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An example of numerical integration is given that shows very systematic effects in the

less significant digits.

This lack of randomness gives rounding-off errors that exceed the

predicted standard deviation by a factor of three.

The example considered in this paper shows that systematic rounding-off errors can

occur in numerical integration, irrespective of the number of digits kept in the contribu-

tions to the integral.

In the appendix this phenomenon is examined, and criteria are set

up to detect the cases in which it may arise to a serious extent.

I. Introduction

The use of numerical methods has led to the
study of the accumulation of errors in computa-
tions by various people.! In this paper we apply
formulas developed by Rademacher to the errors
involved in the integration of simultaneous linear
differential equations. The system chosen for
this application is

' ()=y(t),
Y (O=—2().

The results of integrating these equations were
easily checked by comparison with the sine and
cosine tables published by the National Bureau of
Standards.?

The errors involved in the numerical integration
of these equations arise from two sources. One,
called the truncation error, arises from replacing
the differential equations by difference equations;
the other; a round-off error, comes from the
rounding-off procedure used in the computation.
Formulas developed by Rademacher account for

1 F. Schlesinger, Astron. J. 30, 183 (1917); D. Brouwer, Astron. J. 46, 149
(1937); H. Rademacher, On the accumulation of errors in processes of inte-
gration on high-speed caleulating machines, Proceedings of a Symposium
on Large-Scale Digital Calculating Machinery (Harvard University Press,
Cambridge, Mass., 1948).

2 Tables of sines and cosines for radian arguments (National Bureau of
Standards, 1940) M'T4; Tables of Circular and Hyperbolic sines and cosines
for radian arguments (National Bureau of Standards, 1939) MT3.
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the truncation error. The rounding-oft error can
be estimated in a statistical manner, provided the
dropped digits are randomly distributed. Rade-
macher suggests that this random property is
satisfied provided the inerements involved in the
integration are not too small. We shall exhibit
an integration where this assumption is satisfied,
but the dropped digits vary from zero to four and
back to zero over a range involving nearly three
hundred steps in the integration. This causes the
error to increase by a factor of twenty and to
become almost three times the standard deviation
as given by Rademacher’s formulas.

In certain other runs the error exceeds the pre-
dicted standard deviation by a small factor. In
two of these cases results were tabulated every
five or ten steps in the integration and a frequency
count of the digits taken. Standard statistical
tests indicate that these numbers did not consist
of randomly distributed digits.

These results show that one must be very careful
in applying error estimates based on an assump-
tion of randomness. To be safe it is best to use
the estimates for the maximum rounding-off error.

1. Rademacher Theory
(a) Heun Method

We now indicate the method of solution studied
by Rademacher and give the formulas developed
by him. He starts with the system.
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' () =f(x,y)
(1)

Y () =g(x,y)

and the solution is to be found for an interval
to=t=7T by application of the Heun method.
That is, having found x,_, and y,_, as approxima-
tions to the solutions at #;,_,=t,+ (7—1) (Af), the
following formulas give x; and ;.

=21+ Atf (2o 1,Y-1)
. (2)
Yi=Y 1t AL-g(@;_1,51)
Z; _11—1+ [f(l'] lyyj 1+f( er)]
3)
=1 1+ [g(:rj 1Y) +9@5Y7)]

(b) Definitions

Let us make the following definitions:

(a) Let 2(t), y(t) be solutions of eq 1 satisfying
the condition that x(¢,)=u, and y(t,)=1v,.

(b) Let z;, y;, 1=1,2, ., m, be the numbers
obtained by successive application of eq 2 and 3.

(¢) Let X\(t), u(t) be generic notation for solu-
tions of the system

d\Jdt=— (Of for)h—
du/dt=— (of [oy)N—

(0g/0x) i,
(4)

(0g/0y)u |

(d) Let u(t)=z(;)—z; and o(t)=y{t)—y,
j=1, . . ., n. The numbers u(t;) and »(t;,) are a
measure of the truncation error in each step of the
integration.

(c) Truncation Error

Rademacher derived the following formulas for
the truncation error:

MT)u(T)—I-u(T)@(T) ]
—15 (Af)z[k(f)x"(t)+u t)?/”(f) '
l
)

()

5)
—gmt)? f IV (2" () 4+ (D" ()it

The truncation errors w(7) and »(7") can be sep-
arately obtained from eq 5 by applying the proper
terminal conditions to the solutions \(t) and u(t)
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of eq 4. For example, u(7) can be found by
letting N(7)=1 and u(7T)=0.

(d) Rounding-Off Error

Thus far, it has been assumed that all computa-
tions are done exactly. In actual computing, this
i1s not the case. The accumulators or registers of
the computing machine accommodate only a lim-
ited number of digits. Thus eq 2 and 3 should be
written as

L=+ Abf(X1,Y5-1) 2 €ml o)
m

(6)
Yi=Yiat+ AL g (@, 1,Y-1) + 2 € mr i
m

=T;_ 1+ f('TUyJ) +f<xj lyy] 1) +Zeﬂﬂi”)
(7)
Yi=Y;- l"f‘ g(x,,y)—}—q(x] LY - 1) +251"L7

The ¢, satisfy [e;,|=<0.5. The coefficients 7
depend not only upon the equations to be solved
but upon the explicit procedure or order of oper-
ations in the process of solution. In the following
discussion quantities with bars above them repre-
sent the actual numbers stored in the registers or
accumulators of the computing machine. Although
the analysis can be carried through using eq 6
and 7, Rademacher makes the simplifying assump-
tion that

Atf(;”—g]) - Atf(.f],??]) .

This means that he assumes that f(2;%,) can be
computed sufficiently accurately so that when
multiplied by At any inaccuracies it may have are
lost in the digits that are dropped. Thus, eq 7
can be replaced by

A e — = »

x::lj—l‘*"g[f(%yj)‘|”f(lj—1;yj—1)]+fﬂlo '
Al 8)
Yi=Yiat+ g[g@*j:?—/:‘)+g(fj—1;?j»1)]+fj210_k'
Note that if the parentheses are removed in eq 8 so
that there are four multiplications, then there are
four rounding-off terms, say €5, (s=1,2; m=1,2).

As in the case of the truncation error let us
make the following definition: #,=z;—7; and
57:?/_7'—:7;7‘-
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TasLE 1. Sine-cosine rounding errors
Angle, in radians
At ‘
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
S. D. 4.082 5.773 7.071 8. 164 9.129 10.00 10. 80 11.55
Sin (A) 1 1 1 3 5 8 13 19
2x10-% ({Cos (A) 2 3 4 9 9 15 3 9
Sin (B) 0 -1 5 7 5 7 10 11
Cos (B) 1 2 1 0 1 -3 -3 -5
S. D. 5.774 8. 166 10.00 11.55 12.91 14.14 15. 28 16.33
Sin (A) 1 ~1 -5 2 -1 0 -5 —4
1X10-3 |{Cos (A) -2 1 9 6 4 2 9 9
Sin (B) 4 0 —6 -5 -7 —10 -7 -8
Cos (B) -1 -2 0 -2 -2 —4 -3 —2
S. D. 8. 161 11. 54 14.14 16.32 18.25 19.99 21. 60 23.08
sin (A) 1 10 11 12 14 25 20 14
5X10~+  [{Cos (A) 2 5 3 3 6 5 —3 -2
Sin (B) 1 3 0 -3 —12 —15 —12 —17
Cos (B) 2 1 3 -2 -8 -7 -3 -5
S. D. 12.91 18.25 22.36 25.82 28, 86 31.62 34.15 36. 51
Sin (A) 5 -17 —11 24 50 77 104 134
2x10~ |{Cos (A) 26 55 85 84 90 99 92 105
Sin (B) -2 6 3 —13 -19 —14 —11 —6
Cos (B) -3 -2 -8 —4 -9 4 1 -2
S. D. 18.26 25.82 31.62 36. 51 140.83 44.72 48.31 51. 64
Sin (A) 1 -2 —48 —53 —95 —97 —116 —148
1x10~+ {Cos (A) —17 —36 —21 —41 —32 —32 —45 —39
Sin (B) -7 —10 9 8 -5 —15 —20 —4
Cos (B) -7 -15 -9 —13 -7 -5 -7 -1
8. D. 25. 81 36. 51 44.71 51.63 57:73 63. 24 68. 30 73.02
Sin (A) 32 21 60 34 45 1 9 10
5%10-3  |{Cos (A) 8 60 42 21 25 -1 1 -7
sin (B) 18 -2 —16 —4 -5 10 16 32
Cos (B) ~1 —21 —10 —14 —24 —26 —20 —20
|
S. D. 40.82 57.73 70.71 81. 64 91. 29 100.0 108.0 115.5
Sin (A) —17 23 -3 8 —190 —222 —254 —317
2105 |{Cos (A) 3 5 16 —18 21 57 149 86
Sin (B) 14 34 32 30 50 61 68 7
Cos (B) 2 6 -9 —16 —44 —40 —79 —94
S. D. 57.74 81. 66 100. 0 115.5 129.1 141. 4 152.8 163.3
Sin (A) -5 —26 —35 —62 —110 —91 —87 —71
1X10-  [{ Cos (A) 4 12 40 63 84 65 84 122
Sin (B) -2 —17 —4 —4 14 16 6 17
Cos (B) —-10 0 —11 —16 —28 —24 —49 —53
3D 81. 61 115.4 141.4 163. 2 182.5 199.9 216.0 230. 8
Sin (A) 19 11 11 —27 —52 —68 —46 -39
5X10-0 |{Cos (A) 4 10 -6 -8 —-10 17 4 —4
Sin (B) -5 —4 20 28 39 51 37 50
Cos (B) —2 1 -7 4 32 53 56 45
S. D. 129.1 182.5 223.6 258. 2 288, 6 316.2 341.5 365. 1
2X10-5 |{Sin (A) 37 30 52 34 o7 32 40 24
Cos (A) 20 5 13 16 0, 8 8 —7

Errors in Numerical Integration
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Letting %,=u(T) and 7,=7(T), the expression
for the rounding-off error is

N u(T)+p(T)o(T)= —10_k§(671>\j+€izﬂj)- 9)

From the inequalities |e;,/=<0.5, m=1,2, the max-
imum possible value of the rounding-off error is

MDD DD <10 DR(VERMY
~ j OO (0

However, if the e;,, m=1,2, are random variables
tlien the standard deviation of the rounding-off
error 1s

AINTYU(T) 4 u(T)o(T)]~
10 U x2t>+ﬂ<t>]dt]~ (11)

II. Example

1. Sine-cosine Integrations

To check the theory developed by Rademacher
the system

¥ () =y()
} (12)

Y (t)=—2()

was integrated on the Electronic Numerical In-
tegrator and Computer.* The range 0.1<t=<0.9
radians was chosen as the integration interval,
since neither function was zero in that interval.
(While the function is near zero the increment
At f(z,y) is small and might lead to a systematic
effect in the rounding-off.)  All computations were
done to 10 decimal digits. About 10 values of At
were used ranging from 2> 107 to 21075 A
run “A’ was made with the parentheses appearing
in eq 8 removed; this gives four round-offs per
integration step. A run ‘B’ was made with the
parentheses in; this gives two round-offs per in-
tegration step. The results of these runs are
tabulated in table 1.

The first entry in each rectangle in table 1 is
the run A standard deviation for the respective
angle and increment as given by eq 11. For run
B this standard deviation should be divided by
two. Underneath are the residual errors (after

3The “ENIAC” was built by the Moore School of Electrical Engi-
neering of the University of Pennsylvania and is now located at the
Ballistic Research Laboratcries of Aberdeen Proving Ground.
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the truncation error is removed) for the various
runs and functions. A typical entry (such as the
residual error of 15 for the cosine in run A, angle
equal to 0.7 radians, and increment of 2>107%) is
found as follows:

Integration result=0.76484 19311

Truncation error
as given by eq 5=+0.00000 02577
0.76484 21888

True value= 0.76484 21873

Residual error=0.00000 00015

The most interesting feature in the table occurs
in run A for the sine with an increment of 2 X 107%,
For the angle changing from 0.5 to 0.6 radian the
residual error jumps from -0.00000 00008 to
—0.00000 000190. This integration was rerun,
and results were printed more frequently. Tt was
found that most of the disturbance occurred be-
tween 0.5211 and 0.5264 radian. Table 3 gives
the results over this range with printings at every
five integration steps, and table 2 exhibits a
typical five steps between the values of table 3.

TaBLE 2. Sample step in the sine-cosine integration

At=0.00002 0.52250 <t <0.52260

At
2f =2i1+AtYi-1 g =17H+7 [y 4via]

Al
Y=vyi1—At2ia Vi=Yii—— [xi+zia]

|
z o Y
f sin ¢ < cos ¢ v
0. 49904 81273 0. 49904 81273 | 0.86657 42703 0. 86657 42703
0.52250 86657 4 173314 —49904 8 —99810
86656 4 | . 49906 54587 —49906 5 | . 86656 42893
. 49906 54586 . 49906 54586 | . 86656 42891 . 86656 42891
52252 86656 4 173312 —49906 5 —99814
866554 | . 49908 27898 —49908 2 | . 86655 43077
. 48908 27897 . 49908 27897 | . 86655 43076 . 86655 43076
59254 | 86655 4 173310 —49908 2 —99816
| 86654 4 . 49910 01207 —49910 0 . 86654 43260
. 49910 01206 . 49910 01206 | . 86654 43258 . 86654 43258
59256 86654 4 173308 —49910 0 —99820
86653 4 . 49911 74514 —49911 7 | . 86653 43438
. 49911 74513 49911 74513 | . 86653 43436 . 86653 43436
52958 86653 4 1 73306 —49911 7 —99824
86652 4 . 49913 47819 —49913 4 | . 86652 43612
.52260 . 49913 47818 . 49913 47818 | . 86652 43611 ! . 86652 43611
|

Journal of Research



-TABLE 3. Sine-cosine integration

At=0.00002
t ‘\ Sine ‘ E ‘ Cosine H t ‘ Sine E ‘\ Cosine
0. 5100 0. 48817 72474 —4 0. 87274 45090 0. 5240 0. 50034 74198 102 0. 86582 47235
. 5110 . 48904 97478 —8 . 87225 58955 . 5241 L 50043 39993 107 . 86577 46845
. 5120 . 48992 17591 —11 . 87176 64098 . 5242 . 50052 05738 112 . 86572 46368
. 5130 . 49079 32802 = . 87127 60521 . 5243 . 50060 71433 117 . 86567 45803
. 5140 . 49166 43102 = . 87078 48234 . 5244 . 50069 37078 122 . 86562 45153
. 5150 . 49253 48499 —9 . 87029 27237 . 5245 . 50078 0267. 127 . 86557 44416
. 5160 . 49340 48968 —18 . 86979 97538 . 5246 . 50086 68218 132 . 86552 43593
. 5170 . 49427 44483 =5 - 86930 59143 . 5247 . 50095 33713 137 . 86547 42683
. 5180 . 49514 35083 —13 . 86881 12054 . 5248 . 50103 99158 142 . 86542 41686
. 5190 . 49601 20698 —+2 . 86831 56275 |- 5249 . 50112 64553 147 . 86537 40603
. 5200 | . 49688 01398 —18 . 86781 91812 . 5250 . 50121 29898 152 . 86532 39433
. 5201 . 49696 69193 —23 . 86776 94889 . 5251 . 50129 95193 157 . 86527 38178
. 5202 . 49705 36938 —18 . 86771 97879 . 5252 . 50138 60438 152 . 86522 36835
. 5203 . 49704 04633 —23 . 86767 00782 . 5253 . 50147 25633 157 . 86517 35405
. 5204 . 49722 72278 —18 . 86762 03597 . 5254 . 50155 9077 162 . 86512 33890
. 5205 . 49731 39873 —23 . 86757 06327 . 5255 . 50164 55873 167 . 86507 32287
. 5206 . 49740 07418 —18 . 86752 08970 . 5256 . 50173 20918 172 . 86502 30599
. 5207 . 49748 74913 —23 . 86747 11525 . 5257 . 50181 85913 177 . 86497 28824
. 5208 ’ . 49757 42358 —18 . 86742 13995 . 5258 . 50190 50858 172 . 86492 26961
. 5209 . 49766 09753 —13 . 86737 16378 . 5259 . 50199 15753 177 . 86487 25013
|
. 5210 . 49774 77098 —18 . 86732 18673 . 5260 . 50207 80598 182 | . 86482 22978
. 5211 . 49783 44393 —13 . 86727 20881 . 5261 . 50216 45393 187 . 86477 20856
. 5212 . 49792 11638 -8 . 86722 23004 . 5262 . 50225 10138 182 | . 86472 18649
. 5213 . 49800 78833 -3 . 86717 25039 . 5263 . 50233 74833 187 . 86467 16354
. 5214 . 49809 45978 —8 . 86712 26987 . 5264 . 50242 39478 192 . 86462 13974
. 5215 . 49818 13073 -3 . 86707 28850 . 5265 . 50251 04073 187 . 86457 11507
. 5216 . 49826 80118 “+2 . 86702 30625 . 5266 . 50259 68618 192 . 86452 08954
. 5217 . 49835 47113 7 . 86697 32313 . 5267 . 50268 33113 187 . 86447 06314
. 5218 . 49844 14058 12 . 86692 33916 . 5268 . 50276 97558 192 . 86442 03587
. 5219 . 49852 80953 7 . 86687 35431 . 5269 . 50285 61953 187 . 86437 00774
. 5220 . 49861 47798 12 . 86682 36859 . 5270 . 50294 26298 192 . 86431 97874
. 5221 . 49870 14593 17 . 86677 38202 . 5271 . 50302 90593 187 . 86426 94889
. 5222 . 49878 81338 22 . 86672 39457 . 5272 . 50311 54838 192 . 86421 91816
. 5223 | . 49887 48033 27 . 86667 40625 . 5273 . 50320 19033 187 . 86416 88658
. 5224 . 49896 14678 32 | . 86662 41708 . 5274 . 50328 83178 192 . 86411 85413
. 5225 . 49904 81273 37 ‘ . 86657 42703 . 5275 . 50337 47273 187 . 86406 82081
. 5226 . 49913 47818 42 | . 86652 43611 . 5276 . 50346 11318 182 . 86401 78664
. 5227 . 49922 14313 47 . 86647 44434 . 5277 . 50354 75313 187 . 86396 75159
. 5228 . 49930 80758 52 . 86642 45169 . 5278 . 50363 39258 182 . 86391 71569
. 5229 . 49939 47153 57 . 86637 45817 . 5279 . 50372 03153 177 . 86386 67892
. 5230 . 49948 13498 62 . 86632 46380 . 5280 . 50380 66998 172 . 86381 64129
. 5231 . 49956 79793 57 . 86627 46855 . 5281 . 50389 30793 167 . 86376 60279
. 5232 . 49965 46038 62 . 86622 47243 . 5282 . 50397 94538 162 . 86371 56344
5233 | .49974 12233 | 67 . 86617 47546 . 5283 . 50406 58233 157 . 86366 52321
. 5234 . 49982 78378 | 72 . 86612 47761 . 5284 . 50415 21873 157 . 86361 48213
. 5235 . 49991 44473 77 . 86607 47889 . 5285 . 50423 85458 162 . 86356 44018
. 5236 . 50000 10518 82 . 86602 47932 . 5286 . 50432 48993 167 | .86351 39736
. 5237 . 50008 76513 87 . 86597 47887 . 5287 . 50441 12478 172 ’ . 86346 35369
. 5238 . 50017 42458 92 | 86592 47757 . 5288 . 50449 75913 177 | . 86341 30914
. 5239 . 50026 08353 | 97 ‘ - 86587 47540 . 5289 . 50458 39298 182 ‘\ . 86336 26374

Thus, most of the change in error occurs in an
interval of about 0.0053 radian. This represents
about 260 integration steps and over a thousand
round-offs. In one half of the multiplications, the
digit being dropped in the rounding-off process
(see the sixth digit in the cosine values of table 3)
changes gradually from zero up to four and back
to zero again.

The errors in the sine values (see column headed

Errors in Numerical Integration

E in table 3) may be wrong by up to plus or minus
five units, since they were obtained by subtracting
the integration results (listed in table 3) from nine
digit values of the true results taken from Tables
of Circular and Hyperbolic Sines and Cosines.*

It will be noted that the last digits of the sine
values in table 3, generally speaking, are alter-
nately 3’s and 8’s. This can be traced to the

4 See footnote 2.
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alternate 2’s and 7’s or 1’s and 6’s in the fifth digit
of the cosine values. This is another warning
against unconsidered assumption of randomness
in the less significant digits of numbers involved in
computations.

“Rademacher asserts there will be statistical
independence of the dropped digits in the round-
ing-off process provided (At/2) f(Z;-1,7;-1) and
(At/2) f(Z 5,7, differ in the place 107%. The example
given here shows that Rademacher’s condition is
not sufficient. In fact, inspection of table 2
shows that the increments A#/2 f(z,y) may differ
in the place 107% and yet be alike for a large
number of integration steps in the place 107%71.

There are other examples listed in table 1
leading to large residual errors. For example,
consider in run A the sine and cosine values for
At=2x10"* and the sine values for At=1X107%
More frequent tabulation of results shows a steady
increase of residual error with no such jumps as
described above.

The author thanks various members of the staff
of the Ballistics Research Laboratories and of the
Moore School who assisted in running the prob-
lem, and extends his appreciation to L. S.
Dederick of the Ballistics Research Laboratories,
whose permission and cooperation made this paper

possible.
ITI. Appendix

Note on Systematic Rounding-off Errors in
Numerical Integration

By D. R. Hartree 5

In this paper, which summarizes the results of a numeri-
cal study of truncation and rounding-off errors in the
numerical solution of a differential equation by a step-by-
step process, Huskey has exhibited a case in which
rounding-off errors in a sequence of successive contribu-
tions to the solution are systematically of one sign and
approximately equal in magnitude, although the leading
digit rounded off is the sixth significant figure in each con-
tribution. The result is that the rounding-off errors build
up to a total substantially greater than would be estimated
in the basis of a random distribution of rounding-off errors
in the individual contributions. The purpose of this note
is to examine this situation further and to establish
criteria for identifying the conditions in which it is likely
to oceur, so that steps can be taken to deal with it, as for
example by carrying an extra significant figure temporarily
in the course of the solution.

Consider the numerical evaluation of f ydt, k decimals
being kept in the calculation.

50n the staff of the Institute for Numerical Analysis.
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Systematic rounding-off errors occur when the leading
digit rounded off remains the same in a number of suc-
cessive contributions to the integral; that is, when for
successive contributions, last integer digit of 10%+lyst is
the same. When this occurs, flast integer digit of
5(10%*+1y5t)]=0, or MNast integer digit of 10%+1(st)2]=0; that
is,

107 —0.5< 10++1y(86)2<10n-+0.5, (13)

for some integer n.
or other of ¢ if

This will usually occur for some value

10* max |y | (88)2>1; (14)
it will also occur if
10* max |y| (81)2< 1/10. (15)

The range Ay of y over which the inequalities (eq. 13)
are satisfied is
Ay=1/[10%+1(t)?],

and the number N of intervals required to cover this range
is given approximately by

N (o) || =Aay,
so that
N=1/[10%+1(3t)3| 5 |]. (16)

The accumulation of systematic errors is only serious if N
is greater than 3 or 4, that is, if

4-10%+1(86)% | | <1; (17)
for this not to occur
(66)3>1/[4-10%+1 | g |]. (18)

The inequalities (eq. 13 and 17) together provide a
criterion for identifying the situations in which accumu-
lation of systematic rounding-off errors may be dangerous.
Such a situation may arise in any numerical integration,
not only in the solution of a differential equation, the con-
text in which it was first found by Huskey. The inequality
(eq. 17) shows how much more likely it is to arise with
small values of the integration interval (5t) than with
large values.

In the case considered particularly by Huskey, = -cos ¢,
k=10, 8t=2-10"% y=sin ¢ so that eq 13 becomes

10n—0.5< 40 sin t< 100+ 0.5;

this is satisfied for a range of ¢ in the neighborhood of sin
=74, which is just the region in which the phenomenon
does occur; and it happens to be particularly marked in
this case, since the digit which is rounded off systemati-
cally happens to be a4 over a considerable range. Also

10++1(50)3 | § | ~7-1074,

so that, from eq. 16, N is about 1,400, and the inequality
(eq. 17) is very far from being satisfied; hence it is not
surprising that the phenomenon arose in a marked form.
The condition (eq. 18) suggests that with the value of
k=10, the interval length should certainly be greater than
t=10"4.

WasHINGTON,, July 17, 1948.

Journal of Research



	jresv42n1p_57
	jresv42n1p_58
	jresv42n1p_59
	jresv42n1p_60
	jresv42n1p_61
	jresv42n1p_62

