Eigenvectors of Matrix Polynomials

Murray Mannos

It is the object of this paper to compare the eigenvectors of an arbitrary \(n \times n \) matrix \(A \) over the complex field with those of the matrix polynomial \(f(A) \). While it is well known that each eigenvector of \(A \) is an eigenvector of \(f(A) \), it is not, in general, true that \(A \) and \(f(A) \) have identical eigenvectors. In this regard a necessary and sufficient condition that \(A \) and \(f(A) \) have identical eigenvectors is given. The condition is that both (1) and (2) hold:

1. \(f'(\lambda) \neq 0 \) for all eigenvalues \(\lambda \) of the matrix \(A \) corresponding to nonlinear elementary divisors.
2. The values of \(f(\mu) \) are distinct for all eigenvalues \(\mu \) of the matrix \(A \) corresponding to linear elementary divisors.

When either (1) or (2) fails to hold, then \(f(A) \) has eigenvectors that are not eigenvectors of \(A \). This situation is also discussed.

The vector space of eigenvectors of the matrix \(A \) corresponding to the eigenvalue \(\lambda \) shall be denoted by \(V_\lambda[A] \). The vector space spanned by the eigenvectors of \(A \) shall be denoted by \(V[A] \). Further, \(d\{V_\lambda[A]\} \) and \(d\{V[A]\} \) shall denote their dimensions. It is clear that each eigenvector of \(A \) is an eigenvector of \(f(A) \). That is, \(V_\lambda[A] \subseteq V_{f(\lambda)}[f(A)] \) for each eigenvalue \(\lambda \) of \(A \). Thus \(V[A] \subseteq V[f(A)] \).

Let \(J \) be the Jordan canonical form of \(A \). Then there exists a nonsingular matrix \(P \) such that \(P^{-1}AP = J \) and so \(P^{-1}f(A)P = f(J) \).

Lemma 1. The eigenvectors of \(A \) and \(f(A) \) are identical if, and only if, the eigenvectors of \(J \) and \(f(J) \) are identical.

Proof. This follows from the fact that \(P\xi \) is an eigenvector of \(PBP^{-1} \) if \(\xi \) is an eigenvector of the matrix \(B \).

Since \(d\{V_\lambda[J]\} = V_\lambda[A] \), it follows that \(d\{V[J]\} - d\{V[A]\} = d\{V[f(J)]\} - d\{V[J]\} \), where \(P\{V[J]\} \) denotes the space of all vectors \(P\xi \), where \(\xi \) is an eigenvector of \(J \) corresponding to \(\lambda \).

Lemma 2. If \(D = \text{diag} \{ \alpha, \beta, \ldots, \beta; \ldots, \pi, \pi, \ldots, \pi \} \), where \(\alpha, \beta, \ldots, \pi \) are distinct, then \(V[D] \equiv V[f(D)] \). Furthermore, the eigenvectors of \(D \) are identical with those of \(f(D) \) if, and only if, \(f(\alpha), f(\beta), \ldots, f(\pi) \) are all distinct.

Proof. If \(D \) is of order \(n \), it is clear that both the eigenvectors of \(D \) and \(f(D) \) each generate the whole \(n \)-dimensional vector space. If \(f(\alpha) = f(\beta) \), then it is easily seen that \(f(D) \) has eigenvectors corresponding to the eigenvalue \(f(\alpha) = f(\beta) \), which are not eigenvectors of \(D \).

Lemma 3. If \(f'(\lambda) \neq 0 \) for all \(\lambda \) in the upper right-hand corner of the matrix. Then the nullity of \(f(J_m(\lambda)) - f(\lambda)I \) is \(m - (r + 1) \), as may be observed by noting the nonzero minor of order \(m - (r + 1) \) in the upper right-hand corner of the matrix. Thus the nullity of \(f(J_m(\lambda)) - f(\lambda)I \) is \(r + 1 \). If the first \(m \)-derivatives of \(f(\lambda) \) vanish at \(\lambda = \lambda_0 \), then the nullity of \(f(J_m(\lambda)) - f(\lambda)I \) is \(m \). In a similar fashion one finds that the matrix \(J_m(\lambda) - M \) has nullity equal to 1. This establishes the lemma.

Corollary. The matrices \(J_m(\lambda) \) and \(f(J_m(\lambda)) \) have identical eigenvectors if, and only if, \(f'(\lambda) \neq 0 \).

It is to be noted that in this case \(V_{f(\lambda)}[f(J_m(\lambda))] = \)

\[
\begin{bmatrix}
 f(\lambda) & f'(\lambda) & f''(\lambda) & \cdots & f^{(m-1)}(\lambda) \\
 0 & f(\lambda) & f'(\lambda) & \cdots & f^{(m-2)}(\lambda) \\
 0 & 0 & f(\lambda) & \cdots & f^{(m-3)}(\lambda) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & f(\lambda) \\
 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

Proofs of the lemma may be found in Wedderburn and MacDuffee.3

Lemma 4. If \(f'(\lambda) = f''(\lambda) = \cdots = f^{(r)}(\lambda) = 0 \) and \(f^{(r+1)}(\lambda) \neq 0 \) \(r=1,2, \ldots, m-2 \), then
\[
d\{V_{f(\lambda)}[f(J_m(\lambda))]\} - d\{V_\lambda[J_m(\lambda)]\} = r,
\]
and conversely. Also,
\[
d\{V_{f(\lambda)}[f(J_m(\lambda))]\} - d\{V_\lambda[J_m(\lambda)]\} = m-1
\]
if, and only if, \(f' \neq f'' \neq \cdots \neq f^{(r)} \neq 0 \), but \(f^{(r+1)} \neq 0 \), it follows that the rank of the matrix \(f(J_m(\lambda)) - f(\lambda)I \) is \(m - (r + 1) \), as may be observed by noting the nonzero minor of order \(m - (r + 1) \) in the upper right-hand corner of the matrix. Thus the nullity of \(f(J_m(\lambda)) - f(\lambda)I \) is \(r + 1 \). If the first \(m \)-derivatives of \(f(x) \) vanish at \(x = \lambda \), then the nullity of \(f(J_m(\lambda)) - f(\lambda)I \) is \(m \). In a similar fashion one finds that the matrix \(J_m(\lambda) - M \) has nullity equal to 1. This establishes the lemma.

1. Preparation of this paper was sponsored (in part) by the Office of Scientific Research, US.A.F.
and $V_α[J_α(λ)]$ are each spanned by the single column vector $[1, 0, \ldots, 0]^T$.

At this point it will be convenient to introduce the language of elementary divisors. Each block in the Jordan canonical form of a matrix A corresponds to an elementary divisor $(x-λ)^m$, and conversely. Each such block is called the hypercompanion matrix $J_α(λ)$ of the polynomial $(x-λ)^m$.

Suppose the nonlinear elementary divisors of the matrix A corresponding to the eigenvalue $λ$ are of the form $(x-λ)^{n_1}, (x-λ)^{n_2}, \ldots, (x-λ)^{n_k}$, where n_1, n_2, \ldots, n_k are integers such that $n_1 > n_2 > \ldots > n_k > 1$. Furthermore, suppose that $(x-λ)^{n_1}$ appears as an elementary divisor n_1 times. Let $p_λ = \frac{n_1}{\prod n_k}$ denote the total number of nonlinear elementary divisors of A corresponding to the eigenvalue $λ$. Denote by $n_λ$ the number of linear elementary divisors of A corresponding to the eigenvalue $λ$. Further, denote by $K_λ$ the direct sum of the hypercompanion matrices of the elementary divisors corresponding to $λ$. Set

$$d_λ = d\{V(f(λ)[J])\} - d\{V_α[K_λ]\}.$$

Lemma 5. If the first $m^{(i)} - 1$ derivatives of $f(x)$ vanish at $x = λ$, then $d_λ = \frac{n_k}{\prod n_k}(m^{(i)} - 1)$; whereas, if the first $r < m^{(i)} - 1$ derivatives of $f(x)$ vanish at $x = λ$, but $f^{r+1}(λ) \neq 0$, then

$$d_λ = \frac{n_k}{\prod n_k} r + \frac{n_k}{\prod n_k} (m^{(i)} - 1),$$

where $m^{(i)}$ is the largest of the integers $m^{(i)}_i (i = 1, 2, \ldots, k)$ such that $m^{(i)}_i \leq r$.

Proof. This follows from lemma 4, the fact that the nullity of $K_λ - λI$ is the sum of the nullities of the characteristic matrices of the hypercompanion matrices of the individual elementary divisors corresponding to the eigenvalue $λ$ and a similar statement about the nullity of $f(λ) - f(λ)I$.

Corollary. The matrices $K_λ$ and $f(λ)$ have identical eigenvectors if, and only if, $f'(λ) \neq 0$.

Proof. This follows from the fact that $d_λ = 0$.

The Jordan canonical form $J = \text{diag} [K₀, K₁, \ldots, K_s]$ of A is a direct sum of matrices $K_λ$, where $λ = α, β, \ldots$ runs through the distinct eigenvalues of A. The subsequent theorems of this paper involve the following main conditions:

Condition 1. $f'(λ) \neq 0$ for all eigenvalues $λ$ of the matrix A corresponding to nonlinear elementary divisors.

Condition 2. The values $f(µ)$ are distinct for all eigenvalues $µ$ of the matrix A corresponding to linear elementary divisors.

The first theorem concerns the case when condition 1 does not hold, whether condition 2 holds or not.

Theorem 1. If condition 1 does not hold, then

$$d\{V_α[A]\} - d\{V[A]\} = \sum_λ d_λ,$$

where $λ$ varies through all distinct eigenvalues of A corresponding to nonlinear elementary divisors, and $d_λ$ is computed as in lemma 5.

Proof. One notes first that

$$V[A] = V_α[A] + V_β[A] + \ldots + V_ρ[A],$$

and

$$V[f(λ)] = V_α[f(λ)] + V_β[f(λ)] + \ldots + V_ρ[f(λ)].$$

If $f(α), f(β), \ldots, f(ρ)$ are distinct, for a fixed eigenvalue $λ$, the nullity of $J - λI$ is the same as the nullity of $K_λ - λI$, and the nullity of $f(λ) - f(λ)I$ is the same as the nullity of $f(λ) - f(λ)I$. It follows that

$$d\{V_α[f(λ)]\} - d\{V_β[A]\} = d_λ.$$

Summing over distinct eigenvalues, one obtains

$$d\{V[f(λ)]\} - d\{V[A]\} = \sum_λ d_λ.$$

By the statement following the proof of lemma 1 it follows that

$$d\{V[f(λ)]\} - d\{V[A]\} = \sum_λ d_λ.$$

If $f(α) = f(β) = \ldots = f(ρ)$, then the nullity of $f(λ) - f(α)I$ minus the sum of the nullities of $J - αI$, $J - βI$, \ldots, and $J - ρI$ is $d_α + d_β + \ldots + d_ρ + d_λ$ and

$$d\{V_α[f(λ)]\} - d\{V_α[A]\} - d\{V_β[A]\} - \ldots - d\{V_ρ[A]\} = d_α + d_β + \ldots + d_ρ.$$
where \(p_\lambda + n_\lambda \) is the total number of elementary divisors (nonlinear and linear) corresponding to \(\lambda \).

Finally, the next result covers the case in which conditions 1 and 2 both hold.

Theorem 3. The matrices \(A \) and \(f(A) \) have identical eigenvectors if, and only if (1) \(f'(\lambda) \neq 0 \) for all eigenvalues \(\lambda \) of the matrix \(A \) corresponding to nonlinear elementary divisors, and (2) the values \(f(\mu) \) are distinct for all eigenvalues \(\mu \) of the matrix \(A \) corresponding to linear elementary divisors.

Remark 1. It may readily be seen that \(V[J] \) and \(V[f(J)] \) each can be generated by a set of linearly independent vectors, each of which has a 1 in a single component and 0 in all the remaining components. Thus if \(J = P^{-1}AP \) is the Jordan canonical form of \(A \), then \(V[f(A)] \) can be generated by a subset of the column vectors of \(P \).

Remark 2. A simple application of the foregoing theory shows that if \(A \) is a 2\times2 matrix, then \(A \) and \(f(A) \) have the same eigenvectors unless either (1) \(A \) is diagonalizable and has distinct eigenvalues \(\alpha, \beta \) for which \(f(\alpha) = f(\beta) \), or (2) \(A \) is nondiagonalizable and \(f(x) = k(x)(x-\alpha)^2 + c \), where \(\alpha \) is the eigenvalue of \(A \), \(k(\lambda) \) is an arbitrary polynomial, and \(c \) is an arbitrary constant.

The following example is given as an illustration:

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1 & -1 & -2 & -1 \\
1 & 0 & 1 & 1 & 0 & -1 & 0
\end{bmatrix}
\]

and \(f(x) = x^6 + x^5 - x^4 - x^3 + 2 \).

For \(P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix} \)

it may be verified that

\[
P^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1
\end{bmatrix}
\]

and that the Jordan canonical form of \(A \) is

\[
J = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1
\end{bmatrix}
\]

where

\[
\begin{align*}
K_1 &= J_1(1) = [1], \\
K_2 &= \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}, \\
K_3 &= \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}, \\
K_4 &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
\end{align*}
\]

it follows that

\[
\begin{align*}
f(0) &= f(1) = f(-1) = 2, \\
f'(0) &= f'(-1) = 0, \\
f''(0) &= f''(-1) = 0
\end{align*}
\]

It is readily seen that \(V[J] \) is generated by \([1,0,0,0,0,0,0]^T \), \(V_0[J] \) is generated by \([1,0,0,0,0,0,0]^T \) and \([0,0,0,0,0,0,0]^T \), and \(V_{-1}[J] \) is generated by \([0,0,0,0,0,1,0]^T \). Since \(V[J] = V[J] + V_0[J] + V_{-1}[J] \), it follows that \(d(V[J]) = 4 \). Since \(f[J] \) is a scalar matrix, \(d(V[f(J)]) = 7 \). Hence \(d(V[A]) = 3 \). The same result is arrived at by the use of theorem 1, where \(\sum d_\lambda \) is calculated as in lemma 5. Since \(f'(0) = 0, f''(0) = 0, \) and \(f'(-1) = 0, \) where 0, -1 are the eigenvalues corresponding to nonlinear elementary divisors, it follows that

\[
d_0 = n_0^{(2)} + n_0^{(3)} = 1.2 = 2
\]

and

\[
d_{-1} = n_{-1}^{(2)} + n_{-1}^{(3)} = 1.1 = 1
\]

35
and
\[\sum_{\lambda} d_{\lambda} = d_0 + d_{-1} = 2 + 1 = 3, \]
as before. By the corollary following theorem 2,
\[d(V_2[f(A)]) - d(V_1[A]) = d_0 + d_{-1} + p_0 + p_{-1} + n_0 + n_{-1} \]
\[= 2 + 1 + 1 + 1 + 0 = 6, \]
which checks with the observed results above.

From a glance at the above eigenvectors generating $V[J]$, it is clear that $V[A]$ is generated by the first, second, fifth, and sixth-column vectors of P. Since $f(A)$ is a scalar, $V[f(A)]$ is generated by all seven column vectors of P.

The author thanks A. H. Clifford, O. Taussky, and N. Wiegmann for their helpful suggestions.

WASHINGTON, December 1, 1952.