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Excitation of Surface Waves on Conducting, Stratified,
Dielectric-Clad, and Corrugated Surfaces

James R. Wait

An expression for the field of an electric dipole located over a flat surface with a speci-
fied surface impedance 7 is derived from the formal integral solution by a modified saddle-
point method. Using the value of Z appropriate for a homogeneous conducting ground,
the general expressions reduce to those given by Norton. In this case the phase of Z lies
between 0 and 45°. When the phase exceeds 45°, as it may for a stratified ground, the radi-
ated wave of the dipole becomes partially trapped to the interface. This effect is most
pronounced for an inductive surface where the phase of Z is 90°, in which case the energy
of the wave is confined within a small distance from the surface. Such inductive surfaces
are a metallic plane with a thin dielectric film or a corrugated surface.

This unifying treatment provides a link between the surface waves of Zenneck, Sommer-
feld, Norton, and Goubau, and indicates that the phase angle of Z controls the extent to
which these waves may exist for a dipole excitation.

1. Introduction

The propagation of radio waves along the surface of the ground has been discussed from a
theoretical standpoint for many years. As long ago as 1907, Zenneck [1] ! showed that a wave,
which was a solution of Maxwell’s equations, traveled without change of pattern over a flat
surface bounding two homogencous media of different conductivity and dielectric constants.
When the upper medium is air and the lower medium is a homogeneous dissipative ground, the
wave is characterized by a phase velocity greater than that of light and a small attenuation in
the direction along the interface. Furthermore, this Zenneck surface wave, as it has been
called, 1s highly attenuated with height above the surface. In 1909 Sommerfeld [2] solved the
problem of a vertical dipole over a homogeneous ground (half-space). In an attempt to explain
the physical nature of his solution, he divided the expression for the field into a “space wave”
and a “surface wave.” Both parts, according to Sommerfeld, are necessary in order to satisfy
Maxwell’s equations and the appropriate boundary conditions. The surface-wave part varied
inversely as the square root of the range, and it was identified as the radial counterpart of the
plane Zenneck surface wave.

For many years it was believed that this Sommerfeld surface wave was the predominant
component of the field radiated from a vertical antenna over a finitely conducting ground. It
was not until 1935 that an error in sign in Sommerfeld’s 1909 paper ? was pointed out by Norton
[3], which also partly accounted for the unusual calculated field-strength curves of Rolf [4].
At about this time there was a series of papers by Weyl, Van der Pol, Niessen, Wise, and Norton,
deriving more accurate representations for the field of the dipole. A discussionof this later
work has been given by Bouwkamp [5]. Norton [6, 7], in particular, has developed his formula
for the field components to a stage where numerical results can readily be obtained. Tt is now
generally accepted that the Sommerfeld surface wave (or the radial Zenneck wave) does not
bear any similarity to the total field of a vertical dipole over a homogeneous conducting earth.
In fact, the field excited by a dipole varies as 1/d, where d is the distance for low frequencies, and
it varies as 1/d* for high frequencies. Norton has suggested that the field in air of a dipole
over a homogencous ground be expressed as a sum of three components: A direct ray (or pri-
mary influence), a reflected ray which is to be modified by an appropriate Fresnel reflection
coefficient, and a correction term. Norton has described the first and second components as
the space wave; the third or correction term, the surface wave. This seems to be a logical step,

I Figures in brackets indicate the literature references at the end of this paper.

2 It has been suggested by B. M. Fannin (Final Report, Pt. IIT, Investigations of air to air and air to ground experimental data, Elec. Eng.
Dept., Cornell University, 1951) that Summerfeld did not actually make an “‘error in sign’’ in his 1909 paper. Fannin’s contention is that Rolf and
other workers simply misinterpreted Sommerfeld’s formula for the attenuation factor. This can hardly be so, as Sommerfeld himself in 1910 (The
propagation in wireless telegraphy, Jahrb. d. Drahtl. Tel. 4, 157, 1910) used the incorrect formula and its resulting series expansion.
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although, taken separately, the space and surface waves of Norton are not solutions of Max-
well’s equations. On the other hand, his “space wave’ is the contribution that would be derived
on the basis of geometrical optics, and his “‘surface wave' is the correction from wave theory.
This latter term will be called the “Norton surface wave” as distinet from the Zenneck and
Sommerfeld surface waves, and the trapped surface waves discussed below.

It was pointed out by Sommerfeld [8] nearly 60 years ago that a straight cylindrical con-
ductor of finite conductivity can act as a guide for electromagnetic waves. Some 50 years later
Goubau [9, 10] demonstrated that such a cylindrical surface can be launched with reasonable
efficiency from a coaxial line whose outer surface is terminated in a conical horn. The improve-
ment in the transmission properties by coating the wire with a thin dielectric film has been dis-
cussed in detail by Goubau [10]. The plane counterpart of the Goubau-Sommerfeld cylindrical
surface wave is obtained when a flat metallic surface is coated with a dielectric film. Atwood [11]
has discussed the nature of the surface waves that can exist in a structure of this type. When the
film thickness is small compared to the wavelength, the single propagating mode has a phase
velocity slower than that of light and is attenuated rapidly above the surface in the air. Such
surfaces have been called inductive because the normal surface impedance, looking into the
surface, is almost purely imaginary for a low-loss dielectric on a well-conducting base. A similar
type of surface wave can exist over a corrugated surface [12, 13, 14] which is inductive if the
periodicity and depth of the corrugation are small compared to the wavelength.

The excitation of surface waves on dielectric-clad plane conducting surfaces has been
discussed by Tai [15] for a line current source, and Brick [16] for a dipole source. Correspond-
ing treatments for corrugated surfaces have been given by Cullen [17] for a line magnetic or
infinite slot source, and Barlow and Fernando [18] for a vertical electric dipole source. In the
case of dipole excitation, the field varies predominantly as the inverse square root of the dis-
tance along both the dielectric-clad and the corrugated surfaces. Surface waves of this type,
which have a phase velocity less than that of light, can be called “trapped surface waves”
because they carry most of their energy within a small distance from the interface [19, 20].

It is the purpose of the present paper to study the general problem of a vertical dipole
over a flat surface with a specified surface impedance, Z. A solution is obtained for the field
in terms of the error function of complex argument. It is shown that, using an appropriate
value for Z, the expressions for the Norton space and surface wave for a homogeneous conduct-
ing ground are obtained as a special case [7]. By allowing Z to be purely imaginary and using
asymptotic expansions for the error function, the field is shown to be of a trapped-surface-
wave type [14, 19]. Another special case is for a two-layer conducting ground [21, 22] which
can exhibit some of the features of trapped surface waves. Thus, a general connection between
these various forms of seemingly unrelated surface waves is developed.

2. Basic Formulation

A vertical electric dipole of length ds and current 7 is located at a height A over a fiat
ground plane which exhibits the property of surface impedance. Here the ratio of the tangen-
tial electric and magnetic fields is specified on the surface of the ground plane and is denoted
by Z. Choosing cylindrical coordinates, the dipole is located at (0,0,h) and the ground plane
at z=0. As will be seen, the Hertz vector at (p,¢,2) need have only a z component, II, to
satisfy the boundary condition; consequently, the fields are given by *

om g aQ>

E—ng  Eeo, Lz—<6 +2)m (1)
_ g B ol _

H-o, H-LSL B,

where u=47><10"" and =2=/free space wavelength. The resultant Hertz vector, II, can now
3 A time factor exp (iwt) is suppressed throughout.
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be represented as a sum of a primary and secondary part in the manner

M=II,+1I,, (2)

where
. - ds PR ‘o
II,=ce %"1fr, with C=4 and ri=[(z—h)*+p?* (3)

and II, is to be regarded as the influence of the ground plane. In the most elementary case
of a perfectly conducting ground plane (i. e., Z=0), II, would be given by the simple relation

L= 12 with ro=[(z+h)2+ p?]*. 4)

To find II, (or II) for the more general case, it is necessary to express the primary field in
terms of an integral representation [2] (sometimes called Sommerfeld’s integral), as follows:

e~ ® Jo(Ap)e %2~ INd\ 5)
SN h £ . 3]
1 0 U ’ :

where u=(\—g£%)"% and Jy;(\p) is a Bessel function of order zero and argument \o. Due to
the presence of the branch point of %, the contour of the integral is indented wpward slightly
at A=p3. Physically, this integral can be regarded as a means of representing the primary field
as a spectrum of plane waves whose angles of incidence, 6, on the ground plane are related to
the integration variable by A=8 sin 6. Consequently, the angles include both real and com-
plex values, ranging from 0 to z/2 along the real axis and from 7/2 to #/2-+i~ along a line
parallel to the imaginary axis.
The form of eq (5) suggests writing II, in the following form:

I=—¢ T (6)

_fm.](,()\p)e_““H"/l’()\))\d)\
D o o ¢ |
0 (4

where Z(N\) is now a reflection coefficient for plane wave incident on the ground plane at angle
of incidence #=sin"'\/B. Consequently,

u—1BA

where

_ZB_Z
w1207

In the limiting case of a perfect conductor (Z=0) it can be seen that £(X\)=1, and the integral

is of the form of a Sommerfeld integral and II, is again given by eq (4).
The Hertzian potential 1I can then be written in the form

—1igr —1ipr
n:a[“ i 2—2P] ®)

ry Ty

where 2P is the effect of the imperfection of the ground plane which results from a finite value
of the surface impedance Z.

3. Evaluation of the Integral F
The integral

p [
~Jo (@wH1BA)u
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must now be evaluated. Before proceeding, certain conditions and restrictions must be clearly
stated. At a later stage, these may be relaxed somewhat. For the moment

AL, 0<arg A<Z{’ and Bp > >1.

Since

o) =5 | B @+HRw) |
and
H(a)=—H{(—a)

where H§" and Hg? are Hankel functions of the first and second kind, respectively, it follows
that

_BA ™ eTreHm
P12 ] et oo o

Introducing the substitutions A=4 cos « and A=sin «, it 1s seen that
PZ,LﬁA T+i® 669 ae—iﬁ(z+h) sin o Hl()l)(ﬁp COSa) dex

4 J_ i . ata a—aq
: i S L
2 2

(11)

Essentially P is now a spectrum of plane waves traveling away from the ground plane so that
the vertical component of the propagation constant is g sin «. Again, complex angles are
included in the spectrum. When [Bp cos «|>">1, the first term of the asymptotic expansion
of the Hankel function can be employed. That is,

% i .
H((Jl)(ﬁp cOoS (X)%[7r_ﬁp(23—.m-:| ¢iBp cos ap—it /i, (12)

When this is inserted into eq (11), the equation for P becomes

Y (frt+io (o, 15,—iBR cos (6—a)
P——¢-irn 2 (.LL) : Eos) e de (13)
2 \2mp ~te gin a+ta oS a—ay
2 2
where R and 6 are defined by z-+h=Rsin f and p—— R cos 6. In the usual case, the separation

p between transmitter and receiver is large compared to their respective heights, & and 2z, and
consequently, 6 is slightly less than =. It can be seen that the exponential factor in the inte-
grand of P is rapidly varying except for a region near a=60~s. This is, of course, the saddle
point of the integrand or the point of stationary phase. The important part of the integrand
is in the region near the saddle point. In fact, this is the justification for employing the
asymptotic expansion for the Hankel functions H§"; the argument Bp cos a is always large
in the region near the saddle point if Bp itself is large and z+h is less than p.

The integral for P is now in a form where the saddle-point method of integration can
be applied. The usual technique [23] is to deform the contour (which in the present case is
along the negative imaginary axis, the real axis from 0 to 7, and then along a line parallel to
the positive imaginary axis) to a path of steepest descent. For example, if we let

cos (a—0)=1—1r?
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and let 7 range from — @ to 4 « through real values, an integral of the type

wt+io
f G(cos a)e~ BECos(@=0) do (14)

-t
where G (cos @) is slowly varying at a=0, is transformed to

T G(cos @) .

Pl - LA
( ) - ® ’\/1'_‘1:7'2/2

~t8Reir, (15)

In this deformation of the contour, account must be made for the singularities of the integrand
that are crossed. In the case of poles, 27i times the sum of the residues is added to the new
integral. The final step in this classical procedure is to expand G(cos «)//1—4r%/2 in a power
series in 7 enabling the integration to be carried out term by term. The leading term of this
resulting asymptotic expansion is

(271)*4G(cos B)e~BE(BR) (16)
and succeeding terms contain (8R) ™, (8R)™", and so on.

As is often the case, the contribution from the saddle point (which is the branch point in
the original \ plane) cannot be separated from the pole(s) of the integrand. For example, in
the present problem,
a)%e——iﬁn cos(f—a)

a+-a a—ay
g S TH

(7 (cos a):(cos
sin

(17)

has a pole at ==+ a, which is near the saddle point a=#6 since «; is small and 6 is near . In
other words, the integrand is not slowly varying near the saddle point on account of the factor
cos (a—ag)/2. The integral is then of the form

'1r+ime—iﬂR cos(0—a)
I— j il (18)

e a—a,
CcOSs
2

after the slowly varying factors have been separated out. The necessary modification of the
saddle-point method to treat integrals of this type was devised by Van der Waerden [24] and
Clemmow [25]. On making the usual deformation of the contour via the substitution cos
(0— ) =1—17% the integral now becomes

A Yt —BRr
T=—2¢~i7/1g=1R\[2 cos (0 2ao>J e~ BB s

72412 [cos <0;2a°>:r (£9)

It can readily be verified that no poles of the integrand are crossed in this deformation for the
argument of aq (or A) less than 45°.  The integral to consider is now of the type

+ o 3—21'2 i
Azf_w m dT (20)
— 2
B0 l:cos (0 2%)] .
t+a ¥
Sinccf e—rfsz=<7—xr> , it follows that

1/x\% 2(° % 2
a=—{ - —— —— g7 - 21
. c (x) cJo ™+c DY (

where, for real =, z=gR and
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Now it can be seen readily that

Ged= S (22)

and an integration with respect to z from z to « leads to

e A J () o2 dx, (23)

©

A:2(1r/c)VZe“f ‘_e‘zzdz, (24)

yre

or, after a change of variable,

which holds for all ¢ in the ¢ plane with a cut along the negative real axis. This can be written

A=" orfeyie, (25)
Ve

where erfe is the complement of the error integral given by

erfczoz\% fzo e~ dz, (26)
where the integration in the z plane is directed from z, towards the right to - <. Therefore
I=—12me"BRe=Perfe (1w*?), (27)
where
w=—pRe=—2iBR I:cos (9_2"“’)]}
and finally, since R=r,,
J) S o (lﬁ)‘A) —u(z+h)
P— JO S ¢ T AR (28)
~i(mp)te “erfe(1w't)e~#"2r,,
where
w~p<1—|—(~+h) (29)
and _
I _’16/9 9 it
p=—-5- A’=|ple

‘While the derivation was carried out for the argument of A lying in the range 0 to =/4 or b
in the range 0 to —=/2, the formula is actually valid for all values of b if the above definition
of the error function complement is used. The justification for this step is based on the principle
of analytical continuation. If, in the initial derivation, the argument of A was allowed to exceed
7/4, we would find that a pole would be crossed in the deformation of the contour in the o
plane. There would be a corresponding change in the integral A but, after a change of the sign
of the variable 7, the expression yielded for 7 would be unchanged in form if we are consistent
in the definition of the complex error function.

4. General Properties of the Solution

The general behavior of the result will be considered now. For the moment the heights of
the transmitter and receiver are assumed to be very small. That is (z+h)<<<p and, con-
sequently, w~p and 7 ~r,~p. The Hertz potential then has the form

11 =2%e~# F(p), (30)
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where )
F(p)=1—1i(xp)ie Perfe(ip*?). (31)

The vertical electric field is then given by

10 oIl
s ool 32
b 0p” 0 (32)

and, since 8p>>1 and F(p) is a slowly varying function, it follows that

E,=+2c8% #p ' F(p). (33)

For a highly conducting flat ground plane, [Ip|< < 1], the electric field denoted by £ is
given by
E7 =2cf% p7l, (34)

This result can be obtained by elementary methods, being just the free space radiation field of
an electric dipole of moment 2¢. The factor 2 arises from the imaging of the primary dipole in
the perfectly reflecting surface. The ratio

F(p)=E./E; (35)
is by definition the complex attenuation factor and is a measure of the efficiency of trans-

mission of waves along the interface for a vertical-electric-dipole source.

The behavior of F(p) is very dependent on the phase of p, and since

P—|pleir——"P 2:_@(19%) (36)

the surface impedance, 7, plays an important role. For example, in the case of a homogeneous
ground of conductivity ¢ and dielectric constant e,

R 1\ ‘
1200 N <1_7\ﬁ> 37

N:[eiiff/@]””.
€0

The refractive index, N, is usually large compared to unity with a phase near, but always less
than —45°.  Correspondingly, for a homogeneous half-space, the phase b lies between 0° and
—90°. This is precisely the case that has been treated in detail by Norton, who gives numerical
results of /'(p) as a function of |p| for b varying from 0 to —180°.* In all cases for [p| >0, |[F(p)]
was less than unity. In other words, the field /£, was never greater than £ for the perfectly
conducting ground plane. For purposes of numerical work, the error-function complement
can be expanded in an ascending power series, as is well known. This leads to the following
series formula for /(p):

with

. (2p)? (2p)?
Fp)=1—i(epper—2p+ S — 20y (39
which is absolutely convergent.
The second term of this series, the quantity —i(wp)**e 7, is rather interesting if it is consid-
ered by itself. The vertical electric field, 2} , which would result by ignoring the other terms, is

Fi— — 9732 AT :
1= — 2082 & i(ap¥)e (39)
—Ce3mi/ABe '\/[23: —i [1_%] o3 (40)

4+ Norton used a time factor e-iwt, whereas et is employed in the present paper.
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This field has the characteristics of a Zenneck surface wave; it varies inversely with the distance
along with an exponential attenuation, and it has a phase velocity greater than that of light.
By retracing the steps in the derivation it is not difficult to show that £ is the residue at the
pole ap in the complex « plane. Taken by itself, £; could easily exceed £ by a great amount
if b was near —90° corresponding to the phase of Z (or A) being near zero. This corresponds
to a small conductivity in the lower half space.

The above argument would indicate that the Zenneck surface wave is excited by a vertical
dipole source on a homogeneous half-space. Of course, when the other terms in the series for
F(p) are considered, the total field does not have the attenuation characteristics of a Zenneck
surface wave. For example, if the asymptotic expansion for the complement of the error func-
tion is employed, the following series for F(p) results:

1 13 135 1357
2p (2p* (2p?* (2p* "7

which are also asymptotic and valid for large values of p and —27< < 0. This would indicate
that the field £, at large ranges varies inversely as the square of distance, whereas the Zenneck
surface wave varies inversely as the square root of the distance. This viewpoint is confirmed
by the work of Wise [26] and Rice [27], who develop rigorous expansions for the Hertz potential
on a homogeneous earth.

The absence of any features associated with a trapped surface wave on a homogeneous
earth is due to the restricted range of b (namely between 0 and —=/2) for a homogeneous earth.
It is of interest to note that Sommerfeld in his 1909 paper had an error in sign which was finally
pointed out by Norton [3]. This error is equivalent to the interchanging of the b and —b. In
other words, the complex conjugate of p is used in place of the proper quantity. Rolf [4]
employed Sommerfeld’s formulas along with the incorrect sign. Rolf’s series expansions for
F(p) would correspond to eq (38) with b replaced by —b. His calculations therefore correspond
to values of F(p) for b from 0 to +90°. The appearance of his curves is indeed weird. As
will be indicated below, the function /(p) can exceed unity in certain instances when b is posi-
tive. This is indicated in Rolf’s curves. The irregularities and dips to zero, however, must
be attributed to errors in computation. The series formula for #(p), although mathematically
convergent, takes a great number of terms when p is greater than 5 or so. And, furthermore,
the asymptotic expansion of /7(p) is not accurate for the real part of p less than about 15. The
anomalous features in Rolf’s curves occur just where the accurate computation of #'(p) would
require tens or hundreds of terms in the power series formula. This viewpoint is confirmed
when more elaborate calculations are carried out [21].

The nature of the attenuation function /'(p) when b is positive can be best seen from an
asymptotic development. This is obtained by noting that

F(p)= (41)

. / 2 « 2 2 22 2
erfe(ip¥)=— e vdr=2——| e *dz (42)
 mJip* \ wJ ip*
The latter integral asymptotically vanishes for p— o if the real part of ip’* is less than zero.
Therefore

erfe(ip')=2— < T Ay o ) (43)

for 20 >b>0 and|p|>>>1. Utilizing this result, it then follows that

F(p)=1—iyape erfe(ip¥)
(44)

in the asymptotic sense. The term —2iy/7p ¢7? has all the characteristics of a surface wave.
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It is not present in the asymptotic development for #'(p) when b is negative. Of course, for

dissipative media such as a stratified conductor, the real part of p is large and the surface-wave
term almost vanishes compared to the term —1/2p.

The most interesting case is when the surface impedance is purely inductive. For example,
if a flat perfectly conducting ground plane is coated with a thin layer (of thickness &) of pure
dielectric (with refractive index N), then the surface impedance, Z, is given to a good approxima-
tion by [19]

AT [I“Nl‘z - (45)

Another example is when a flat metal surface is corrugated in the form of periodic rectangular
slots of width d and depth ) with a separation w between slot centers. The surface impedance
for the magnetic vector parallel to the directions of the corrugations is then

Z=1 % 7 tan B, (46)

provided that there are at least five corrugations per wavelength along the surface [13].  For
D<\/4, the surface impedance is purely inductive, and since

169

(47)
p+ilp| and b==/2. The attenuation function then has the asymptotic development,
157 .
F(p) == — 269 alp| e~17 4oL 4 3t (48)
: B4 g g
where
Bp -
|pl= X=|Z|.
The vertical electric field at z=0 is then given by
E,>2cB% " #rp= (). (49)
The surface wave term now varies as
— 76—113(14—2 2)
VBp
which is not a Zenneck surface wave since the phase velocity, », given by
1 1
D= e o) (50)
1+X2/(28) /o€
is less than the velocity of light, 1//ue.
If the surface is purely capacitive such that Z=—i.X", the argument of the error function is
ipti=c= " Ba(X n, (51)
so that erfe(ip”) can be expanded directly to lead to the asymptotic representation
15@
F(p)=~ + (52)
Py 8[p°

which contains no surface-wave term.
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5. Height-Gain Functions

It is desirable now to return to the general formula for F(p) which is a (modified) saddle
point approximation for the field of a vertical dipole over the impedive surface. For A=0, it is

W=1—i+/mpeverfe(im*), (53)
where
w=p(14+£, ) =2p(145)-
For small heights and receiver it is of interest to develop Win a power series in z.  For example,
W(z)=W(0)+ ( ) = %>_0+ Lo (54)
Now
dW [—£+1 \ 7rp e~ Yerfe(iw* 2)] dw (55)
and
(I’—Nﬁdp ( + 1p
Therefore

W
di :LO—zkAH () =ikaF(p)

and, to a first order in z,

W(z)=F(p) [1+kAz]. (56)

The generation of higher-order terms using this method is cumbersome, and it is really better
to return to the original integral for the Hertz potential 1I(z) given by

o= - )\JCI()\p) —uz =
H(a)—cho et iga ¢ N (57)

for h=0. Expanding the exponential, this is rewritten

)\J(»()\P)
u—+168A

H(s):2jw[1—uz+u222/2— . o] X\ (58)
0

=2¢ I:H(O)-HﬁAH 0)+ oI 4)> t- ]

Now since II(z) satisfies the wave equation, 0°/02% can be replaced by
q p )

_gp 10 0O
B pop " dp
so that
. ZEN R S )
— y o S 2 1 = Pk} 5
H(z)—[l—l-zﬁAw s (Pl )t - T (59)
Since
11(0) =2¢e~#0p = F(p), (60)

374



the contribution from the second-order term is

2y 10 266 8, HER) G ) _ . F'(p) 22 F'(p)
[B > Op ”a 0= F<){ +wm» 5 Fip) B Fpy T2 Fipy 7 OV

where the prime(s) indicate a derivative(s) with respect to p. It is not difficult to see that
for 27 < b<_0, F(p) is slowly varying compared to other factors and the term in curly brackets
is much less than unity if e >">1 and p*> >z In the case of the inductive surface (i. e,
27 >bh>0), it is convenient to write

F(p)=F(p)+F.(p), (62)
where asymptotically
Fy(p)=—2ivrp e® (63)
is the surface wave term and
1 5 15 S
Fo(p) = Top dp? 8p% (64)

is the remaining (nonsurface) contribution. [For the case —27<b<{0, F(p)~F,(p)].

Now
Fup) 1 ( 1 )
SR, ¥
Fp)~ o\
and
Iw//( ) 2 ( 1 >
—=40(
D RPRRAVT
but
Fip) _ipa”
Fy(p) 2
and
F @~< pa’ >
Fy(p) 2
Therefore, the Hertz potential I,(z), corresponding to the surface-wave field, is given by
@)= 1+isaz+ B5P 4 ] (65)
=~ T,(0)e't4
whereas
TM,(2) = 1,(0)[1+18Az]. (66)

In the case of a purely inductive surface (Z=1X), the exponential factor for the surface
term is given by
(882 — = (XB/n)z—g=cwXz (67)

indicating a rapid decay of the field with height.
By a slight extension of the above, the case of both transmitter and receiver raised yields

II,(2,h) = 11,(0,0)e B¢z (68)
and

1,(2,h) = 11,(0,0) (1 +iBAz) (1 +1BAR). (69)
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Still another approach to the effect of raised antennas, which is particularly appropriate
for large heights, is now considered. In general,

—ipr —igr
LN S T (70)
Cc /81 7
where
——B . g‘_iﬂTZ
P= [1—F(w)] 7'2 (71)

with F(w)=F,(w)+ el (w), where e=0 for —27<6<0, e=1 for 2z >b >0, and w=p(1+ C/A)?
C=(z+h)[r,. Asymptotically,

FS(W)=—2Z\/W e v (72)
and
1 3 15
R =5t 5w " (73)
After some algebraic manipulations,
=11, €Il
F_"Ne‘iﬁrl C—A ¢~ %2 _ 1 . 1.3 o 1.3:5 Pt i) )
g ¢ notrAn P CAY 2" A+ CAY 4pA+CAY """
an
HSN —2A o 2 ot e~ s
_E—=——A—*—C[2h/7rwe ] = (75)

The first term in the expression for II, is, of course, the direct or primary influence. The
second term is the secondary influence modified by a Fresnel reflection coefficient. The terms
containing inverse powers of p can be considered as corrections to geometrical optics. The
surface-wave term is absent when b is negative. When b is positive, it is a finite contribution
to the total field II, and for a highly inductive surface (i. e., 5=90°) it is predominant.

The vertical electric field is simply given by

E,~p2SI=62(1—CHII for Bry and Bry>>1,

and furthermore, 7,~7r,—2hC.
6. Conclusion

It has been shown that the nature of the field radiated from a dipole over a flat surface
depends markedly on the complex value of the surface impedance Z. For example, when the
phase of Z is between 0 and 45°, the derived expressions for the field correspond to those of
Norton and others for a dipole over a homogeneous flat ground. When the phase of Z exceeds
45° the radiated field becomes trapped by the surface. This effect is most pronounced when
7 is purely imaginary, corresponding to an inductive surface. A similar unifying treatment
for.a dipole over a curved spherical surface will be given in a sequel to this paper.

The author thanks Kenneth A. Norton for his very helpful suggestions and Howard
Bussey for his constructive criticism.
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