutions for any k(n),
rational or irrational.

Equation (12) can be written in the form:

Q:QO<]_n—l

Gl

-1
0 /

=1

(13)

n

This shows that the decrease of discharge ratio
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Q/Qo depends on both ¢ and ,, except for n=k=1
(table 1), in which case it depends only on ¢.

The analytical expressions of eq (12) for some £
(or n) values are given in table 1. Figure 6 gives
curves for n=1%, 1, 3, 2 and 3, for given values of
a and b, with e=b6"/a. The ralues @ of eq (4) and b
of eq (o) are taken constant for all five curves (for
easier computation in ex amplvs) though they change
when m and » (and so n) changes. “For n=2 the
outflow hydrograph is a straight line, which corre-
sponds, among other cases, to the cylindric reservoir
(m=1) and to the outflow under pressure (r==%).
The same type of linear hydrograph is obtained for
m=3 and r=3%, which is the case for some deep
lakes with outflow function Q=bH% For river
outlets from lakes, with »>3 and m <3, n<2, all
hydrographs are concave upwards. For n=1, the
solution of eq (11) is an exponential function. All
functions for n <1 are asymptotic with the time axis.
Hydrographs for n>1 do not have this asymptote,
but cut the t—axis for finite values (for n=2,
ty=2@Qy/c). For the range 2 >n">1, the hydrographs
are power functions and concave upward, but have
finite values for =0 (are not asymnptotic to the ¢
axis). For n<1 the curves are hyperbolic functions,
asymptotic and concave upward.

All outflow hydrographs for very small water levels
above the bottom of outflow orifice become asymp-
totic, because their outflow functions change due to
the change of type of flow or to some secondary
effects.  In closed-type outflow the function changes
from r=1% to about as soon as the water
level drops to near the upper edge of the outflow
orifice, and changes further for smaller outflow
heights due to surface tension and other secondary
effects. The exponent 7 increases so that n=m/r <1.

The shapes of outflow hydrographs depend thus
on the ratio of exponents of storage and outflow
functions, and they can be: hyperbolic (n<1),
exponential (n=1), power function with exponents
higher than 1 (2>n>>1), straight line (n=2) and
power function with exponents lower than 1 (n>2).
They show that the natural conditions can produce
different outflow hydrographs on the same river,
depending on the lake and channel characteristics
and outflow shapes.

The free spillways of reservoirs, or free outflows
of shallow lakes, where the range of storage fluctu-
ation is small, m=1.0 to 1.3, and r>3, have n<1,
and all outflow hydrographs are hyperbolic asymp-
totic functions (fig. 6). For the higher range of
levels of outflow, m is greater, and the outflow
hydrographs are power functions whose graphs are
convex upward or downward. The smallest value of

r=3

. 1
n for closed-type outflow is n=; -=2, so that all

hydrographs are power functions convex upward.
In case eq (6a) is used instead of eq (6), the follow-
ing general solution of eq (7) for =0 is obtained:

(',,,(m—l) ( )’

771—’

Q"

m—r

*Q i

m

=2

m=1

(14)
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Ficure 6. Outflow hydrographs in their recession parts from
Q,to zero, related to different values k and n, in the case where
inflow is zero.

which for the case m > 3 is more complicated than
eqs (12) or (13), particularly since eq (14) gives ¢
as a function of Q rather than the more convenient
inverse.

If both types of flow occur simultancously, eq (5b)
has analytical solutions in a much more limited
number of cases.

4.2. P=P,—Constant

In the case of constant or nearly constant inflow

into the reservoir, with P=P,, eq (7) becomes
Yy +ePoy*—cy=0, (15)
and the separation of variables gives
(L/Z/ > »
—+ct=K (16)
Py —y

with A'=integration constant.

The indicated integration of eq (16) cannot be

arried out analytic allv for arbitrary k, contrary to
the case of eq (11). Equation (16) lms, however,
analytical solutions for many rational numbers, which
is useful, since it is possible to approximate £ by a
rational number of type ¢/h, where ¢ and % are
integers. Equation (16) can be written in the form
of the binomial integral

fy—Q(I)O_

Yy T (17)

The binomial y=2(P,—y"*)~" is of the form

y*(ay +b)” (18)

which can be reduced to an algebraic function in case
any one of the three numbers

s+-1 s+1
p, —> and —-+p
r r
i1s an integer. As p=—1 is an integer, when £ is a

rational number, eq (16) can always be reduced to
an algebraic function.

The most general solutions of the binomial integral,
if the obtained algebraic functions are integrable,
are in the form of sum of logarithmic, algebraic and
arctan terms. In some cases the arctan term does
not appear in the solution, as is the case also with the
algebraic term, but the logarithmic term is always
present. The solutions of eq (16) will be analyzed
here for some values of k.

By substitution of a new variable u in eq (16),

1
U=y " PZ=0,

(19)

the following general binomial expression of eq (16)
for k=g/h is obtained:

g—h
WP J w1 (s 1)yt et =K (20)
with A—g—1 and 2h—g¢ integers.
For
flu)= [ W' (=2 —1) " du (21)

the constant K for t=0 (u=mu,) is K=hP,cP /-8
f(uy), and the general solution has the form

- ) (22)

with R=

@[)O(g-hl / (2h—g) .
C

The following values and ranges of ¢ and /4 are
analyzed: (1) ¢=2h; (2) /1<0<‘>/1 (3) g<h; 4)
g=0, h 0.

(1) g=2h. For k=2, eq (20) has no practical
significance.

(2) h<g<2h. The value s=2h—g is always a
positive integer number, and j=hi—g—1 is always a

negative integer number or zero. Kquation (20) i
integrable if s=24—g<4 or s=6, when the mli()mll
function can be separated in integrable terms, what-
ever the value of j=h—g—1. 'The solution is

(22a)

’:% P& f(ug) — f (w)].
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(@)s=2h—g=1, n=h.
u 1
f(u)=In =Dw?
with u= P~ ".
This case covers the following values of 7 and /:
n:l, 2, 3, 4, 5, 6 7, ete.
k: 1, 3/2, 5/3, 7/4, 9/5, 11/6, 13/7, ete.
Some of these cases are given in table 2
For n=1 (k=1) only the logarithmic part of eq
(21a) 1s present and eq (22a) gives:

1.1, 1
+Q‘L+2—uz+ o oSF (21a)

Q:P0+(Q0_P0)€_cz (21}))
(b) s=2h—g=2, n="h/2.
2
f(u)ﬁln + +9 it e
(21c¢)

with uw= P02, This case covers the values:
0

n: 3/2, 5/2, 7/2, 9/2, etec.
k: 4/3, 8/5, 12/7, 16/9, etc.

Some of these are given in table 2

TaBLE 2. P=P,=Constart;: (=R [f(uo) —f(u)]
T [ \ P - -
n | no | k| R u | f(u)
— ‘ ' . S
0.25 2 [1p=% | P!*' Q_i{ In “-1—4—2 arctan u
? | ¢ o | "o 7R T
[ | |
1 | |1,.—-2 | 1 _1 (u—1)2 2u+l>
= 33| — -P 3 243 3 - 4 arete —
3 0 .58‘ 1 o0 ‘ Iu Q In ”2+u+]+ uclm( 3
| | |
! | T u—1
~ 0.5 0 |-pP 2 2Q 2| In —
"i“j) (s | P2Q 0T
2 | 1 ‘ 2 -1 | 1 1 (u—1)2 2u+1
2 lo.6 =~ |fp~3 P3 3 2T 4 arets Sl
3 1 0. 67 3 (‘Pa ; A Q n Wi 4 arctan ( 3
[ | g ‘
3 2 |3 1 1 u—
<IN IFoN750 =N (=Tpa 4 QT ——z
0.75 3 2 ‘ IU Q In 5 arctan u
i :1 u—1
1 Loo | 1 - Pyt In =" Q= P+ (Qo— Po)e~<t
‘ ‘ |
| 6 |51 1
4 1.25 h | 51’4 PiQ 4 | In Eﬂ«}— +2(nct‘m u
4 5 [} 0
4 5 4 1 1 1|1 (u—12 3 211+l>
£ : 2 P3 PI QT3 2 +2 arctan ( ——-
3 1.33 Y T st h Q In N?+U+l+4+ wretan ( 3
4 |4 (3,1 | —1 - u—1 2
9 5 2 | 2p2 | 2 2 Ui
5 1. 50 o i 3P0Q | n“+]
5 7 (5,2 | 1, 11 -1 3 2u+1>
i | L [2p3 | P3 3| - = _9 gretan (
3 LG | ¢ o | Pu Q | 2lnu?+u+1 2u? e m( 3
3 |2 ‘ ‘ u—1,1
2 |200| 2 |2p | P [ B4
| 2 c | uw u
7% 11 | 7,4 i | (u3—1)3
L |23 = ||z D3 3 = —
3 2 7 clo ’ 0 @ | 1o w 3u?
6 | 8 [5,2 1 —l‘ u—1
- D 0 | - o] D 2 ] e
2 | el 5 rl 0 - 0 @ 1 ' u+1+ +.3u3
| 5 |3, ) | u—1, 1,1
3 |3 b B 2 (-1 el o
g e 3 o e =t
7 | 12 7,3 -1 u—1 2
< 3.5 =2 ) D2 2| 1 < -
2 ghall 7 c, 0 ki 0 Q L u+1+ +.3u$+5u-7
7 4 3 u—1, 1 1 1
4 4.00 ‘£ 2p | POt R
c" [ ekt lo = +u+2u’—’+3u3

(¢) s=2h—g=3, n=h/3. The solutions for three
values of & and n (h=4, n=4/3; h=5, n=>5/3;

h=7, n="7/3) are given in table 2.

(d) s=2h—g=4, n=h/4. For h=5, n=5/4 the
solution is given in table 2.

(3) g<h. The analytical integration can be
carried out when —4<2h—g=s<4, g/2—2<h
<g/2+4+2. For h>g/24+2 and h<g/2—2 the ex-
ponent s=2A—g in eq (20) is higher than 4, so that
the algebraic function w*"(u2"~*—1) can not be
separated into integrable components except in
special cases. The solutions for n=3/4 (k=2/3),
n=2/3 (k=1/2), n=1/3 (k=—1) and n=1/4
(k=—2) are given in table 2.

4) g=0, h=1; n=1/2 (k=0). The solution is
given in table 2. Figure 7 gives five curves for the
valuesn: 1/2,1,3/2, 2 and 3, as in figure 6. All five
are asymptotic to the value Py=0.20, but for ¢ nearer
to zero they approach the curves of figure 6.

4.3. P=£(t)

The solution of eq (3) for four types of P=f(t)
can be obtained for special values of %, but the
general analytical solution such as was obtained in
the case of eq (13), or in many special cases of eq
(22), is not possible.

P=R=constant

= I. =
G Q Q7 1.0 b=0.05 metric
R,=02 a=s50 - system
n
s = Z—L c=b
! T
0.8
0.6
0.4
0.2
0.0 zt
1.0 2.0 3.0 4.0 50 xI0
n= l-z L e L T it L k=0
0.4 08 12 16 20 24 28 32 36 40 x|03?
n=1° 1 1 1 A 1 L 1 1 L 1 k=1
0.5 1.0 1.5 2.0 2.5 10*
n=3 L N L L L * k=4
2 &
1.0 2.0 3.0 4.0 50 «xI0%

8.0xI0°
1 3

3
"
N
i P

o

Ficure 7. Qutflow hydrographs in their recession parts from
Q. to inflow P=P,=constant, related to different values k
and n.



o = |y
Equation (7) becomes
y' +cPy—cy=0, (23)

which is a Bernoulli equation, and has the general
solution for y=0":

QRQ=e¢" <K+cfPe°’dt>.

The solutions for four types of function P=f(1)
are given in table 3.

(24)

TABLE 3.

2= i ()

k=1, n=1, s=integer

O=Fa(t)

(/1,—ﬂ+f>+(v..—n.f -')w
c ()}
Py P, { e nats
P=Py-s [,.“,,(: (71)-*.\-!]1""'+—(;.\'!(—lv[l-i!+(2! ---...+<7n‘~f;'!r]
cPo X cPo\ _
(e (Ee

slcPy cPos!

Qa1 — s+l 8=l (= s+l -
[ = (=) <(._/]M]f t—=(=1 (=P
[1=1!(c—=f)t+2!(c—1) 22— . . .

P=Po—ft

P=P;efit

Po= Po-tse—/t

+-sl(c—f)strleft

Such analytical solutions can be obtained under
condition that the integration of

J Pectdt 25)

m eq (23) can be carried out in closed form.

b. k-0 (n:é)

Equation (7) becomes
Yy’ 4+ cPy*—c=0 (26)

which is a special type of the Riccati equation, with
Y= As two particular integrals of eq (26) are
known, viz, y,==0Q,'* for t=0, and Q=0 or Q=2P,
for t infinite, the solution of eq (26) is possible.
The substitution Z=y—1y, gives

Z' +cPZ24-2cPyoZ+ (yo+-cPyi—c) =0
and eq (26) becomes the Bernoulli equation
Z'+-ePZ*4-2¢Py,Z=0 (27)
with the solution

E
Y=o

2¢y, Pdt 3 —2¢y, 'I‘(Il
e "J (K—)—c[ Pe (’J dt)  (28)

The constant A is to be determined from the known

ralue of @ for ¢ infinite.
The solution for P—=Pe " is

ge— I 2
e —1

= (29)
e 1

Q=
where

( :2('/’0/.['\’(?(,.

The analytical integration is not possible for the
three other P functions of table 3, because the integral
Se"dt can be obtained, in general, only in power
series form.

This analysis shows that the analytical integration
for simple expressions P=/(t) can be done for k=1
and for k=0 in some cases.

5. Discussion

The analysis of the feasibility of fitting the given
curves, as parts of differential equation for water
storage, by mathematical expressions and its inte-
gration by analytical procedures in special cases,
show some characteristics of outflow hydrographs.

The shape of outflow hydrographs from lakes and
channel reaches is highly influenced by the ratio of
exponents of storage function and outflow rating
curve, both of the power type y=sx?.

The analytical integration of the storage differen-
tial equation can be performed for any ratio of ex-
ponents in case of zero inflow, and for many ratios
of exponents in case of constant inflow. The inte-
gration is, however, limited to a small number of
ratios and inflow functions, when the inflow changes
with time.

The usual procedure, to plot the recession part of
river-flow hydrographs on semi-log paper and to fit
it by a straight line, shows that i the majority of
cases the fitting of a straight line is a rough approxi-
mation. The results of above analytical integration
show that the straight line can be used for accurate
fitting only if the ratio of exponents of storage func-
tion and outflow rating curve has a mean value near
unity (n=m/r=1) and for zero or constant inflow.
This can be considered a special case.

Though the discharge hydrographs of underground
water in a river basin can be (theoretically) fitted in
many cases during the recession period of no water
supply to the underground by an exponential func-
tion of type Q,e7’, the water storage either in lakes
or along river channels influences highly the shape
of river hydrographs, so that it becomes less and less
of the pure exponential type. The higher the ratio
between the effective storage (storage which influ-
ences the outflow hvdrograph) of lakes and channels
to the total river flow during the period of recession
flow, and the higher the departure of the ratio of
two exponents from unity, the greater is their influ-
ence on the shape of river hydrographs and the larger
is the departure from the original hydrograph of the
recession flow from the underground.

As the ratio m=m/r changes along the river
channel, the accurate flood routing procedures must



take that fact into consideration.

The described analytical procedure is useful for the
study of outflow hydrographs in case of rapid
openings in water bodies (breaches of dams, rapid
openings of gates and valves, breaches of channel
walls or levees, ete.). The assumption of simple
shape of openings and of simple inflow hydrographs
(zero, constant inflow) is usual in case of dam
breaches. As the study of dam breaches has to be
made for many openings of quite different dimensions
and shapes for different inflow discharges, the
analytical integration as given above can have some
advantages in the computation of hydrographs in
comparison to the standard graphical or numerical
procedures of integration.

The difficulties in fitting the background curves
by tractable mathematical expressions and the
difficulties of integrating analytically the storage
differential equation, and especially in case the inflow
changes with time, explain why the usual graphical
and numerical procedures have taken so common a
place in the engineering practice. Nevertheless, the
analytical treatment of the storage differential
equation can be useful for some problems, can serve
for better understanding of relations, and can save
efforts in problems, as, for instance, in case of outflow
hydrographs out of dam breaches.
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The assumptions usually taken for some breaches
and for inflow discharge, and the accuracy of basic
data in the routing of waves created downstream,
justify the use of the procedure given for the fitting
of mathematical expressions to the basic and given
curves and the use also of the analytical integration
of the storage differential equation for the com-
putation of outflow hydrographs.
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