Thermal Expansion of Some Nickel Alloys

Peter Hidnert

Data on the linear thermal expansion of some nickel alloys (manganese nickel, Hoskins Alloy 667, Inconel, Evanoeh, Monel metal, M-M-M alloy, Illium alloy, and Waspalloy) for various temperature ranges between 20°C and 1,000°C are given. During the first heating of Inconel alloys (probably with a supersaturated content of carbon), irregularities were noted in the expansion at about 700°C and were ascribed to precipitation of carbide. The coefficients of expansion of the alloys are tabulated. For the range 20°C to 300°C, these coefficients varied from 13.1 to 15.5×10⁻⁶ per deg C. The effects of additions of copper, cobalt, and iron to nickel-chromium alloys (0 to 24 percent of chromium) are indicated.

1. Introduction

Data obtained between 1918 and 1956 on the linear thermal expansion of some nickel alloys for various ranges between 20°C and 1,000°C, are presented.

2. Alloys Investigated

The samples of nickel alloys were obtained from Wilbur B. Driver Co., Newark, N. J., General Electric Co., Schenectady, N. Y., Holabird Quartermaster Intermediate Depot, Baltimore, Md., Hoskins Manufacturing Co., Detroit, Mich., Manning, Maxwell, and Moore, Inc., Bridgeport, Conn., National Advisory Committee for Aeronautics, Washington, D. C., National Bureau of Standards, The Standard Calorimeter Co. (succeeded by Burgess-Parr Co., Freeport, Ill.), and Universal Cyclops Steel Corp., Titusville, Pa. The length of each sample used in the determinations of linear thermal expansion was 300 mm. The cross sections of the samples, their chemical compositions, and treatments are given in table 1. The chemical compositions of some of the samples were determined by the Bureau as noted in footnotes of table 1. The compositions of the other samples were supplied by the companies that produced them.

3. Apparatus

The micrometric thermal-expansion apparatus described by Hidnert and Souder [1] was used for the determinations of the linear thermal expansion of the nickel alloys. The samples were heated in an oil bath or an air furnace. To minimize the effects of oxidation or scaling at high temperatures, an observation wire was placed in a sharp V-groove cut around the sample near each end. Observations at each temperature were taken under equilibrium conditions.

4. Results and Discussion

The observations obtained on heating and cooling 15 samples to various temperatures were plotted, but the observations for only 5 samples are shown (figs. 1, 3, 4). The coefficients of expansion in table 1 were all computed from the original expansion curves.

The "annealed" samples of Inconel, containing 0.02 to 0.11 percent of carbon, were probably in a supersaturated condition with respect to carbon on account of their relatively fast cooling from 2,050°F (1,121°C). On the first heating of these alloys during the thermal-expansion determinations (fig. 1), slight irregularities were observed at about 500°C and 700°C in the curves of instantaneous coefficients of expansion versus temperature (fig. 2). The irregularities at about 500°C have been attributed [2a], although without conclusive evidence, to the formation of an ordered structure based upon the compound Ni₃Cr.

The author believes that the irregularities in Inconel at about 700°C (fig. 2) were caused by precipitation of carbide. Such irregularities have previously been reported by Hidnert [3] for nickel-chromium-iron alloys. The irregularities in the latter alloys were observed only during the first heating on alloys that had previously been cast or quenched from a high temperature.

Figure 2 indicates that during the first heating of Inconel, the magnitude of the irregularity at 700°C increases with increase in the carbon content.

No irregularities were observed in the curves of Inconel on cooling it from 1,000°C to room temperature. The author believes that the expansion curves of each sample on repeated slow heating and slow cooling will closely follow the curve obtained on the first cooling from 1,000°C to room temperature. From this it follows that the coefficients of expansion on repeated heating and cooling for each sample should be the same or nearly the same as those given in table 1 on cooling.

Observations on thermal expansion of Monel metal (sample 1861) at various temperatures from room temperature to 1,000°C are shown in figure 3. The expansion was not reversible on heating and cooling the sample during the first test, but the expansion was reversible during the second test.

W. J. O'Sullivan, Jr. [2] reported data on thermal expansion, specific heat, thermal conductivity, mechanical properties, electrical resistance, and emissivity of Inconel containing 0.02 to 0.11 percent of carbon.
Table 1. Coefficients of linear thermal expansion of some nickel alloys

<table>
<thead>
<tr>
<th>Sample</th>
<th>Commercial name</th>
<th>Chemical composition</th>
<th>Treatment</th>
<th>Diameter or cross section of sample</th>
<th>Average coefficients of expansion per degree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ni, Cr, Cu, Fe, C, Mn, Si</td>
<td></td>
<td>mm</td>
<td>20°C to 100°C (°C)</td>
</tr>
<tr>
<td>1200</td>
<td>Nickel</td>
<td>.99 94, .006 .063 .005 .006 .004 Co, .006</td>
<td>Cold-swaged and annealed at 500°C; Drawn to wire.</td>
<td>4 1H</td>
<td>10^{10} - 10^{-6} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10}</td>
</tr>
<tr>
<td>462</td>
<td>Manganese nickel.</td>
<td>97.0 .3 .8 1.6</td>
<td>Cast in metal mold, hot-rolled to 1.6-in. diameter, and cooled in air.</td>
<td>6 1H</td>
<td>13.2 13.7 14.3 14.5 14.9 15.0 15.3 15.6 16.0</td>
</tr>
<tr>
<td>1387</td>
<td>Hoskins alloy 667</td>
<td>94.5 .016 .016 .016</td>
<td>Hot-rolled and machined to 12-mm diameter, annealed by rapid insertion into preheated furnace at 1050°C (1121°C), held at this temperature for 30 min, and then quickly removed from furnace and cooled in quiescent air.</td>
<td>12 1H</td>
<td>13.3 13.8 14.2 14.6 14.9 15.3 15.8 16.3 16.8</td>
</tr>
<tr>
<td>1859</td>
<td>Inconel 690</td>
<td>76.45 14.96 .15 7.89 .07 .26 .19 .007</td>
<td>(1930)</td>
<td>15 1H</td>
<td>13.2 13.7 14.3 14.5 14.9 15.3 15.8 16.2 16.7 17.2 17.8 18.4 19.0 19.6 20.2 20.8 21.4 22.0 22.6 23.2 23.8 24.4 25.0 25.6 26.2 26.8 27.4 28.0 28.6 29.2 29.8 30.4 31.0 31.6 32.2 32.8 33.4 34.0 34.6 35.2 35.8 36.4 37.0 37.6 38.2 38.8 39.4 40.0 40.6 41.2 41.8 42.4 43.0 43.6 44.2 44.8 45.4 46.0 46.6 47.2 47.8 48.4 49.0 49.6 50.2 50.8 51.4 52.0 52.6 53.2 53.8 54.4 55.0 55.6 56.2 56.8 57.4 58.0 58.6 59.2 59.8 60.4 61.0 61.6 62.2 62.8 63.4 64.0 64.6 65.2 65.8 66.4 67.0 67.6 68.2 68.8 69.4 70.0 70.6 71.2 71.8 72.4 73.0 73.6 74.2 74.8 75.4 76.0 76.6 77.2 77.8 78.4 79.0 79.6 80.2 80.8 81.4 82.0 82.6 83.2 83.8 84.4 85.0 85.6 86.2 86.8 87.4 88.0 88.6 89.2 89.8 90.4 91.0 91.6 92.2 92.8 93.4 94.0 94.6 95.2 95.8 96.4 97.0 97.6 98.2 98.8 99.4 100.0</td>
</tr>
</tbody>
</table>

- All compositions are given in percent by weight.
- H indicates that the coefficients of expansion were obtained on heating.
- C indicates that they were obtained on cooling the samples.
- Additional for comparison with the nickel alloys in this paper.
- Determined from data in American Steel Founders booklet.
- Resistant to acid and erosion by high-temperature, high-pressure steam.
- Used in the manufacture of spark plugs and may be classed as a heat-resistant alloy.
- Made by International Nickel Co. Chemical composition determined by this company.
- Made by Willfur Driver Co., Newark, N. J.
- The properties of pure nickel, B. J. Research, 5, 1291 (1930). RP297. The coefficients of expansion for other temperature ranges were computed from the original observations.
- Includes cobalt, probably as much as 1 percent.
- Contains cobalt, probably as much as 1 percent.
- An alloy of molybdenum and nickel, made by the American Steel Founders Co.

- Made by the Commercial Steel Corporation, Titusville, Pa. This alloy is used for rotor blades in turbojets.
- Used in the manufacture of spark plugs and may be classed as a heat-resistant alloy.
- Made by Willfur Driver Co., Newark, N. J.
- Made by Universal Cyclops Steel Corp., Titusville, Pa. This alloy is used in high-temperature applications.
Figure 4 shows the observations obtained on thermal expansion of Waspalloy at various temperatures from room temperature to 1,000°C.

The coefficients of expansion of the nickel alloys containing 76 to 97 percent of nickel agree with the corresponding coefficients of nickel within \(\pm 0.5 \times 10^{-6} \) per deg C (±3 percent).

A comparison of the coefficients of expansion of the samples of Monel metal with those for nickel indicates that the addition of 27 to 29 percent of copper to nickel increases the coefficients of expansion by a maximum of \(1.4 \times 10^{-6} \) per deg C (10 percent).

The coefficients of expansion of Illium alloy and Waspalloy containing appreciable contents of a variety of elements are appreciably less than those for nickel for various ranges between 20° and 700°C.

Figure 5 summarizes coefficients of expansion of nickel-chromium alloys with and without additions of other elements, for the range 20° (or 0°C) to 100°C, from the results in table 1 and other investigations [3, 4, 5, 6, 7]. The straight line represents the relation between the coefficients of expansion and the chromium content of the nickel-chromium alloys. This line indicates that the coefficient of expansion increases slightly with increase in the chromium content. The addition of 11 percent of cobalt or 7 percent of copper with other elements (10 percent) to nickel-chromium alloys reduced the coefficients of expansion appreciably. The effect of the addition of iron with or without other elements is indicated in the figure.

Data on the linear thermal expansion of other nickel alloys investigated at the Bureau were published in previous papers [3, 8].

The author expresses his gratitude to R. K. Kirby for his assistance in the determinations on thermal expansion of Inconel alloys, Monel metal (sample 1861), and Waspalloy.
5. References

WASHINGTON, September 19, 1956.