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Self-Ignition Temperatures of Materials From Kinetic-
Reaction Data

Daniel Gross and A. F. Robertson

Results of experimental determinations of the kinetic constants of the self-heating
reaction are presented for wood fiberboard, cotton linters, sugar pine, cork, crepe rubber,
GRS rubber, natural, synthetic, and blended foam rubber (with and without additive),
various oils (raw linseed, cottonseed, rapeseed, sperm, olive, castor, and neatsfoot) applied
to cotton gauze in a ratio of 1 part of oil to 6 parts of cotton by weight, ammonium per-

chlorate, and nitrocellulose plastic.

Under the assumption that self-heating follows a

first-order reaction, these constants were used to calculate the critical radii of spherical
piles for each of four surface temperatures likely to be experienced in long-period storage.
Calculated self-ignition tOlllpCl&tlll(}b of piles of %-inch-diameter to 22-inch-diameter spheres
of wood fiberboard and %-inch-diameter to 2-inch-diameter spheres of cotton linters were

in reasonable agreement with previous measurements by N. D.
1951).
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1. Introduction

Previous workers studying the self-ignition be-
havior of materials have experienced difficulties in
the determination and specification of a unique
ignition temperature. Because of the critical heat
balance that exists during the ignition process, the
measured ‘“ignition temperature’” is dependent upon
the characteristics of the testing apparatus, the
degree of control of the ambient temperature condi-
tions, the time of exposure, and other experimental
factors. It is highly dependent also upon the size
of the specimen under test. This is due to the fact
that self-ignition of a material is only possible when
the rate of heat generation within the material ex-
ceeds the rate at which heat is lost by radiation,
convection, and conduction to the surroundings.
Since the heat generated is a function of the volume
of the material, while the heat lost is a function of
its surface area, the measured ignition temperature
should decrease as the linear dimensions increase.

The incidence of fires resulting from self-ignition
makes desirable an understanding of the relationship
between the self-heating reaction and the physical
parameters involved. The present paper proposes
and illustrates the manner in which kinetic-reaction
data obtained under conditions of negligible heat
loss may be used to predict critical surface and
ambient temperatures as a function of size and shape
for a variety of materials.

2. Analysis and Nomenclature

In the analysis, the following symbols and units
will be used:

A heat-generation coefficient cal sec~lem—3

B radius or half-thickness cm
B, critical radius of sphere em v
c specific heat cal g—1° K1

e Napierian base
E  activation energy

keal mole—!

h surface heat-transfer co- cal sec~lem—2° K1
efficient
k thermal conductivity cal sec~lem—1° K1

m  coefficient in eq (1)
v gas constant=0.0019872

keal mole—1° K1

Mitchell (National Fire

t time sec
T  temperature within mate- ° K
rial

T4 self-ignition (critical am- ° K

bient) temperature

Tp ecritical surface tempera- ° K

ture

To ecritical center temperature ° K

Twm mean temperature=(7To+ ° K

T's)/2

i space coordinate cm

p density g em™?

Analyses of self-heating have been made under the
assumption that heat is generated within the body
according to a first-order reaction law. Although
this may be an oversimplification for complex mate-
rials and over extended temperature ranges, the
assumption appears to be applicable for many mate-
rials in the relatively low-temperature ranges where
self-heating becomes important and the ignition
process is initiated. Provided the rate of the self-
heating process within the material is not limited by
diffusion of the reactants and/or products, or by
depletion of the fuel supply, a steady-state condi-
tion can exist when the heat generated within the
material is equal to the heat lost to the surroundings.
The particular condition of interest is the one that
produces the maximum self-heating which is still
steady state. Either a slightly higher ambient tem-
perature or a slightly larger bulk size results in a
greater quantity of heat being generated than can
be dissipated, and ignition results. Since this steady-
state condition is eritical with respect to ignition, the
corresponding surface temperature and size of mate-
rial are referred to as the critical surface temperature
and the critical size. The ambient temperature cor-
responding to given critical steady-state conditions
with given heat losses is considered the critical ambi-
ent or self-ignition temperature. There exists for
each material and for each set of heat-loss conditions
a series of corresponding self-ignition temperatures
and critical sizes.

Consider a homogeneous material of half-thickness
B generating heat in accordance with the first-order
reaction law Aexp—F/RT and losing heat from its
surface. The steady-state heat-conduction equation
which applies for the condition when the heat lost
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through the surface is equal to the heat generated
within the material may be written:

£
7

k[j—g#ﬁd— +A4¢ ET=0, 1)

ai (i

The critical condition of ignition in the theory of
thermal explosions originally proposed by Frank-
Kamenetzky [1]! requires the solution of this non-
linear equation. Chambré [2] presented analytic
solutions in terms of known functions for the sphere
(m=2) and cylinder (m=1) to supplement that for
the semi-infinite slab (m=0). Recent analyses by
Genensky [3] for a sphere and by Thomas [4] for
all three geometries have been made employing the
assumption common to the previous solutions,
namely, that temperature differences within the ma-
terial are small in comparison with the temperature.
Enig, Shanks, and Southworth [5] have provided
solutions in the form of convenient tables of the
center and surface temperatures for sphere, cylinder,
and semi-infinite slab geometries without this restric-
tive assumption. From the tables it is useful to
note that for a given surface temperature 75, the
critical radius for the cylinder and the critical half-
thickness for the semi-infinite slab are given very
closely by 0.775 B, and 0.514 B,, respectively, where
B, is the critical radius for the sphere. Assuming
that the heat generated within the material at a
mean temperature 7, is lost from its surface accord-
ing to Newton’s law of cooling, the following relation
may be used for calculating the critical ambient
temperature for a sphere:

E
AR, =
,YA:TB"—‘g—C € qu

= )

where 7, is a mean temperature, here assumed as
To+T/2.

Since the analysis by Thomas employs Newtonian
surface cooling as a boundary condition, the ambient
temperature is obtained directly. KFrom the graphi-
cal relations given, it is again useful to note that for
a given ambient temperature 74, the critical radius
for the cylinder and the critical half-thickness for the
semi-infinite slab are given very closely by 0.782 B,
and 0.520 B, respectively.

The experimental method used in this study for
determination of the constants of the first-order
reaction involved self-heating conditions which
differed from those of the self-heating process
described. Instead of a fixed ambient temperature,
the temperature within the adiabatic test furnace
surrounding the specimen was controlled to maintain
negligible loss of heat. Under these conditions, the
specimen temperature remained uniform throughout
its mass and the heat generated within the body
increased its temperature according to the relation:

! Figures in brackets indicatethe literature reference at the end of this paper.

dT 2

——=Ae¢ ET.
POy

®3)

By transposing terms, taking logarithms and
plotting In d7'/dt versus 1/T, the resultant line has a
slope of —(£ /R )and intercepts the In d7/dt axis at In
A/pe.  For each material the determination of the
values of A and I, as well as of its more common
thermal properties, permits the solution of the
general self-heating problem including the case
where size and temperature become critical and
ignition results.

3. Experimental Apparatus

In the determination of the kinetic constants, use
was made of an improved version, figures 1 and 2, of
an adiabatic furnace previously described [6].
Although the basic operation remains the same,
refinements have been made and are here sum-
marized:

Addition of guard heaters and associated control
system. In order to reduce heat losses and to main-
tain minimum temperature gradients within the
furnace enclosure, the Dewar flask has been enclosed
within a close-fitting cylindrical shell. The shell
consists of two concentric stainless steel cylinders
containing two electric heating elements and an
insulating fill. The shell contains the bottom and
center guard heating elements while a top-guard
heating element has been placed within the Dewar
flask plug composed of several layers of asbestos
board. A thyratron control system as shown in
ficure 3 permits adjustment of the guard-heater
cycle.

Use of multiple-junction thermocouple. The sens-
ing element for the servo controller consists of eight
No. 30 gage (B&S) copper-constantan thermo-
junctions arranged in series to measure the mean
temperature-difference between the specimen and
its ambient medium.

Ficure 1.

Adiabatic furnace with control
equipment.

and recording
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FigUre 2.

men container removed from insulating shell.

SWITCHES

Adiabatic furnace, showing Dewar flask and speci-

The changes and additions described permit im-
proved performance of the system. The controller
can sense temperature differences of the order of
0.01° C while the rate of temperature drift as ob-
served with an inert specimen has been reduced to
approximately 0.25° C/hr over the temperature
range 30° to 300° C.

4. Results
4.1. Determination of A and E

Table 1 lists some thermal and kinetic constants
for a number of materials. Some of the values of k&
and ¢ were determined during this investigation,
while others were obtained from handbook sources.
The values of A4 and £ were determined over the
indicated temperature ranges from experimental
temperature-versus-time data and the use of eq (3).
For some of these materials, there is reasonable agree-
ment with published values obtained by other
methods. These values were determined over lim-
ited temperature ranges before loss of weight became
appreciable. An analysis that includes the effect of
weight loss may be applied for the higher tempera-
ture ranges. Analysis of several cellulosic materials
has actually shown that when weight changes are
taken into consideration, the values of the kinetic
constants were not much different from those
obtained at the lower temperature ranges.

EES

S| DPST MAIN POWER

S2 SPST RESET

S3 DPST CONSTANT
TEMPERATURE CONTROL
S4 DPST MAIN HEATER
S5 SPST VOLTMETER

S6 SPST LIMIT (MERCURY)

HEATERS
Hum MAIN
Hg BOTTOM GUARD
Hy TOP GUARD
Hc CENTER GUARD

| -
iER|

[J_-_#ZWPLIF

-4

Tc Yt
CONSTANT
s3/ TEMPERATURE
T T CONTROLLER

e

RELAYS

R I, R9 TIME DELAY

R2,R3DPDT LATCHING

R4 SPST CONTROL

RS SPST VOLTMETER

R6 SPST LIMIT (MERCURY)

R7, R8 SPST THERMOSTATIC
CONTROL

Ficure 3.
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|
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“4"'
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AMPLIFIER | x3E ;
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Circuit devagram of furnace-control_system.
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TaBLe 1. Physical and kinetic properties
' Property
Material Temperature
range
‘ P c k E A
- 4‘ ———
°C, g cm—3 cal g71°K |cal sec™! em~ 1 K-1| keal mole~! | cal sec™! cm—3

‘Wood fiberboard ______________ 80-225 0. 25 0.33 0. 00012 25.7 1.97X109
Cotton linters. 180-260 .32 32 . 00010 34.5 5.30X1011
Sugar pine__ 140-310 . 36 32 . 00024 20.3 2.11X106
ork _______ 170-225 .13 48 - 00010 19.1 2. 50X105
Crepe rubber__ 210-310 .92 5 . 000282 23.4 1. 06X106
S 220-330 1.10 5 . 000299 23.6 1.11X107
Foam rubber, 100% natura! 100-180 .108 5 . 000096 27.6 7.48X1010
Foam ulbber, 100% synthetic_ 115-210 .129 5 . 000100 26. 2 4. 96109
Foam rubber, blended, with ad 110-190 L1118 5 . 000098 29.0 4. 25X101
Foam rubber, blended without addxt 110-200 104 5 . 000095 28.5 1.10X101
Raw linseed oil o______________________ 90-120 .309 .34 . 00011 21.0 3. 5010¢
Cottonseed oil a___ 75-120 . 338 .34 . 00011 24.1 2. 42X101
Rapeseed oil a___ 90-140 316 34 . 00011 20.1 6. 13108
Sperm oil a______ 120-160 .313 34 . 00011 20.1 1. 56 X107
Oliveoila_________ 115-160 . 308 34 . 00011 18.7 2. 41 X107
Castor oil a______ 140160 .314 34 . 00011 27.8 8.33 X101
Neatsfoot oil a_________ 140-170 . 316 34 00011 24.7 3. 821010
Ammonium perchlorate. 205-270 .91 S5 I S 41.2 1. 22X1016
Nitrocellulose plastie._________________________ 135-170 .82 34 . 00051 42.0 2. 431019

sApplied to cotton gauze in ratio of 1 part of oil to 6 parts of cotton by weight.

4.2. Determination of Critical Size and Temperature

The critical surface temperatures of spherical piles
of wood fiberboard and cotton linters were computed,
using the measured values of the kinetic and thermal
constants, and the tables given in reference [5].
These computations were performed over the radius
range corresponding to the specimen sizes reported
by Mitchell [7]. Equation (2) was then used to cal-
culate the corresponding critical ambient tempera-
tures. The value of the surface heat-transfer
coeflicient was assumed as 4.4 10-* cal/sec em? °K.
Using this value for the surface heat-transfer coeffi-
cient, the critical ambient temperature was also
determined from the relations given in reference [4].
The results of these calculations are shown in table 2
for two materials for which published experimental
data [7] are available. With the exception of the
smallest size specimens, for which the assumption of
an arithmetic mean temperature for eq (2) introduces

TasLe 2. Comparison between measured and calculated
self-ignation temperatures, T
Size ‘Wood fiberboard Cotton linters
Self-ignition temperature | Self-ignition temperature
Thick- Half- Meas- Calculated® Meas- Calculatedb
ness thick- | ureda ureds
2B¢ ness
e | Ref 5and Ref 5 and
ef 5 an o ef 5 and
Ref 7 [ eq2 Ref4 | Ref7 eq 2 Ref 4
|
in cm 2 S0 C{of gl °C e/
1% . 159 317 183 260 304 257 307
14 .318 252 218 243 270 274 291
5 . 635 212 215 223 248 267 272
1.27 202 200 202 222 251 253
2 2. 54 180 180 180 201 233 233
4 5.08 150 | 159 160
8 10.2 130 | 140 140
12 15.2 122 129 129 |
22 27.9 109 114 114 ‘

a Specimens 1§, 14, and 14 in. thick were cubes; specimens 1 in, and larger
were octagonal prisms.
b Based on spheres of radius equal to half-thickness.

All property values refer to oil-cotton combination.

considerable error in the calculated self-ignition
temperature, the results are seen to be in reasonable
agreement.

Table 3 lists the critical radius B, of a sphere corre-
sponding to several critical surface temperatures for
each of the materials listed in table 1. Curves have
been plotted in figure 4 showing this relationship for
seven materials. In this temperature range (20° to
100° C), of practical interest for ordinary storage, the
critical size calculations were based upon the assump-
tion of the applicability of the kinetic constants which
were determined over higher temperature ranges. It
was further assumed that the thermal properties re-
mained constant over the whole temperature range.
Critical dimensions for cylinders and slabs may |be
estimated from the previously mentioned constants of
0.775B;and 0.514 B, respectively. Ash becomes very
large, the self-ignition temperature is equal to the

Tasre 3. Computed critical radius of a sphere, B,
Critical surface temperature
Material
20° C 48.9° C 82.2° C 100° C
cm cm cm cm
Wood fiberboard.______| 4.49X103 680 114 50
Cotton linters..._.____| 4.25X106 3.29X105 2. 86104 9.43X108
| Sugar pine__- e 2.19X103 501 125 66
|G OF kA SN 1.43X103 363 99 55
Crepe rubber._ .. ____ 1. 43X 104 2. 58 X103 511 206
(G RSizubherSsusnssee 1. 71X104 3.03X103 591 280
Foam rubber, 1()0
AT S 3.36X103 438 64 26
Foam rubber, 1009,
syntheticIeuunssstr s 4.00X103 588 95 41
Foamrubber, blended,
with additive._.______ 4.65X103 542 71 27
Foamrubber, blended,
without additive_.___ 4.53X103 565 78 34
Raw linseed oil a_______ 66 14.3 3.6 1L
Cottonseed oil =________ 101 17.3 3.3 1.5
Rapeseed oil & __.___. 72 17.0 4.3 2.3
Sperm oil & 143 34 8.5 4.5
Olive oil =___ 110 29 7.3 4.5
Castoroil »____________ 1.16 X103 150 69 9.0
Neatsfoot oil &__.______ 139 37 4.1 1.9
Nitrocellulose plastic___| 7.69X104 3.31X103 167 43

a Applied to cotton gauze in ratio of 1 part of oil to 6 parts of cotton” by
weight. All property values refer to oil-cotton combination.
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critical surface temperature. For a finite &, the self-
ignition temperature may be estimated from eq (2) or
may be obtained directly from the relations presented
in reference [4].

5. Conclusions

Recent analyses of self-ignition have been made
under the assumption that self-heating follows a
first-order reaction law. Experimental determina-
tions of the kinetic constants of this reaction have
been made for a number of materials and these con-
stants have been used to calculate self-ignition
(critical ambient) temperatures as a function of size
and shape. The calculated self-ignition temperatures
are in fair agreement with published experimental
data for two materials, wood fiberboard, and cotton
linters.

The experimental determinations and most of
the computations were performed by Joseph J.
Loftus to whom the authors are deeply appreciative.
Thanks are due also to James S. Evans, Jr., who
designed the thyratron control circuits and to
William H. Bailey, who assembled the furnace and
made the drawings.

An important contribution to this field has been
made by Kazuo Akita of the Fire Research Institute,
Tokyo, in a paper to be published in J. Chem. Soc.
Japan, Section of Indust. Chem.
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