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Testing of Large Optical Surfaces With Small Test Plates

James B. Saunders

A procedure for testing large optical surfaces with relatively small optical standards is

described.
precision.

Simplified formulas are used to apply a statistical method for obtaining increased
A practical example is used to illustrate the procedure for testing surfaces that

may be assumed to have revolution symmetry.

1. Introduction

With the increased use of massive optical parts,
there is need for a practical method of testing large
optical surfaces with relatively small standards, such
as are available in the average optical shop. The con-
ventional test of observing fringes between the
standard and unknown at various positions on the
surface enables the optician to form a rough esti-
mate of the nature of the surface. For more ore-
cise values either extensions of the present conven-
tional tests or new methods must be used. Present
shop methods of testing optical surfaces are not
practical for massive optical elements as standard
test plates of the sizes required for conventional
test methods are seldom available.

A test for shape of very large optical surfaces, by
means of interference of light, may be made with a
standard test plate (flat or spherical) that is much
smaller than the surface to be tested. The princi-
ples involved are not new and may be considered
elementary, but those who perform the tests on
optical surfaces during the polishing are not as a
rule sufficiently versed in mathematics to apply
the principles outlined in the present paper to the
best advantage. They can, however, apply observed
data to a set of simple formulas and compute the
ensuing results.
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Ficure 1. Optical arrangements for testing (A) flat surfaces,
(B) convex surfaces, and (C) concave surfaces.

A procedure 1s deseribed in which an ordinary-
sized standard test plate can be used to measure the
shape of surfaces that are much larger than the stand-
ard. Use is made of statistical methods for improv-
ing the computed results. Simplified formulas will
be developed that may be applied by opticians, after
a short training period, even though they may not
be able to follow the mathematical derivations and
theory. The application of the general formulas to
a typical set of data will then be made to illustrate
the testing of a surface by means of a smaller standard
optical flat. The method is not limited to plane
surfaces. The sphericity of very large spherical or
aspherical surfaces may be measured with standard
test plates of approximately the same radius, if the
viewing system permits the use of normal incident
light. Figure 1, (A, B, ) shows simple optical
arrangements for testing plane, convex, and concave
surfaces, respectively.

The basic principle may also be applied to the
testing of off-axis curved, or nonsymmetrical,
surfaces, with modifications of the formulas. How-
ever, as these are encountered only rarely, the
present paper will be limited to surfaces of revolution.

We will consider a Fizeau viewer (iig. 1) that has
an aperture equal to or greater than the area of the
standard surface. Spherical surfaces are referred to
the spherical master with which they are tested, and
plane or approximately plane surfaces are referred
to planes. The equations and measurements are
identical for plane and spherical surfaces. This
discussion will deal with the testing of an approxi-
mately plane surface against a standard optical
flat. The unknown surface is assumed to be a
figure of revolution about an axis normal to and
passing through a known point on it. In general,
this point will be at or near the center, if the surface
1s circular.

2. Experimental Procedures

If the standard flat is adjusted normally to the
collimated beam of light and the unknown is placed
close to and approximately parallel to the standard,
interference fringes may be observed with mono
chromatic light of known wavelength. Measure-
ments made on the fringe pattern permit a compu-
tation of the shape of the unknown relative to a
plane (sphere for spherical surfaces) over the visible
region of interference. If adjustments permitted,
the entire area of the unknown could be covered by
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moving the standard step by step without rotation,
in a plane parallel to the standard plane. The
aggregate of the resultant fringe patterns, when
properly assembled to form a composite pattern
of the whole surface, would be quite similar to what
would have been obtained with a standard surface
that covered the whole of the unknown.

As 1t is virtually impossible to make the above
assumed adjustments, corrections for rotation and
changes in separation of the unknown, relative to
the original surface of the standard, must be made
by measuring these changes and applying the
required corrections. The corrections are always
subject to errors of observation. If several successive
positionings of the standard, relative to the un-
known, are required to measure the shape along a
diameter, these errors accumulate. Consequently,
it 1s desirable to reduce these errors. The “Method
of Averages,” ' which is easy to apply and yields
simple working formulas, is used since it provides
adequate precision.

In general, large optical surfaces are ground and
polished by machines that produce figures of revolu-
tion about a known point, usually located at the
center of the surface. If the surface is one of
revolution,? its departure from a straight line that is
tangent to it at the center of revolution is a measure
of its departure from its tangent plane and conse-
quently determines the shape of the entire surface
relative to any other chosen plane. The axis of
abscissas (see fig. 2) is chosen as the intersection of a
plane through the axis of rotation of the surface with
the plane that is tangent to the surface at its center.
The unit of abscissas is chosen as the separation of
equally spaced reference marks along a chosen
diameter of the surface. The chosen diameter is
the axis of abscissas. The axis of ordinates is the
axis of revolution of the surface. The unit of ordi-
nates is one-half the wavelength of the light used.

The following steps are the chosen procedure for
acquiring the data necessary to compute the shape
of the surface. The master flat is placed on, and
concentric with, the surface (positions A and A’,
fig. 2). The magnitude of the air wedge between
the two surfaces is adjusted to produce a satisfactory
number of fringes in the field (see fig. 3). The
direction of this wedge is adjusted to make the fringes
approximately normal to the line along which the
chosen reference points lie. Except for plane sur-
faces this wedge varies from one reference point to
the next. Consequently, if linear interpolation is
used in estimating fractions of fringes at the reference
points, the error in estimation varies with the frac-
tion observed. For most observers this error is a
minimum when the fraction is 0.0 or 0.5, that is,
when the reference point falls on the center of a dark
or a bright fringe. Best accuracy is obtained by
reading abscissas corresponding to the center of all
fringes—both dark and bright—and from these data,
by mnonlinear interpolation, compute the relative

1J. B. Scarborough, Numerical mathematical analysis, p. 446 (Johns Hopkins
Press, Baltimore, Md., 1950).

2 W. A. Granville, Elements cf differential and integral calculus, p. 264 (Ginn
& Co., New York, N. Y., 1911).
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Ficure 2.  Coordinate system of reference.

The vertical section (below) cuts the horizontal section (above) along the line
of reference points—dots concentric with small circles. Circles A, A’ B, B, ete.
represent the several positions of the standard test plate. The corresponding
straight lines below represent sections through the standard surface of reference.

orders at the chosen reference points. The proce-
dure will be explained in greater detail with the held
of the fringe configuration shown in figure 3.

The fringes (relative orders of interference) in
position A are evaluated at the several equally spaced
reference points by the method indicated above.
The standard is then moved to position B, which
overlaps an appropriate amount of the area covered
in its first position, A. Again the fringe readings at
all reference points, covered by the standard in this
new position, are evaluated. The standard is then
moved to position ' and the corresponding fringe
readings noted. This procedure is repeated until
the surface covered by the master extends to the
edge of the unknown surface of revolution. The
positions represented by primed letters are a second
ndependent set, useful in checking the precision of
the method.

In general, the fringe values at the reference points
will not be integral. Consequently, the fractional
parts must be obtained by interpolation and, in mar-
ginal cases, by extrapolation. Linear interpolation
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Ficure 3.

The numbers above each picture represent relative orders of interference.

or extrapolation is accurate only when the fringes are
equally spaced along the straight line on which the
reference points are chosen. If they are equally
spaced, the surface is plane and no further test is
necessary. In general, the fringes will be curved and
nonlinear interpolation should be used if highest
accuracy is to be obtained. Of the several methods
of performing nonlinear interpolation, the graphical
method is simplest and, for these purposes, adequate.
The details of this are best shown by a description of
its application to actual data. This will be given in
a later section, where the shape of the surface of a
glass disk will be computed from photographs of
interference fringes that are obtained when the glass
disk is tested interferometrically against a standard
flat.

3. Derivation of Formulas

A set of formulas are now derived for use in the
above-mentioned computation. In figure 4 the
curved line represents the surface to be measured.
The chosen reference plane is represented by the
axis of abscissas. The chosen reference points are
indicated by circles on the curved line. The several
positions of the master plane relative to the coordi-
nate system are represented by straight lines at
various angles. The coordinates of all chosen refer-
ence points, which are marked on the surface of the
unknown, are (R, Yz). The observed fringe (a rela-
tive order of interference) at (R, Yz) is designated
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Fringes for the several positions of the standard test plate.

Ay for the first position of the standard, By for the
second position of the standard, C'; for the third
position, and so forth. The slopes and intersections
of the straight lines with the axis of ordinates are
represented by M, and A, respectively, for the A
position, My and B, for the B position, M, and C,
for the (' position, and so forth.

The slope-intercept form of the equation for the
straight line representing the standard in the X posi-
tion (X=A4, B, (), ete.) is

7R+(XR—‘\'0):Z\/[.YR' (1)
In position A, for example, the ordinates of the line
are (Az+Yr) =A,+M,R, where Ay is the separa-
tion of the two optical surfaces. The absolute
values for X3 are unknown, but differences in Xy,
for any given position of the standard, are directly
observable. Consequently, the integral part of the
smallest X5 will be subtracted from all X’s for pur-
pose of computation. The quantity (XNz—X,) is
unaffected by this operation.

We will evaluate My and X, by applying the
method of averages (footnote 1) to the data. The
grouping of observations will be made in such manner
that there is no overlapping of the two groups of
points except when an odd number of reference points
are to be applied to an evaluation. When the num-
ber of reference points in the two groups is odd, two
observations are considered to be made at each of the
points, and the two observations made at the central
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Ficure 4.

Analytical representation of the surface and standard for mathematical analysis.

The slanting straight lines represent the several positions of the standard and the adjacent formulas the equations of its corresponding locii.

point are divided between the two groups. The two
groups then have an equal number of observations,
and all observations are thereby assigned equal
weights.  When the total number of reference points
is even, there is no overlapping of groups for an equal
number of points to be allocated to each of the two
groups for equal weighting of datum.

In applying the method of averages (footnote 1),
we require that the algebraic sum of errors be zero
for each of the two groups of abservations. This
requirement is represented by the following equa-

tions:
Ry Ry 1
% ()7R+1YR) :JIY;R_*—ENXXO;

3

where summations in the first of this pair of equa-
tions are from the lowest value of R(=R,) to the
largest value of R(=R,) in this group and summa-
tions in the second equation are from the lowest
value of R(=1£;) in the second group to the largest
value of R(=P£,) in the second group. Equality of
R, and R; will result when the number of reference
points is odd, whereas they will differ by unity when
the total number of reference points is even. The
number of reference points used in each evaluation
is Ny.

Solving for My and X from the pair of equations
(2), we get

.lATXX(h

Ry Ry
> (YR—)—AYR):J[YZR—}—Z
R, Ry

Ry Ry

25 (Yet+Xg)— 25 (Yr+Xp)
SYR_SYR
R3 R,y

(3)
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Ry

R, Ry
3 (Vat Xo)— 23RS (Yart XR>]
RI,,, Ry Rs3
Ry Ry
N_{}:B~ZR]
Ry Ry

Equations (1), (3), and (4), together with the
assumption that the surface to be measured has
revolution symmetry, permit a computation of Y
for all chosen reference points and consequently the
shape of the surface.

The foregoing analysis permits a statistical evalua-
tion of My and X, for all values of X (i. e., A, I,
C, . ..) except the quantity A4, An error in A,
represents an error in the position of the reference
plane and since this has no effect on the computed
shape of the surface, the observed A, is assumed to
be free from error.

As the surface is assumed
symmetry,

Ry
2 ;R

Xo= (4)

to have revolution

Yp=Y _x. (5)

From eq (1) Yz=M,R+(4,—Ay), and Y_z=
—M,R+(Ay—A_g). On eliminating M, and Y,
from these three equations, we have

YR: Ao I % (AR+A—R) .

~

[9)

(6)

As M does not enter into the computation, it need
not be evaluated.

4.

& Equations (1), (3), (4), and (6) form a set of funda-
mental equations from which all values for Y, may
be computed.

HNlustrative Example



To clarify any possible lack of understanding in
the development and application of these formulas,
we will apply them to a set of observations and will
compute the resultant shape of a surface. 1In this
case the large cirele in figure 2 represents the periph-
ery of a 31.1-em-diameter disk that is to be measured
by means of a standard whose diameter is 8.2 c¢m.
The seven circles, centered on one diameter of the
large disk, represent the several successive positions
of the standard. The eight circular fringe patterns
shown in figure 3 (forming two independent sets,
primed and unprimed) were obtaied by photo-
eraphing the fringe patterns formed by light reflected
normally from the top surface of the large disk and
the standard flat when in the several positions
idicated in figure 2. The differences in values
of the ordinates (Yz— Y _z), obtained from the two
sets of photographs, is a measure of the accuracy
obtainable. These differences are due to errors of
observation and to an error in the choice of the
center point. If the unknown is ground and polished
on a spindle that is not concentric with it, the axis

of rotation of the unknown surface will not be
centered at the chosen origin of coordinates. How-

ever, the average value of Y, and Y_; from the
two sets of data, primed and unprimed, respectively,
will be almost free from the error of centering.

In order to obtain more precise values for Ny,
the following procedure is followed: Reference marks
with their associated PR-values, or abscissas, are
placed on the glass surface along the chosen reference
line. These reference points are indicated by black
dots centered in the small circles shown in figure 2.
The standard is placed i the desired position and the
air wedge adjusted so that a desirable number (5 to
10) of fringes cross the reference line. The present
author prefers to have the fringes approximately
perpendicular to the reference line. Considerable
departure from this, however, is usually tolerated.
The fringe pattern is photographed.” This is
repeated for all desired positions of the standard.
A fine straight line, using aneedle point and a straight
edge, 1s drawn across the photograph through
the nine reference points on it.  The positions of the
centers of the references points are marked by
pricking the photograph with a needle. This is to
permit accurate readings on their positions. If no
distortion is introduced in the photographic repro-
duction, the separation of all adjacent points will be
equal. The intersections of all fringes, both dark
(i. e., integral orders of interference) and light
(integral plus half orders), with the reference line
are marked also by pricking the photograph. The
direction of increasing orders of interference is
ascertained from tests and notations made when the
fringes are photographed. The relative orders of
interference, beginning with 1, are indicated by
inserting numbers on the dark fringes. In figure 3
these numbers appear above each of the fringe
patterns. The lesser visible numbers, adjacent to
the reference points, represent the abscissas (or

3 A micrometer eyepiece may be used to read the data directly and thus dis-
pense with photography.

301746—54——3
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R-values) of the several reference points that were
marked on the unknown surface.

In general, the scale of the photographic reproduc-
tion will differ from that of the chosen abscissa scale.
For interpolation purposes any convenient scale may
be used to measure the relative positions of points
on the photograph. A centimeter scale with milli-
meter marks was used for this compilation. We will
define the scale used as the P-scale and the readings
from it as P-values. The P-values corresponding to
all reference points and fringes are read off the centi-
meter scale and inserted in column 1 of table 1, which
represents a typical data sheet. The corresponding
R-values (numbers associated with the fiduciary ref-
erence points and appearing in the photographs) are
inserted in column 2; the Ag-values, corresponding
to integral and half-integral orders of interference,
are inserted in their respective places in column 3.
If an observed P-value, corresponding to an R-value,
falls precisely on a fringe (reference point centered
on a fringe), two identical P-values are inserted as for
R=—2 and Az=5.5 in the case given here.

The object of this listing and the following compu-
tations is to obtain more precise Agz-values (orders of
interference) than can be obtaimed by direct interpo-
lation or reading from the photographs.

A direct plot of the P-values versus Ag-values
first entered in column 3, table 1 (the blank spaces
to be filled later), shown as small black dots in figure
5, may be made. A smooth curve is then drawn
through these points. The values for A, in column
3, which correspond to R-values in column 2, are
located on the curve. The corresponding ordinates
represent the interpolated Ag-values desired. The
values with asterisks, shown in table 1, are more pre-
cise values obtained by an interpolation process de-
scribed in the following paragraphs.

The values for Az, determined above from the
direct plot, are not as precise as the directly observed
ralues from which the plot was made. More precise

TasLe 1.  Arrangement of data for computation

Values for Ar in column 3 that are followed by an asterisk are interpolated values
rom the curve of figure 5.

P R Ar 07P | (07 P+AR)
0.21 ; —4 8.23* 0.15 8
44 | 8 .31 8.
.93 | 7.5 .65 8.
1.39 7 .97 7.
1. 54 -3 6. 80* 1.08 7.
1.85 ‘ 6.5 1.29 7.
2.40 | 6 1.68 7.
2.94 -2 5.50* 2.06 7.
2. 94 | . 5.5 2.06 7
| 3.54 [ 5 2.48 7.
420 | ____. 4.5 2.94 7.
4.29 | =il 4.42* 3.00 7.4
4.80 [ . 4 3.36 708
5.43 3.5 3.80 T
5. 64 0 3:33* 3.95 7.
| 6.05 | .. 3 4.24 7.24
| 6.85 | 2.5 4.80 7 |
| 7.00 1 2.41* 4.90 7.4 [
| 7.70 | 2 5.39 7.
[ 8.37 2 1. 62* 5.86 i |
8. 60 R 1.5 6.02 7. |
| 9. 67 T 1 6.77 7.71
[ 9.7 3 0. 98* 6.81 7.79% [
| 10. 80 | ——— .5 7.56 8.06 |
| 11.08 4 .39* 7.76 8.15*
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Ficure 5. Direct and residual plot of data for nonlinear
interpolation of fringe orders.

values may be obtained from a residual plot.* To
obtain data for the residual plot, a column of values
(table 1, column 4), computed with a slide rule, is

added to the table of observed quantities. This
column is a product of corresponding P-values and
an appropriately chosen constant. This constant
represents the slope of a straight line that crudely
approximates the plotted points. It is indicated in
figure 5. The approximate slope of this line is 0.7.
A relatively large error in the choice of the slope
contributes little or no error in the final results.
Values of 0.7P are accordingly computed to two
decimal places. The sums of corresponding values
from columns 3 and 4, except where vacancies exist
in column 3, are entered in column 5. These values
are plotted, on an appropriately chosen scale, against
corresponding P-values, and a smooth curve that
best fits the points is drawn in by inspection (residual
plot, fig. 5). One may now locate the points, shown
as circles;, on this curve, whose abscissas are those
observed for the chosen reference points. The cor-
responding ordinates are read off and inserted in the
(0.7P+Ag) column. These values are marked with
an asterisk for distinction. The corresponding
values of 0.7P are subtracted from (Az+0.7P), and
the resultant Az values, shown also with asterisks,
are inserted in the vacant places of the A, column.
These are the desired orders of interference at the
several reference points. Values for Xz(X=B,0,D,

.) are obtained from all photographs in this
manner.

¢ H. M. Goodwin, Elements of the precision of measurements and graphical
methods, p. 60 (McGraw-Hill Book Co., New York, N. Y., 1920).
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Tasre 2. Computation sheet for statistical evaluation of data

The average of corresponding values in columns 3 and 5 represents the most
acceptable results

| R Ar Y& Br Yor

| -4 8.23

| -3 6.80

| -2 5. 50

| -1 4.42 _

\ 0 3.33 8.71 0.00

| +1 2.41 7.13 —.09
2 1.62 5.75 —.27
3 0.98 4.49 —.56
4 .39 3.32 —1.04
I 2.34 —1.58
6 | - 1.49 —2.28
72— 0.77 -3.13 |
S .29 —4.20 |
9 ) —5.39
10 | —6.74
1m | —8.28
12 | - —9.96
13 | —11.86
14 4 —13.93
15 —16.21

In order to determine the shape of the surface
from the fringe readings and their corresponding
abscissas, or R-values, these quantities are now
applied to the formulas of eq (3), (4), and (6). Table
2 is a typical computation sheet. From eq (6) one
computes Y ,=3.33—%(8.23+0.39)=—0.98, and like-
wise for all values of Y5 in the range covered by the
standard in position A (column 3 of table 2). In
order to proceed to the evaluation of Y for other
values of R, eq (3) and (4) are used. Values for By,
found in the same manner as described previously
for Ag, are inserted in column 4, table 2. This per-
mits a summation to be made of all terms shown in
eq (3) and (4) and consequently an evaluation of
My and B;. As the number of reference points
covered by the standard in each of the two positions,
A and B, is odd (i. e., from B=0 through =4, or
5 points), they are each assumed to represent 2
observations, making the total number of observa-
tions 10, which may now be divided into 2 equal
gloups With this in view, it will be seen that

ZR 2X04+2X1+1X2=4, all

%ummatlons shown in eq (3) and (4). The resultant
values for My and B, are, respectively, —1.580 and
+8.67. Slide-rule computation is adequate except
for final precision. In general, the computed para-
meter B, will differ slightly from the observed value
found in table 2. On substituting these values for
My and Xj in eq (1), and using values for R and Fj
in columns 1 and 4, values for }; may be computed
from R=5 through These operations are now
repeated, using consecutively the ' and D data, to
compute additional values for Y to the edge of the
surface. These values are inserted in column 3,
table 2. A similar treatment of the primed data
vields an independent set of value for Y _, shown in
column 5, table 2, which should agree approximately
with the above set. An average of Y, and Y _j
values for each value of R is the accepted value.
This averaging operation tends to decrease the effects
of error in choice of the axis of rotation of the un-
known surface as well as observational errors.

and likewise for

WasHiNaron, December 3, 1953,
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