U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

RESEARCH PAPER RP1714

Part of Journal of Research of the National Bureau of Standards, Volume 36, May 1946

HEATS OF COMBUSTION AND FORMATION AT 25° C OF THE ALKYLBENZENES THROUGH C10H14, AND OF THE HIGHER NORMAL MONOALKYLBENZENES¹

By Edward J. Prosen, Walter H. Johnson, and Frederick D. Rossini

ABSTRACT

Values are given for the heats of combustion (in oxygen to form gaseous carbon dioxide and liquid water) and the heats of formation (from the elements, solid carbon (graphite) and gaseous hydrogen), at 25° C, for benzene, toluene, the four C_8H_{10} , the eight C_9H_{12} , and the 22 $C_{10}H_{14}$ alkylbenzenes, in both the liquid and gaseous states, and for the higher normal monoalkylbenzenes in the gaseous state.

CONTENTS

	Page
Introduction	455
Units, constants, and uncertainties	455
	456
Method of calculation	456
	458
	458
References	461
	Data used in the calculations Method of calculation Results

I. INTRODUCTION

As part of the work of the Bureau's Thermochemical Laboratory and the American Petroleum Institute Research Project 44 on the "Collection, Analysis, and Calculation of Data on the Properties of Hydrocarbons," this report presents values for the heats of combustion and of formation at 25° C of the alkylbenzenes through $C_{10}H_{14}$, in both liquid and gaseous states, and of the higher normal monoalkylbenzenes in the gaseous state.

II. UNITS, CONSTANTS, AND UNCERTAINTIES

The unit of energy upon which the values presented in this paper are based is the international joule determined by standards of resistance (international ohms), electromotive force (international volts), and time (mean solar seconds) maintained at this Bureau. Conver-

689974-46-5

¹ This investigation was performed at the National Bureau of Standards jointly by the Thermochemical Laboratory and the American Petroleum Institute Research Project 44 on the "Collection, Analysis, and Calculation of Data on the Properties of Hydrocarbons."

sion to the conventional thermochemical calorie is made by means of the relation $[1]^2$.

4.1833 international joules = 1 calorie.

The atomic weights of hydrogen, oxygen, and carbon were taken as 1.0080, 16.0000, and 12.010, respectively, from the 1941 table of International Atomic Weights [2].

The uncertainties assigned to the various quantities dealt with were derived, where possible, by a method previously described [3]. In other cases, reasonable estimates of the uncertainty were made.

III. DATA USED IN THE CALCULATIONS

The data used in the calculations are the following:

Heat of formation of carbon dioxide at 25° C [4].

Heat of formation of water at 25° C [5].

Heats of combustion of benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, and n-propylbenzene, in the liquid state at 25° C [6].

Heats of combustion of isopropylbenzene, 1-methyl-2-ethylbenzene, 1-methyl-3-ethylbenzene, 1-methyl-4-ethylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene, in the liquid state at 25° C [7].

Heats of combustion of *n*-butylbenzene, isobutylbenzene, secbutylbenzene, and *tert*-butylbenzene, in the liquid state at 25° C [8].

Standard heats of vaporization at 25° C for benzene, toluene, the four C_8H_{10} , the eight C_9H_{12} , and the twenty-two $C_{10}H_{14}$ alkylbenzenes, from a correlation by Wagman, Taylor, Pignocco, and Rossini [9] of selected "best" values based largely on the experimental data on the heats of vaporization at 25° C of benzene, toluene, ethylbenzene, the three xylenes, the two propylbenzenes, and the three trimethylbenzenes by Osborne and Ginnings [10].

IV. METHOD OF CALCULATION

The selected values for the heats of combustion of the hydrocarbon in the liquid state at 25° C were taken as reported in reference [6] for benzene, toluene, ethylbenzene, the three xylenes, and *n*-propylbenzene, in reference [7] for isopropylbenzene, the three methylethylbenzenes, and the trimethylbenzenes, and from reference [8] for *n*-butylbenzene, isobutylbenzene, *sec*-butylbenzene, and *tert*-butylbenzene. The corresponding values for the heat of combustion of the hydrocarbon in the gaseous state at 25° C were obtained by appropriately adding the values of the heats of vaporization from reference [9].

The selected values for the heats of formation of the above hydrocarbons in the liquid and gaseous states at 25° C were obtained by appropriately combining the values of the heats of formation of water and carbon dioxide from references [4, 5] with the corresponding selected values for the heats of combustion.

The corresponding values for the higher normal monoalkylbenzenes were obtained by adding to the values for *n*-butylbenzene the appropriate increments per CH_2 group reported for the normal paraffin hydrocarbons above *n*-pentane [11].

² Figures in brackets indicate the references at the end of the paper.

The values for the heats of formation in the gaseous state at 25° C for all the $C_{10}H_{14}$ alkylbenzenes except the four butylbenzenes were calculated by a method involving the summing of contributions from component parts of the molecule (phenyl, methyl, ethyl, *n*-propyl, and isopropyl groups), together with contributions associated with the positions of the substituent groups on the benzene ring.³ The necessary constants were evaluated by the method of least squares from the selected values of the heats of formation in the gaseous state at 25° C for toluene, ethylbenzene, *n*-propylbenzene, isopropylbenzene, the three methylethylbenzenes, and the three trimethylbenzenes.

By this method, the heat of formation of an alkylbenzene hydrocarbon, with one phenyl group having methyl, ethyl, *n*-propyl, or isopropyl substituent groups, is taken as

$$nC(\text{solid, graphite}) + (n-3)H_2(\text{gas}) = C_nH_{2n-6}(\text{gas})$$
 (1)

$$\Delta \Pi f^{\circ}_{298,16} = \beta_{\phi} + z_{1}\beta_{11} + z_{1I}\beta_{1I} + z_{m}\beta_{m} + z_{p}\beta_{p} \text{ kcal/mole,}$$
(2)

where

 $z_{\rm I}$ = the number of methyl groups

 $z_{\rm II}$ = the number of ethyl groups

 $z_{\rm III}$ = the number of *n*-propyl groups

 $z_{\rm III}$ = the number of isopropyl groups

- z_o = the number of ortho pairs of substituents (being, for example, one in o-xylene and two in 1,2,3-trimethylbenzene)
- z_m =the number of meta pairs of substituents (being, for example, one in *m*-xylene and 1,2,3-trimethylbenzenes and three in 1,3,5-trimethylbenzene)
- z_p =the number of para pairs of substituents (being, for example, one in *p*-xylene and two in 1,2,4,5-tetramethylbenzene)
- $\beta_{\phi} = 19.383$ kcal/mole, representing the contribution of the one phenyl group
- $\beta_{I} = -7.508$ kcal/mole, representing the contribution of one methyl group
- $\beta_{II} = -12.190$ kcal/mole, representing the contribution of one ethyl group

 $\beta_{\text{III}} = -17.513$ kcal/mole, representing the contribution of one *n*-propyl group

- $\beta_{III_i} = -18.443$ kcal/mole, representing the contribution of one isopropyl group
 - $\beta_o = 0.469$ kcal/mole, representing the contribution arising from each pair of substituent groups which are in ortho positions with respect to each other
 - $\beta_m = -0.225$ kcal/mole, representing the contribution arising from each pair of substituent groups which are in meta positions with respect to each other $\beta_p = -0.327$ kcal/mole, representing the contribution arising
 - $\beta_p = -0.327$ kcal/mole, representing the contribution arising from each pair of substituent groups which are in para positions with respect to each other.

³ This method is similar to that previously used in reference [9] in the evaluation of the heats of vaporization of compounds for which no data exist.

458 Journal of Research of the National Bureau of Standards

The foregoing constants yield values of the heats of formation of the C_7H_8 to C_9H_{12} alkylbenzenes which differ from the selected best values by the following amounts, in kilocalories per mole: Toluene, -0.08; ethylbenzene, 0.07; o-xylene, 0.30; m-xylene, 0.02; p-xylene, -0.25; 1-methyl-2-ethylbenzene, -0.14; 1-methyl-3-ethylbenzene, -0.08; 1-methyl-4-ethylbenzene, 0.14; 1,2,3-trimethylbenzene, -0.14; 1,2,4-trimethylbenzene, 0.11; 1,3,5-trimethylbenzene, 0.02. As 0.12 kcal/mole is only 0.01 percent of the value of the heat of combustion of a C_9H_{12} alkylbenzene, the correlation is considered satisfactory.

The values calculated by the foregoing method for the $C_{10}H_{14}$ alkylbenzenes, except the four butylbenzenes, are believed to be uncertain by not more than about ± 0.40 to ± 0.70 kcal/mole, which is ± 0.03 to ± 0.05 percent of their heats of combustion.

V. RESULTS

In table 1 are presented the selected "best" values for the heats of combustion and formation at 25° C of the 36 alkylbenzenes through $C_{10}H_{14}$, in both the liquid and gaseous state, and for some higher normal monoalkylbenzenes in the gaseous state.

For the heats of combustion of the normal monoalkylbenzenes above *n*-propylbenzene, in the gaseous state at 25° C:

 $C_n H_{2n-6}$ (normal alkylbenzene, gas)+

$$(3/2)(n-1)O_2(gas) = nCO_2(gas) + (n-3)H_2O(liq)$$
(3)
$$-\Delta Hc^{\circ}_{298,16} = -158.990 + 157.443n \pm (0.4226 -$$

$$\frac{16}{0.06556n + 0.003428n^2)^{\frac{1}{2}} \operatorname{kcal/mole}; n > 9}$$
(4)

Similarly, the heats of formation of the higher normal monoalkylbenzenes in the gaseous state at 25° C are:

 $nC(solid, graphite) + (n-3)H_2(gas) =$

$$C_n H_{2n-6} (normal alkylbenzene, gas)$$
(5)
$$\Delta H f^{\circ}_{298,16} = 45.960 - 4.926n \pm (0.4234 - 4.926n) \pm (0.4276n) \pm (0.$$

 $0.06611n + 0.003637n^2)^{\frac{1}{2}}$ kcal/mole; n > 9 (6)

The foregoing equations incorporate the increment per CH_2 previously reported for the normal paraffin hydrocarbons [11].

VI. COMPARISON WITH PREVIOUS DATA

Comparison of previous experimental data with the selected best values from this report is shown in table 2, in which the values from earlier investigations have been converted, insofar as significant, to the present unit of energy and atomic weights.

Heats of Combustion of Hydrocarbons

Compound	Formula	Heat of combustion $^{\circ}$ at 25° C, $-\Delta Hc^{\circ}$		Heat of formation ^b at 25° C ₂ $\Delta H f^{\circ}$		
		Liquid	Gas	Liquid	Gas	
Benzene	C6 H6	kcal/mole 780.98 ±0.10	kcal/mole 789.08 ±0.10	kcal/mole 11.72 ±0.12	kcal/mole 19.82 ±0.12	
Methylbenzene (toluene)	C7 H8	934.50 ±0.12	943.58 ±0.12	2.87 ± 0.15	11.95 ±0.15	
Ethylbenzene 1, 2-Dimethylbenzene (o-xy- lene).	C8 H10 C8 H10	$\begin{array}{c} 1091.03 \ \pm 0.17 \\ 1088.16 \ \pm 0.24 \end{array}$	$\begin{array}{c} 1101,13\ \pm0.17\\ 1098,54\ \pm0.24 \end{array}$	$\begin{array}{c} -2.98 \pm 0.20 \\ -5.84 \pm 0.26 \end{array}$	$\begin{array}{c} \textbf{7.12} \ \pm \textbf{0.20} \\ \textbf{4.54} \ \pm \textbf{0.26} \end{array}$	
1, 3-Dimethylbenzene (m-xy-	C8 H10	1087.92 ±0.15	1098. 12 ±0. 15	-6.08 ± 0.18	4.12 ±0.18	
lene). 1, 4-Dimethylbenzene (p-xy- lene).	C ₈ H ₁₀	1088.16 ±0.22	1098.29 ±0.22	-5.84 ±0.24	4. 29 ±0. 24	
n-Propylbenzene Isopropylbenzene I-Methyl-2-ethylbenzene I-Methyl-3-ethylbenzene I-Methyl-4-ethylbenzene I, 2, 3-Trimethylbenzene I, 2, 4-Trimethylbenzene I, 3, 5-Trimethylbenzene	C9 H12 C9 H12 C9 H12 C9 H12 C9 H12 C9 H12 C9 H12 C9 H12 C9 H12	$\begin{array}{c} 1247. \ 19 \ \pm 0. \ 16 \\ 1246. \ 52 \ \pm 0. \ 23 \\ 1245. \ 26 \ \pm 0. \ 23 \\ 1244. \ 71 \ \pm 0. \ 26 \\ 1244. \ 45 \ \pm 0. \ 32 \\ 1242. \ 56 \ \pm 0. \ 24 \\ 1241. \ 58 \ \pm 0. \ 24 \\ 1241. \ 19 \ \pm 0. \ 32 \end{array}$	$\begin{array}{c} 1258.\ 24\ \pm0.\ 16\\ 1257.\ 31\ \pm0.\ 23\\ 1256.\ 66\ \pm0.\ 25\\ 1255.\ 92\ \pm0.\ 27\\ 1255.\ 59\ \pm0.\ 33\\ 1254.\ 08\ \pm0.\ 28\\ 1253.\ 04\ \pm0.\ 24\\ 1252.\ 53\ \pm0.\ 32\\ \end{array}$	$\begin{array}{c} -9.18 \pm 0.20 \\ -9.85 \pm 0.26 \\ -11.11 \pm 0.26 \\ -11.67 \pm 0.28 \\ -11.92 \pm 0.34 \\ -14.01 \pm 0.30 \\ -14.79 \pm 0.27 \\ -15.18 \pm 0.34 \end{array}$	$\begin{array}{c} 1.87 \ \pm 0.20 \\ 0.94 \ \pm 0.26 \\ 0.29 \ \pm 0.28 \\ -0.46 \ \pm 0.29 \\ -0.78 \ \pm 0.35 \\ -2.29 \ \pm 0.30 \\ -3.33 \ \pm 0.27 \\ -3.84 \ \pm 0.34 \end{array}$	
n-Butylbenzene Isobutylbenzene sec-Butylbenzene tert-Butylbenzene 1, 3-Diethylbenzene 1, 3-Diethylbenzene 1, 4-Diethylbenzene 1. 4-Diethylbenzene 1. 4-Diethylbenzene 1. Methyl-2n-propylbenzene 1. Methyl-2n-propylbenzene 1. Methyl-2-isopropylbenzene 1. Methyl-2-isopropylbenzene 1. Methyl-4-isopropylbenzene 1. Methyl-4-isopropylbenzene 1. Methyl-4-isopropylbenzene 1. 2. Dimethyl-3-ethylbenzene 1, 3-Dimethyl-3-ethylbenzene 1, 3-Dimethyl-2-ethylbenzene 1, 3-Dimethyl-2-ethylbenzene 1, 2, 3, 5-Tetramethylbenzene 1, 2, 4, 5-Tetramethylbenzene	$\begin{array}{c} C_{19} \ H_{14} \\ C_{10} \ H_{14} \\ C_{10$	$\begin{array}{c} 1403.46\ \pm 0.27\\ 1402.04\ \pm 0.29\\ 1402.85\ \pm 0.27\\ 1401.82\ \pm 0.27\\ 1401.82\ \pm 0.27\\ 1401.80\ \pm 0.44\\ 1401.27\ \pm 0.43\\ 1401.27\ \pm 0.53\\ 1400.68\ \pm 0.53\\ 1400.66\ \pm 0.53\\ 1400.05\ \pm 0.53\\ 1398.90\ \pm 0.62\\ 1398.36\ \pm 0.62\\ 1395.70\ \pm 0.72\\ 1395.16\ \pm 0.72\\ 1395.16\ \pm 0.72\\ \end{array}$	$\begin{array}{c} 1415.44\ \pm 0.28\\ 1413.59\ \pm 0.31\\ 1414.57\ \pm 0.30\\ 1413.32\ \pm 0.31\\ 1414.21\ \pm 0.42\\ 1413.52\ \pm 0.42\\ 1413.57\ \pm 0.52\\ 1412.64\ \pm 0.52\\ 1412.64\ \pm 0.52\\ 1412.64\ \pm 0.52\\ 1412.64\ \pm 0.52\\ 1411.65\ \pm 0.52\\ 1411.65\ \pm 0.52\\ 1411.65\ \pm 0.61\\ 1410.63\ \pm 0.61\\ 1408.63\ \pm 0.61\\ 1408.63\ \pm 0.71\\ 1408.63\ \pm 0.71\\ 1407.92\ \pm 0.71$ 1407.92\ \pm 0.71 1407.92\ \pm 0.71 1407.92\ \pm 0.71 1407.	$\begin{array}{c} -15.28 \pm 0.30 \\ -16.70 \pm 0.32 \\ -15.89 \pm 0.30 \\ -16.92 \pm 0.30 \\ -16.92 \pm 0.30 \\ -16.94 \pm 0.42 \\ -17.44 \pm 0.42 \\ -17.47 \pm 0.42 \\ -17.52 \pm 0.51 \\ -18.02 \pm 0.51 \\ -18.06 \pm 0.51 \\ -18.06 \pm 0.51 \\ -18.69 \pm 0.51 \\ -18.40 \pm 0.51 \\ -19.84 \pm 0.61 \\ -20.38 \pm 0.61 \\ -23.44 \pm 0.71 \\ -23.54 \pm 0.71 \\ -23.54 \pm 0.71 \\ -23.58 \pm 0.71 \\ \end{array}$	$\begin{array}{c} -3.30 \ \pm 0.31 \\ -5.15 \ \pm 0.34 \\ -4.17 \ \pm 0.33 \\ -5.42 \ \pm 0.44 \\ -4.53 \ \pm 0.40 \\ -5.22 \ \pm 0.40 \\ -5.32 \ \pm 0.40 \\ -5.17 \ \pm 0.50 \\ -5.86 \ \pm 0.50 \\ -5.86 \ \pm 0.50 \\ -6.10 \ \pm 0.50 \\ -6.97 \ \pm 0.50 \\ -6.97 \ \pm 0.50 \\ -7.11 \ \pm 0.60 \\ -7.91 \ \pm 0.60 \\$	
n-Amylbenzene n-Heyylbenzene n-Octylbenzene n-Doctylbenzene n-Docylbenzene n-Docylbenzene n-Undecylbenzene n-Didecylbenzene n-Tridecylbenzene n-Tridecylbenzene n-Pendadecylbenzene n-Pendadecylbenzene n-Hexadecylbenzene	C ₁₄ H ₂₂ C ₁₅ H ₂₄ C ₁₆ H ₂₆ C ₁₇ H ₂₈ C ₁₈ H ₃₀ C ₁₉ H ₃₂ C ₂₀ H ₃₄		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccc} -8.23 & \pm 0.37 \\ -13.15 & \pm 0.39 \\ -18.08 & \pm 0.42 \\ -23.00 & \pm 0.46 \\ -27.93 & \pm 0.50 \\ -22.86 & \pm 0.54 \\ -37.78 & \pm 0.59 \\ -42.71 & \pm 0.64 \\ -47.63 & \pm 0.69 \\ -52.56 & \pm 0.75 \\ -57.49 & \pm 0.80 \\ -62.41 & \pm 0.85 \end{array}$	
△ per CH2	СН2		157. 443	ops/hidsdo	-4.926	

TABLE 1.-Selected "Best" values for the heats of combustion and formation of the Alkylbenzenes

 $e - \Delta Hc^{\circ}$ represents the heat evolved in the combustion of the given hydrocarbon, in gaseous oxygen to form gaseous carbon dioxide and liquid water, at 25° C and constant pressure, with all reactants and products in their appropriate standard reference states. $b \Delta Hf^{\circ}$ represents the increment in the heat content or enthalpy of the process of forming the given hydrocarbon in the state indicated, from its elements, at 25° C, with all reactants and products in their appropriate standard reference states.

Journal of Research of the National Bureau of Standards 460

Compound	a real an information 1			Heat of combustion	
	Investigators	Year	Refer- ence	Differ- ence from value of this re- port •	Esti- mated uncer- tainty of the dif- ference b
1.94 46.11 10 10 10 10 10 10 10	1.0.12.00 - 1.0.04 W.10.13	1050	[Incl	kcal/mole	
	(BerthelotStohmann, Rodatz, and Herz-	1878 1886	[12] [15]	$\begin{vmatrix} -3.8\\0.0 \end{vmatrix}$	$\pm 3.9 \\ \pm 1.6$
	berg. Stohmann, Kleber, and Lang- bein.	1889	[16]	-0.6	±1.6
Benzene (liquid)	Richards, Henderson and Fre-	1907	[17]	-2.5	±1.6
	Richards and Jesse	1910	[18]	+1.5	±1.6
	Roth and von Auwers	1915	[19]	+1.5 +2.1	±1.6
	Richards and Barry	1915	[20]	-0.2	±1.6
	Richards and Davis	1920	[21]	+1.9	±1.6
	(Berthelot	1381	[13]	-3.2	±3.9
Benzene (gas)	Thomsen	1886	[14]	11.4	±7.9
Denzene (gas)	Stohmann, Rodatz, and Herz- berg.	1886	[15]	-0.4	±1.6
	(Stohmann, Rodatz, and Herz- berg.	1887	[22]	+0.8	±1.9
	Schmidlin	1906	[23]	+5.6	±4.7
Foluene (liquid)	Roth and von Auwers	1915	[19]	+1.6	±1.9
	Richards and Barry	1915	[20] [24]	+2.7 +2.5 +2.0	±1.9
	Richards and Davis	1917 1920	[21]	T2.0	±1.9 ±1.9
	Jesse	1920	25	-10.8	$\pm 1.9 \\ \pm 2.2$
	Moureu and André	1912	26	-10.8	± 2.2 ± 3.3
Ethylbenzene (liquid)	Richards and Barry	1915	[20]	+5.8 +0.2	±2.2
the Grand Comment of the Date of Aller	von Auwers and Kolligs	1922	27	+4.3	±2.2
	von Auwers and Kolligs Stohmann, Rodatz, and Herz-	1887	221	-2.1	± 2.2
-Xylene (liquid)	k berg.			112 (1122)201-98	
rijicho (nquia)	Richards and Barry	1910	[20]	+3.5	±2.2
	Stohmann, Rodatz, and Herz-	1887	[22]	-2.0	±2.2
m-Xylene (liquid)	berg.		Teo1	10.5	
M-Aylene (nquid)	Richards and Jesse	1910	[18]	+3.7 +2.5	± 2.2
	Roth and von Auwers	1915	[19] [22]	+2.5 -2.1	± 2.2
TT 1 (tout 1)	Stohmann, Rodatz, and Herz-	1887	[22]	-4.1	± 2.2
p-Xylene (liquid)	Richards and Jesse	1910	[18]	-21	±2.2
	Genvresse	1893	[28]	-2.1 + 3.9	±3.7
n-Propylbenzene	Richards and Barry	1915	[20]	-0.7	±2.5
r-1 lopyidenzene	Richards and Barry Huffman and Knowlton	1944	[29]	-1.0	± 0.6
	Genvresse	1893	[28]	$\begin{vmatrix} -0.7 \\ -1.0 \\ +6.2 \end{vmatrix}$	±3.7
Isopropylbenzene (liquid)	Richards and Barry	1915	[20]	+0.9	±2.5
	[Huffman and Knowlton]	1944	[29]	-1.2 -0.9	±0.6
1.2.4-Trimethylbenzene (liquid).	Richards and Barry	1915	[20]	-0.9	± 2.5
	Stohmann, Rodatz, and Herz-	1887	[22]	+11.8	±2.5
1,3,5-Trimethylbenzene (liquid)_	berg.	1915	[20]	+2.4	±2.5
	Richards and Barry Richards and Barry	1915	20]	-1.4	± 2.8
tert-Buthylbenzene	Richards and Davis	1910	[21]	+0.1	±2.8
I-Methyl-3-n-propylbenzene	Genvresse		1.	100000000000000000000000000000000000000	AN STOLLY
(liquid).		1893	[28]	+7.5	±4.2
-Methyl-3-isopropylbenzene (liquid).	do	1893	[28]	+12.4	±4.2
(Inquiru).	(Stohmann, Rodatz, and Herz-	1887	[22]	+4.0	±2.8
				and the second se	A REAL PROPERTY OF THE PARTY OF
l-Methyl-4-isopropylbenzene (liquid).	Stohmann, Kleber, and Lang-	1890	[30]	+15.0	±2.8
		1890 1889	[30] [16]	+15.0 +1.2	±2.8

 TABLE 2.—Comparison of previous experimental data with the selected "best" values from this report for the heats of combustion of the alkylbenzenes.

• Insofar as significant, the previous value was converted to the present unit of energy and atomic weights. A negative sign in this column indicates that the earlier value is less than that of the present report; a positive sign, higher. • The uncertainties have been assigned by the present authors.

VII. REFERENCES

- [1] E. F. Mueller and F. D. Rossini. Am. J. Physics 12, 1 (1944).
- [2] G. P. Baxter, M. Guichard, O. Hönigschmid, and R. Whytlaw-Gray. Chem. Soc. 63, 845 (1941).
 [3] F. D. Rossini and W. E. Deming. J. Wash. Acad. Sci. 29, 416 (1939).
 [4] E. J. Prosen, R. S. Jessup, and F. D. Rossini. J. Research NBS 33, 447 (1944) RP1620. J. Am.

- [5] D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini. J. Research NBS 34, 143 (1945) RP1634.
- [6] E. J. Prosen, R. Gilmont, and F. D. Rossini. J. Research NBS 34, 65 (1945) RP1629.
- [7] W. H. Johnson, E. J. Prosen, and F. D. Rossini. J. Research NBS 35, 141 (1945) RP1665.
- [8] W. H. Johnson, E. J. Prosen, and F. D. Rossini. National Bureau of Standards. Unpublished data.
- [9] D. D. Wagman, W. J. Taylor, J. Pignocco, and F. D. Rossinf. National Bureau of Standards. Unpublished data.
 [10] N. C. Osborne and D. C. Ginnings. National Bureau of Standards. Un-
- published data. [11] E. J. Prosen and F. D. Rossini. J. Research NBS **34**, 263 (1945) RP1642. [12] M. Berthelot, Ann. chim. [5] **13**, 1 (1878).

- [13] M. Berthelot, Ann chim. phys. [5] 23, 193 (1881).
 [14] J. Thomsen, Thermochemische Untersuchungen, 4, J. A. Barth, Leipzig, (1886).
- [15] F. Stohmann, P. Rodatz, and H. Herzberg, J. prakt. Chem. 33, 241 (1886);
 [16] F. Stohmann, C. Kleber, and H. Langbein, J. prakt. Chem. 40, 77 (1889).
 [17] T. W. Richards, L. J. Henderson, and H. L. Frevert, Proc. Am. Acad. 42, 573 (1907); Z. physik. Chem. 59, 532 (1907).

- 573 (1907); Z. physik. Chem. 39, 352 (1907).
 [18] T. W. Richards and R. H. Jesse, Jr., J. Am. Chem. Soc. 32, 268 (1910).
 [19] W. A. Roth and K. von Auwers, Liebigs Ann. Chem. 407, 145 (1915).
 [20] T. W. Richards and F. Barry, J. Am. Chem. Soc. 37, 993 (1915).
 [21] T. W. Richards and H. S. Davis, J. Am. Chem. Soc. 42, 1599 (1920).
 [22] F. Stohmann, P. Rodatz, and W. Herzberg, J. prakt. Chem. 35, 22 (1887).
 [22] S. Stohmann, Ann. et an. 181 (245) (1006).
- [23] Schmidlin, Ann. chim. phys. [8] 7, 245 (1906).
 [24] T. W. Richards and H. S. Davis, J. Am. Chem. Soc. 39, 341 (1917).

- [25] R. H. Jesse, Jr., J. Am. Chem. Soc. 34, 1337 (1912).
 [26] C. Moureu and E. André, Ann chim. 1, 113 (1914).
 [27] K. von Auwers and H. Kolligs, Ber. Chem. Ges. 55, 3872 (1922).
 [28] P. Genvresse, Bul. soc. chim 9, 219 (1893).
- 29] H. M. Huffman and J. W. Knowlton, private communication (1944).
- [30] F. Stohmann, C. Kleber, and H. Langbein, Z. phys. Chem. 6, 338 (1890)

WASHINGTON, December 11, 1945.