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A Low-Frequency Annular-Slot Antenna
James R. Wait

The radiation characteristics of an annular slot cut in an ideally conducting ground
plane are discussed. The voltage impressed between the concentric edges is assumed to be
constant around the slot. The annular slot is backed by a hemispherical cavity which has
imperfectly conducting walls. For a specified voltage, the power radiated in the upper
half-space and the power absorbed by the hemispherical cavity are calculated. It is indi-
cated that the power absorbed can be reduced greatly by lining the walls of the cavity with
a wire mesh. A flush-mounted antenna of this type at low frequencies may have certain
practical advantages over the more conventional monopole.

It is the purpose of this paper to examine the radiation characteristics of an annular slot
cut in a thin perfectly conducting ground plane. The medium below the ground plane is taken
to be a dissipative medium such as soil. A hemispherical bowl is hollowed out just beneath
the annular slot. The problem is to calculate the power radiated into the upper half-space and
the power absorbed by the walls of the hemispherical cavity.

The radiation into a half-space from an aperture or a slot cut in a perfectly conducting
plane of infinite extent is derivable from a knowledge of the tangential electric field distribution

- -
L’ over the aperture or slot. A general expression for the magnetic field 7/ in the exterior
region [1] is (for a time factor exp (iwt))
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where k=2r/wav v]vn«rlll 70=120, n is a unit vector which is pointing out and is normal to
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the slot aperture, r and 7 are position vectors directed to a point in the aperture and to the field
- -
point respectively. T'(r, 7/) is the dyadie Green’s function and is given by the operator
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in terms of the scalar Green’s function G(r, »') which, for a halfspace, is
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Equation (1) can readily be applied to the case of an annular slot cut in a flat ground plane
(see fig. 1). A spherical coordinate system (7, 6, ¢) is chosen with the ground plane defined by
f=m/2 and the inner and outer rim of the annular slot are r=>b—A and 7=5b-A, respectively.
It is now assumed that the field in the slot aperture has only a radial component £’ (p") which
does not vary in the ¢ direction. The resultant magnetic field in the exterior half-space has
only a ¢ component and is given by
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1 Figures in brackets indicate 1hezlitemlure references at the end of this paper.
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Ficure 1. Annular slot and upper half-space.

=2 .
where p is a position vector to a point in the slot. For a narrow slot such that A is small com-
pared to b and to the wavelength, the above simplifies to

kb 2 o~ R
o g de’, (5)
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where R=[r?+b*—2rb sin 0 cos ¢']** and

b+A
V=% E(p")p'dp’ (6)
b—A

is the voltage across the slot.
In that far field, k7> >>1 and therefore kR~k[r—b sin 6 cos ¢’] so that

y —ikr (27
H¢=%2k‘fnv ¢ 7- f COS ¢’ ¢ihrsIn0 cosg’ ! )
(] 0

kbV e~

Mo T

J, (kb sin 6)

where J;(z) s the Bessel function of order one. For kb< <1,

2 —ikr
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which has the same radiation pattern as a vertical electric dipole.

The power, P,, radiated into the upper half-space is obtained by integrating the Poynting
vector over an infinite hemisphere, therefore

/2
P,=lim f |EL[*(2r sin 6)d8 @
T 0

and consequently the radiation conductance, g,, for the upper half-space is *

2 It may be of interest to note that ¢, can be expressed in the alternate form
2kd 21)dz
gr= w0 J; J3(2x)dx.

This integral has been tabulated by H. L. Knudsen in Antenna :systems with rotational symmetry, D. Se. thesis (Tech. Univ. of Denmark,
Copenhagen, 1953).
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This integral can be written in terms of a highly convergent series as was shown by Bailey [2];
consequently

=20 S a2k, (11)
Mo m=0,1,2...
For kb< <1,
Tgl M. (12)
n 6 '

In the preceding discussion, only the upper half-space has been considered. If the annular
slot was cut in a metal plate located in free space, the total radiation conductance would be
simply 2¢g,. In the present case, however, the annular slot is to be backed by a hemispherical
cavity of radius @ as indicated in figure 2. The magnetic field 7/, in the cavity consists of two
parts, the primary field 77% and the secondary field 77;. The tangential fields at the walls of
the cavity, which consist of “lossy’ material, are assumed to satisfy the approximate boundary
condition Ey=7H,|,-,, where 7 is the surface impedance.> The solution for the fields in the
cavity can be obtained quite readily by using spherical wave functions.

The primary field is, of course,

'lk'bV 2m e—ikli

e el S ’ ’ ¢
H¢,—2m70 ) cos f n dg’. (13)
It is now noted that [3,p.1466]
R (n—m)! ,
e zlcngo m=0(2n—|— 1) e, wrm)! cos m(p—a’). | (14)

In kbR, (er);  7>b
Julkr)hy (kb);  r<b

Pr(0)Pr(cos 0)

where P (cos 0) is the associated Legendre polynomial and 7,(x) and 4,(z) are spherical Bessel
and Hankel functions, respectively.* As a consequence of the orthogonality, the terms for

3 The use of surface impedance is valid when the fields in the air-filled cavity vary slowly in a distance equal to the “‘skin depth” of the lossy
material beyond the cavity walls. This is satisfied if Z/no <<1.
4T'he spherical Bessel and Hankel functions are defined by

i@ == (5" (B2)

ha(z)=i(—1) nz» %)n(%ﬂ) )

Ficure 2.  Annular slot and lower hemisphere.
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m#1 vanish in the integration with respect to ¢/, therefore

Hg=iAnhn(kr)P}L (cos ) o
n=1
for »>>b, where
ROV 2041 o,
" m w1 P(0)7,(kb). 6

The secondary field within the cavity is finite at =0, is a solution of the wave equation, has
azimuthal symmetry, and is therefore of the form

H,=3) B, j,(kr) P} (cos 6). (17)
n=1

The tangential electric field is obtained from

1

Ey=—-
Lewr bi

(rHy) (18)
so that
ZZ«O,, {An = [rhn (kT)H—Bn 5 (77 k;)]}P,‘L cos ). (19)

Application of the boundary condition at r=a, leads to
B, bt (Zfmh,
A, jut(Z[n0) jn
where

ho=h,(ka), j,=j.(ka),

h—{l O [iha (z)]} :
i={t&wiw} -

Explicit expressions for the fields inside the cavity are thus available. The power absorbed,
P,, by the lossy walls can be obtained by integrating the Poynting flux crossing the hemisphere
at r=a. Making use of the Wronskian relation [3, p. 1573],

it readily follows that
H¢] —S 8, P} (cos 0) 21
r=a n=1
where
"= ZA’Z e Sl (22)
(ka)? gnt(2Z[n)jn
Therefore ®
o
2Pa=|:27r ReZ J “VH,P sin0r2d0:| 23)
0 r=a

and

Re Z=2 Z:) i; f P} (cos 0) PL, (cos 6) sin 8d6.

5 Re indicates that the real part is to be taken.
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Noting that [3, p. 783, part 1]

2 (n+m)! BRI
f o (g — RSNy for n=n
=0 for n#n’ (24)
it follows that 2P, : :
e, = n(n+1
Rez— 2 2 SS% o0y (25)

where the asterisk denotes a complex conjugate. The conductance as seen by the annular slot,
for the lower hemispherical bowl, is then given by ©

e
Ja== V:

27rReZ<b) 2n+1 [PL(0)]*[7,(kb)]*
aminmt1) | jat(Z/n0)3al*

The total conductance at the annular slot is then ¢,-}¢,. The efficiency, £ of the annular slot

can be defined as the ratio of the power radiated into the upper half-space to the total power,
therefore,

(26)

o= VU -
—[)a+PrH(ga/gr)+1

The preceding formulas could be employed to caleulate the efficiency of the antenna for
given values of the surface impedance 7, the radius of the annular ring, and the radius of the
hemispherical cavity. Such an antenna might be feasible even at low radiofrequencies. In this
case, the cavity could be a canyon, gorge, or ditch. Using a system of wires stretched between
the canyon rims, a simulated annular aperture could be fabricated. In such an application,
ka would be small compared to unity, and consequently,

(27)

Jn(ka) =~ const. X (ka)™

and
Jnlka)=~const. X (n+1) (ka)"*.
Therefore,
2r(kb)*ReZ & (2n+1) b)
e s g_;, S [Pr(0)]? (28)

Mo
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The efficiency to this approximation is then given by

1
1+ (949,

ReZ 9 b 55 /b\®
ga/gr"'qo(l"a)z 2[ ) +o76 ) T :I

If the material lining the hemispherical cavity had a conductivity o, then

ReZ Lew €nw
e l=) 0

For frequencies in the vicinity of 15 ke, with a typical ground conductivity of 5<107% mho/m,

i= (29)

where

Re Z/7,220.01,

6 1t is also possible to obtain the conductance by integrating the Poynting vector over the area of the slot.
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and, if the cavity radius was 500 ft, ka=~1/20. Therefore,

9ol 9- =218 [1+§7§ (3)4—#. A ] (31)

~18 if, say, b<La/2.

For this case the efficiency, & is 0.011 or about 5 percent. This could be improved by
increasing the size of the cavity. For example, if the cavity radius was 1,000 ft, the efficiency
would be about 20 percent for the same wall material.

A more promising approach is to line the cavity wall with a wire mesh. In this case,
the surface impedance Z is the parallel combination of the impedance of the wire mesh and the
intrinsic impedance of the cavity wall material. It is not difficult to show that [4]

GX?

Re Z/‘ﬂog (G-}——X)L)—{—_Gz, (32>

where (/= \/ ;2—0—:: and X=(d/\) log (d/2mc),

where d is the spacing between the wires, A is the wavelength, and ¢ is the wire radius. For a
wire spacing of, say, 13 ft, d/A ~2><X10~* at 15 ke, and for No. 8 wire 2¢~1/8 in., and therefore
log(d/2me) ~1og(400) ~6.0. Since G~0.01, it follows that

Re 7/ny=6.4>1072,
which leads to
Ja/9,=0.115 for b<a/2 and a=>500 ft.

This corresponds to a radiation efficiency of 90 percent for the cavity-backed annular-slot
antenna.

No attempt has been made here to estimate the over-all efficiency of the antenna. There
is, of course, further absorption of energy radiated into the upper half-space. This loss is due
to the finite conductivity of the adjacent ground plane. It could be calculated by representing
the annular slot by an equivalent electric dipole and using the available data [4] for loss in
radial wire ground systems. The efficiency & calculated here is a measure of the performance
of the cavity-backed annular slot relative to a more conventional vertical monopole with the
same electric moment.

The circular slot concentric to the hemispherical cavity is the simplest model and the most
convenient for calculations. It is possible that other geometrical shapes such as elongated or
flattened cavities would also be suitable.

The author would like to thank H. L. Knudsen for his helpful suggestions.
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