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Transformations to Speed the Convergence of Series'

]. Barkley Rosser ®

Numerical instances are given of the speeding of the convergence of series by the Euler

transformation.
rigorous justification is given.
transformation is not useful.

This is even applied advantageously to certain divergent series, and a
An example is given of a series for which use of the Euler
Instances are given of several less widely known methods.

Finally, the method of summation by transformation into a continued fraction is illustrated

successfully in the case of certain divergent series.

The possibility of applying two different

methods in succession to a given series is exploited throughout the paper, in spite of the fact
that this often requires summing a divergent series.

A remarkably useful such transformation is based
on a formula due to Euler:
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We shall refer to this as Euler’s transformation.
A purely formal derivation of this is as follows.
Recalling that
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A rigorous derivation of eq 1 is given in [1]? pp.
62-66. It is there stated that if the a’s are all
positive, then the right-hand side of eq 1 converges
for every negative value of z for which the left-hand
side converges. That this is not necessarily true
for positive z is easily seen by taking =1 and
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Actually, it is clear that the right side of eq 1 is
not likely to be an improvement over the left side
unless z is negative and the a’s are positive. In
other words, the Euler Transformation might be
expected to speed convergence only in the case of
alternating series. However, for alternating series,
the Euler Transformation is usually very helpful.

The Euler Transformation is a special case of a
more general transformation given by Markoff (see
[9], pp. 178-194). However, we confine our atten-
tion to the simpler Euler Transformation.

An

1 The preparation of this paper was sponsored (in part) by the Office of Naval
Research.

2 Help in carrying out the computations was furnished by Nancy Mann and
Shirley Marks under the direction of Gertrude Blanch.

3 Figures in brackets indicate the literature references at the end of this paper.
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Applications of the Euler Transformation with
z=1 give
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One recognizes the right side of eq 2 as the expan-
sion of —log (1—1/2).

An interesting variation of the Euler Transforma-
tion is obtained as follows.
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Also (see table 1), the termsinside the curly brackets
add up to 0.11724 674, and we get

log 2=0.63452381 +% (011724 674)=0.69314718.



TABLE 1.

=0.11111111
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0.11724 674

A more accurate value is log 2=0.69314 71806.

One of the great advantages of the Euler trans-
formation is that it can easily be used for numerical
computations even in cases where one has only
numerical values of the coefficients to work with;
indeed, the computations are very direct even in
such cases, because only a simple differencing opera-
tion is called for.

A rather sensational use of the Euler transforma-

tion is in connection with asymptotic series. We
give an instance.
We have for y >0
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If the series within the square brackets were con-
tinued indefinitely, it would diverge strongly. Thus
it does not appear that the Euler transformation is
applicable in the present case. However, let us pro-
ceed formally to try to compute

— 524 (—5)
by use of the series alone. We get
b 6
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We have stopped just before the least term 24/625
and if we add up the four terms shown the error is
less than the next term. That is, we get 0.83200
with an error less than 0.03840. Comparing with
a more accurate value, 0.85211, we see that our
error is indeed less than 0.03840.

Formally, we have neglected the terms

e alel
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and properly so, since they begin to diverge rapidly.
Nevertheless, let us now try to sum them by use of

the Euler transformation, taking z=—1,
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etc.

We readily form the differences of the a’s numeri-
cally (see the appendix for some tricks for shortening
the computation) and get
,=0.03840 00000
Aay==0.00000 00000
Aa,=:0.00768 00000
A%a,=0.00307 20000
Ata,=0.00645 12000
A%a,=0.00761 85600
A%ay=0.01406 97600
A%a,=0.02602 59840
A%ay,=0.05613 40416
A%ay,=0.13145 60410
Allq,=0.33766 21486
Alay=0.93823 63791
Al%q,==2.80697 67610
A, =8.98851 15364

Alay=30.66826 95734

AYq,=111.03898 71074
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So the Euler transformation, if applied formally,
gives the series

1071°{1920 00000496 00000—19 20000420 16000
—11 90400+10 99200—10 16640+ 10 96368
—12 83750416 48741 —22 9061634 26485
—54 8615293 59213 —169 432054 - -}

This is actually a divergent series, and the last
terms listed are already increasing. Nevertheless we
treat it like an asymptotic series, and add up all
terms preceding the one that is numerlca,lly least.
This gives 0.02016 04800. Adding this to the
0.83200 that we had already, we get 0.85216 04800,
which compares favorably with the more accurate
value 0.85211.

We neglected the terms

—1071{10 16640— 10 96368+ 12 83750— 16 48741
+22 90616 —34 2648554 86152—93 59213
4.169'43205-~- - -]

We now apply the Euler transformation to these
terms, taking 2=—1, and ¢,=10 16640, a,= 1096368,
. This gives

—107%{5 08320— 19932413457 —4372+916— 1383
+50—

This adds up to —0.00004 96486 if we stop before
the least term. Adding this to our previous value
gives 0.85211 08314, which compares very favorably
with the more accurate value, 0.85211 08814.

The agreement with the more accurate value is
experimental evidence that use of the Euler transfor-
mation is justifiable even in the present case where
the series diverges. Actually, we can justify use of
the Euler transformation rigorously for the present
series. Looking at eq 4, we see that the remainder
can be written
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If we put N=3 and y=35, we easily verify that
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We then see that all differences of a, of even order
are positive, and that if we stop with a term involving
a difference of odd order, the error involved is less
than the next term (which involves a positive differ-
ence of even order).

To justify a second application of the Euler trans-
formation, we modify the remainder term given
above as follows:
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We can apply the Euler transformation to other
asymtotic series with equal success. For instance

we have
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we can justify applying the Euler transformation to ‘ We find

the asymptotic series

z+

e

We applied the Euler transformation to this series
with w=6 to compute a 20 decimal value of

12e3“J e—2dz,
6

which was then checked by a different means of
computation (see [3], p. 86).

We can use the Euler transformation to derive
Airey’s “Converging Factor” (see [2]). In those
cases (as above) in which we can justify using the
Euler transformation on an asymptotic series, we
are then afforded a means of justifying the use of
Airey’s “Converging Factor.”

To see how this is done, let us write.
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Airey refers to the series in the curly brackets as
the “Converging Factor” and gives a purely formal
device for estimating a value of it (Airey’s estimate
is justified in [12]). We will now show how to derive
Airey’s formulas by use of the Euler transformation,
which we have already shown to be justified for the
present series. We write

y:;;w v=N-+Hh.
Then the “Converging Factor” takes the form
SETE
We now apply the Euler transformation with

x:_37
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ete.
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So use of the Euler transformation gives us
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If we rearrange this in powers of 1/» (such a rear-
rangement needs justification), we find that it is
identical with the formula on p. 526 of [2].

If we choose v=
“Converging Factor’

2

with. O;=1, C;=—1, Cy=—1, 0,=13, etc..  The
values of the first 22 (’s are given on p. 529 of [2].
Using the first 17 of these with N=5 we get the
following series for the “Converging Factor”:

N, y=N, so that k=0, g=1, the
" reduces to

1+3>3 ()

n=1

4N)">

_;, 10~2{1 00000 60000 0000045000 00000 00000

—250 00000 00000— 12 50000 0000048 1250000000
—1 46875 00000— 11406 2500019117 18750
—6566 79688 —2303 73047 41686 04590 —927 48286
+26 805851364 18569 —-295 5389641 19945

4154 50012—177 02724+ . . . }.

This series is probably divergent if carried far
enough, but we sum it as if it were an asymptotic
series and stop just before the least term shown.
This gives the value0.52372086.  Airey gets0.52372087
(see [2] p. 529), but the difference of 1 unit in the
last place is likely due to differences in rounding pro-
cedure. This should be multiplied by 0.0384 and
added to 0.832, which gives 0.85211 08810 as com-
pared with the more accurate value 0.85211 08814.

In [2], Airey applies the “Converging Factor’ to
various asymptotic series without rigorous justifica-



tion, but with great numerical success. By deriving
the “Converging Factor” by means of the Euler trans-
formation, one could justify its use in some of the
cases given in [2], though there would still remain
the problem of justifying various rearrangements
made by Airey of the seriesin the ‘“Converging Fac-
tor.” Some of these can be justified by the pro-
cedure in [12].

Although we have seen that the Euler transforma-
tion can be applied in some rather remarkable situa-
tions, nevertheless there are cases where it cannot
be applied. In particular, for nonalternating series
(for imnstance, when z and the a’s are all positive in
(1)), it 1s of almost no use. However even for alter-
nating series it occasionally fails, and we will now
give an alternating series for which it is of no value

whatever.
f L dz
0 1 + i

Let us expand
by the Euler-Maclaurin sum formula (see [4], p. 128)
using an interval of length unity. We first need the
values of the derivatives of

f AL
1-+a2?

of odd order evaluated at 0 and 1.

At 0, the deriva-
tives of odd order are zero.

To get the values at 1

we write
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Putting =1 and recalling

we get
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Substituting in the formula

J‘lF(x)dx—g F(0) + F(1)
0 &

+35 ER T (pen-s()—Fenb0)} +Ra,
(see [4], p. 128, with w=1,7r=1) we get
Jieam-E G i P
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Sl
This is certainly an alternating series. However,

the partial sums do not lie alternately above and
below the true value. In table 2 we have given the
terms of the series with the partial sums to the right.
If we try to improve the value by use of the Euler
transformation, we get 107°(79117+{12—104-61—

758+ - -}), which is certainly no better.
TABLE 2.
Series I Partial sums |
0. 75000 0. 75000
+-4167 . 79167
—50 79117
+2 .79141
—65 . 79076
-+596 . 79672
—0. 13743 . 65929
-+6. 69282 7.35211

True value_____0. 7854 \

As indicated, the Euler transformation is valueless
for speeding convergence of a nonalternating series.
Occasionally one can use a trick to transform a non-
alternating series to an alternating series. Thus the
formula

© © 1 1)n+1
IR TR DI AL
n=
enables us to get a value for
0 |
o) -—
n}:{ n*

by (indirect) use of the Euler transformation. How-
ever, in general such tricks are not available.

For tunately the Euler-Maclaurin sum formula is of
great value for summing many nonalternating series.
For instance, by use of the Euler-MacLaurin sum

formula (see [4], p. 128) we prove that for m>1, s>1,

60



05 k] U R B
D3 ey e b e e
B, Begbl) s S (A Br =201 B,
P (2r)! mts—1

The series on the right is divergent, but it is an
asymptotic series, and by taking m large compared to
s, considerable accuracy can be obtained, which can
be further increased by applying the Kuler trans-
formation to the asymptotic series. Thus, consider
the case where s=2. We have the well known result

12
i 1.64493 40668.

Even with m as small as 2 we get
5
135168

43867

T 4183 81804

RETNLY

48 960

1
196608 668 46720
854513 -
11576 27904

L £
5376 15360
3617

1Em N,
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691

223 64160

174611
6920 60160

This is divergent, but if we sum all terms before
the least, which is

691

223 64160’

we get 1.64495 as compared to the more accurate
value 1.64493. If we now apply the Euler trans-
formation to the terms neglected, we get the series

—1071°{1 54488 —11765-+17249—11523
+14389—20493+ ... }.

Doubtless this diverges, but if we sum all terms
before the least, we get 1.64493 36 as compared with
the more accurate value 1.64493 41.  Another use of
the Euler transformation on the terms neglected
above gives further improvement.

In [5], Bickley and Miller give a method for deal-
ing with series Za, i which
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In those cases in which a, is a differentiable func-
tion of n, one can treat such series by the Euler-
Maclaurin sum formula, and usually one gets the
same approximation as would be given by the
Bickley-Miller method.

In the Bickley-Miller method, one writes
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Then one tries to determine constants «_;, ap, ay,
so that

a
m?

S—‘Sm:am {a—lm+a0+al

m

3 g } (7)
In general, this is impossible, since the series
(63
a—1m+ao+ﬁ+ {yrs

will be divergent for each m. However, usually this
series is an asymptotic series, so that for large m
great accuracy is attainable.

To determine the o’s, we proceed formally as
follows. By eq 7,

S—Sm_lzamﬁl a_l(ln—1)+ao+ﬁ7

+
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Subtracting eq 7 from this gives
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However, by eq 6,

am:am_1< ST )

Substituting this and factoring out a,, _, and dividing
by m gives
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1 p
and equate powers of 5 We can determine the o’s.

Indeed we have
a (A4 —1)=1,
(+1)A1=a_,A,,
a(A+1)=(a+ 1) Ayt a1 4,
ete.

(Note error in sign in formula (12¢) on p. 757 of [5]).
If we apply the Bickley-Miller method to the series



we get the same expansion that is given by the Euler-
Maclaurin sum formula (see above). Bickley and
Miller do not apply their method to any series of
interest that cannot be handled by the Euler-Mac-
laurin sum formula, but they indicate how such series
might arise. Bickley and Miller do not give a rigor-
ous justification of their method, but Szdsz (in [10])
has discussed the conditions under which one can use
at least the term a_,m in eq 7 for a first approxima-
tion to S. It would be very helpful to have a general
treatment of the conditions under which the Bickley-
Miller method can be used.

In [7] and [8], Stieltjes gives some interesting ways
for estimating the error in certain well known
asymptotic series. However, his methods are rather
special, and can hardly be applied to series at random.

We turn now to what is perhaps the most widely
applicable method that we know. This is the
method of transforming the series into a continued
fraction.

Let us return to the example given above in which
we got an approximation for

2ol
1; n*
by the Euler-Maclaurin sum formula. We had a
divergent series, of which we neglected all terms
beginning with the least. Let us now try to find a
sum for these neglected terms by transforming them
mto a continued fraction. To write them as a
continued fraction, we first consider the series

ERE e _L+_ 8BTS

" 1223 64160z 1 96608 z3 ' 668 46720 z°
43867 gﬂ+ 1avdgae 1
T 4183 81824 z7 ' 6920 60160 2°

L8 BB e
11576 27904 z!!

Transforming this into a continued fraction by the
procedure given on pp. 196 to 202 of [6] we get

Qo0 g 4o

AR S B
with the coefficients

@,=0.0000 30897 65053

a;=1.1523 15485

a,=0.3674 32414

a;=1.7288 91714

a;=0.8615 52894

as=2.4273 31997.
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(Our a’s after a, are taken to be the negatives of those
defined in [6]. Due to a gradual loss of significant
figures, the final digits of our @’s are increasingly
inaccurate.)

We then put z=1, and use the resulting continued
fraction to compute an estimate for our remainder
(which, by subtraction from the known sum of the
series should come out to be —0.00001 54985). The
successive convergents are:

—0.00003 08977
—0.00001 43555
—0.00001 67677
—0.00001 53294
—0.00001 57006
—0.00001 54620.

We note the characteristic continued fraction be-
havior of the convergents in that they are successively
above and below the true value, and monotonely
approach the true value from above and below.
Already the sixth convergent gives a value correct
within less than 4 in the eighth decimal place, and it
seems very plausible to conjecture that later converg-
ents will continue to come ever closer, in spite of the
fact that it is a divergent series that we are trans-
forming into a continued fraction. This is a not
uncommon phenomenon with continued fractions; in
fact this is the basis of the Stieltjes method for sum-
ming asymptotic series. In [6] on pp. 349 to 361, p.
365, p. 367, and pp. 372 to 373 are given many
examples of convergent continued fractions, which
are the formal equivalents of divergent asymptotic
series, including some that resemble very closely the
series with which we are dealing.

Note that we used only odd powers of zin our series

{ 691 1
223 64160 2 "'}

This has the effect of greatly reducing the labor of
finding the corresponding continued fraction (in the
notation of pp. 196 to 202 of [6], all the b’s will be
7Zer0).

For an additional instance of the use of continued
fractions, let us recall the series for the “Converging
Factor” which we had earlier. We used all terms
preceding the least, leaving several terms unused.
Let us now try to attach a value to these unused
terms by transforming them to a continued fraction.
To avoid difficulties with the continued fraction
expansion, we start with the term after the least.
We formally transform the series

l _15{ 364 18569_295 53896 41 19945
2 10 2 29 Rk 25
154 50012 177 02724
g = i - AR }



into a continued fraction
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getting

a,=0.00000 00182 09284

a;= 0.81150 624

a,=—0.67210 178

az= 0.80673 455

a,= 0.02419 193.

Because one of the a’s is negative, we no longer get
the familiar performance of the convergents. Never-
theless, they are apparently converging to the true
value 0.00000 00078 69 since they are

0.00000 00182 09
0.00000 00100 52
0.00000 00052 40
0.00000 00079 44
0.00000 00079 16

respectively. Using the last, we get a value of
0.85211 08814 25 for —5e°[i(—5) as compared with
the more accurate value 0.85211 08814 237.

One other remarkable use of continued fractions
is given in [11], where the asymptotic series
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is converted into the continued fraction

1 2 4 6 8

2w —2w—2w—2w—2w—
This continued fraction was used to compute por-
tions of a table (see Section 26 of [11]) in spite of the
fact that the continued fraction is likely divergent
due to the fact that occasional convergents will have
extremely small denominators. However, as shown
by the estimates in Section 8 of [11], whenever we
have a convergent with a large denominator, this
convergent is a close approximation to the value of
the function.

In closing, we might remark that some of the
transformations studied in theories of summability
are occasionally useful to speed convergence. Thus
the use of Riesz sums,

2 MuSu

__m=1

where the \,, are increasing positive numbers, is
sometimes helpful in estimating the sum of an alter-
nating series of which §,, are the partial sums.

Appendix. Methods of shortening the
computation of A™a,.

In an earlier draft of this appendix, we set forth a
scheme for shortening the computation of A™a,.
Upon reading this earlier draft, Prof. J. C. P. Miller
proposed the following very ingenious scheme for
computing A™a,.

In the text, we put

24
g

I BR’
i 120
13128
Lo TR
2715625
ete.

and wished to compute A™a,. To do this more

quickly, we write

N—1)!
apy :(_7]\'7)'&;] Oy

where N=5 and

(X()—l!
C(l:l}

1
a2=1+N;

()43
()0
C

etc.

Then
(N—1)!

m
—— A"q,,.

m et
A (I’Ili(__ /\(Y)A\«'—l
So we seek a formula for A”«,.

Actual subtraction gives

n
Aa,, :ﬁ Ap.
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Then we prove by induction on m that
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m
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Putting n=0 gives

Am+1a0=%(Amao+Am-lao). (A)
Then
Am+la0:% (Amao'}"Am—lao).

Recalling that it is actually

A™a,
2m-|—1

that we seek, we write the simple recursion

L <2 A(m_la‘)).
4N 2

Using this, we readily compute numerical values of
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9m+2 TR
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2m+1

_|_
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In our earlier scheme, we had expressed A™ «, as
a polynomial in (1/N), and listed the following re-
sults (which can easily be verified by use of eq A):
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