VAPOR PRESSURES AND BOILING POINTS OF SOME PARAFFIN, ALKYLCYCLOPENTANE, ALKYLCYCLOHEX ANE, AND ALKYLBENZENE HYDROCARBONS ${ }^{1}$

By Charles B. Willingham, ${ }^{2}$ William J. Taylor, ${ }^{3}$ Joan M. Pignocco, ${ }^{3}$ and Frederick D. Rossini

Abstract

Measurements of vapor pressures and boiling points, over the range 47 to 780 millimeters of mercury and above about $12^{\circ} \mathrm{C}$, were made on 52 purified hydrocarbons. The apparatus consisted of an electrically heated boiler, a vapor space with a vertical reentrant tube containing a platinum thermometer having a resistance of 25 ohms, and a condenser. Measurements of the temperature of the liquid-vapor equilibrium were made at 20 fixed pressures maintained automatically. The values of the fixed pressures were determined by calibration of the apparatus with water by using the vapor pressure-temperature tables prepared at the National Bureau of Standards.

The experimental data on the hydrocarbons were correlated, the method of least squares being used, with the three-constant Antoine equation for vapor pressures, $\log P=A-B /(C+t)$ or $t=B /(A-\log P)-C$. Experimental data, together with the values of the three constants of the Antoine equation, applicable over the range of measurement, are reported for 30 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 alkylbenzene hydrocarbons.

CONTENTS

Page
I. Introduction 219
II. Apparatus and procedure 220
III. Determination of pressures 226
IV. Source and purity of the compounds 228
V. Experimental data on 52 hydrocarbons 230
VI. Correlation of the data with the Antoine equation 233

1. Method of correlation 233
2. Results of the correlation 238
VII. Discussion 241
VIII. References 244

I. INTRODUCTION

On 52 purified hydrocarbons, all but 1 of which were prepared in connection with the work of the American Petroleum Institute

[^0]Research Project 6 at the National Bureau of Standards, measurements of vapor pressures and boiling points were made over the range 47 to 780 mm Hg and above about $12^{\circ} \mathrm{C}$. This paper describes the experimental procedure and apparatus, gives the method of calculation used in correlating the data with the three-constant Antoine equation for vapor pressures, and presents the experimental data and results of the calculations for 30 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 alkylbenzene hydrocarbons, together with some discussion of the results.

II. APPARATUS AND PROCEDURE

For the measurements of temperature, a precision platinum resistance thermometer (25 ohms, Leeds \& Northrup Serial No. 318514) and a Müeller-type resistance bridge with thermostated coils (Leeds

Figure 1.-Diagram of the assembly of the boiling-point apparatus.
The letters have the following significance: A, Boiler, etc.; B, mercury manometer for regulating the pressure; C, simple mercury manometer for indicating the pressure in the system; D, valve outlet to the atmosphere; E, gas reservoir for the pressure control system; F, pressure pump; G, vacuum pump; H, I, valves.
\& Northrup Serial No. 373146) were used. The thermometric sensitivity was such that 1 mm on the scale was equivalent to 0.0007 degree centigrade.

A diagram and description of the parts of the assembly of the apparatus used in this investigation are given in figure 1.
Details of the boiler and related parts of the apparatus ${ }^{4}$ are shown in figure 2.
The manometer for regulating the pressure at 20 fixed points is shown in figure 3. A detailed view of the top part of the manometer tube is shown in figure 4. The contacts were tungsten, sharply pointed, and shaped as shown in figures 3 and 4 . For cleaning the tungsten-point contacts, the manometer tube was filled with a concentrated solution of sodium hydroxide and an alternating current (at 110 volts) was intermittently passed between two contacts at intervals of about 2 seconds until each point contact had a clean metallic appearance. For this latter procedure, the contacts were taken as follows: First and eleventh; second and twelfth; third and

[^1]

Figure 2.-Details of the boiler and related parts of the boiling-point apparatus. The letters have"the following significance: A, Tube through which the sample is introduced; B, platinum resistance thermometer; C, stopcock; D, D, condensers; E, ground glass valve for withdrawing distillate (see reference: $[1]$); F, thermocouple, for measuring difference in temperature between the wall of the glass boiler and the jacket; G, metal control for the ground-glass valve (see reference [1]; H, receiver for recovering sample at the conclusion of the measurements; I, receiver for collecting distillate removed from the head during the experiment; J, glass well for the platinum resistance thermometer; K, radiation shield of aluminum foil; L, electric heater for boiling the liquid in the pot; M, jacket, $1 / 4-\mathrm{in}$. wall, of aluminum; N, tube for withdrawing sample from the pot; O, thermal insulating jacket, Pyrex glass cylinder with an asbestos, layer covered with aluminum foil; P, flat electric heater for the aluminum jacket; Q, transite support; R, thermal insulation, covered with aluminum foil; W, glass rod supports for the thermometer well; X, glass rod_"spiders"; Y, connecting tube for equalizing pressure; Z, transite collar for centering boiler.

Figure 3.-Manometer for regulating the pressure at 20 fixed points.
The letters have the following significance: A, Mercury reservoir; B, transite blocks; D, throat; E, approximate distances, in millimeters from the top contact to the other contacts; F, glass male to metal female joint (see reference [2]); G, connection to pressure system and boiler; a, holes for bolts to support frame to wall; b, bolts holding transite board to 1 in. channel steel back of board; c, holes for electric wire leads. All dimensions shown are in millimeters.
thirteenth; etc. After all the contacts were prepared in this manner, the manometer tube was washed thoroughly with water and dried. The Bureau's Glassblowing Shop evacuated the manometer, baked it at $150^{\circ} \mathrm{C}$ for about 4 hours, and then distilled into it the appropriate amount of mercury. In the assembly of the manometer, the wiring was arranged so that in the 6 -volt direct-current circuit the mercury was positive with respect to the tungsten. In operation, the mercury manometer was encased in an air thermostat. As shown in figure 5, the air thermostat was provided with an electric space heater, a rotary air circulator driven by a motor mounted outside the thermostat, a mercury thermoregulator, and appropriate relays. The temperature

Figure 4.-View of the top portion of the manometer tube.
The letters have the following significance: A, Copper wire connections to the relay controls (K in fig. 6); B, tungsten rod (No. 16 AWG), shaped and pointed as shown (see text); C, seal of tungsten rod through Pyrex Uranium and Pyrex Clear glass.
inside the air thermostat was maintained constant to about ± 0.02 degree centigrade.
The wiring diagram for the apparatus is shown in figure 6.
For the purpose of making measurements 10 to 15 degrees centigrade below room temperature, in the case of the more volatile compounds, a vacuum-jacketed condenser, cooled to near $-80^{\circ} \mathrm{C}$ with solid carbon dioxide in a $50: 50$ mixture of carbon tetrachloride and chloroform, was placed between the upper condenser (D, fig. 2) and the pressure control system. For such measurements below room temperature, the aluminum jacket (M, fig. 2) was cooled to about 10 degrees centigrade below the boiling temperature by means of a stream of air cooled by passing through a coil of metal tubing at $-80^{\circ} \mathrm{C}$ (see above). The cooled air passed into the space between M and O in figure 2.

The procedure for performing a series of measurements on a given hydrocarbon was as follows:

With appropriate refrigerants having been placed in the condensers, the system for regulating the pressure was set at the lowest contact (pressure near 47 mm Hg$),{ }^{5}$ started, and permitted to adjust itself automatically at this pressure. The stopcock between the boiler and the pressure system was then closed and dry air was let into the boiler part of the apparatus through the stopcock on the receiver (I, fig. 2). About 30 to 50 ml of the substance under investigation was introduced into the boiler through the filling tube (A, fig. 2). The openings to the atmosphere were then closed, and the stopcock between the boiler and the pressure-control system was opened. The pot heater

[^2](L, fig. 2) was turned on and adjusted to give a reasonable boiling rate. After equilibrium was established 1 ml of liquid was removed from the condenser through the ground-glass valve (E. fig. 2) into the receiver (I, fig. 2). This procedure served to remove traces of water that may have gotten into the boiler from the atmosphere during the introduction of the sample. The temperature of the aluminum jacket (M, fig. 2) was adjusted to a temperature about 10 degrees centigrade below the boiling temperature.

Figure 5.-Manometer assembly, showing the air thermostat.
The letters have the following significance: A, Box enclosure with walls of transite (the cover is not shown); B, aluminum foil, covering inside and outside surface of the transite box; C, partial partition wall of transite (both sides covered with aluminum foil) serving to guide the flow of air; D, rotary air circulator E, electric motor, mounted independently of the thermostat housing; F, electric space heater, 100 watts; G, mercury manometer; H, connection to electric power through relay contacts (G in fig. 6) I, connection to relay coil (G in fig. 6); \boldsymbol{J}, mercury thermoregulator; K, connection to pressure system; L, mercury-inglass thermometer.

At each of the 20 contacts in turn, conditioning of the controlling manometer to obtain high reproducibility was made as follows: The pressure was increased about 7 mm above the contact corresponding to the selected pressure by admitting dry air or inert gas through the appropriate valve. The pressure was then reduced to about 7 mm below the contact corresponding to the selected pressure. The pressure was then increased slowly to the selected value where

Figure 6.-Wiring diagram for boiling-point apparatus.
The letters have the following significance: A, Power from main line; B_{1}, B_{2}, double-pole, single-throw switches; C, variable transformer, 750 watts; D, jacket heater; E, variable transformer, 100 watts; F, pot heater; G_{1}, G_{2}, small relays, 6 volts, direct current; H, air heater, and I mercury thermoregulator, for controlling air thermostat for main mercury manometer (fig. 3); J, rectifying transformer, 100 volts alternating current to 6 volts, direct current; K, single-pole, double-throw switch; $L, 21$ contacts for main mercury manometer; M, main relay; N, double-pole, double-throw switch; O, pressure pump; P, vacuum pump.
it was thence controlled automatically. This procedure was empirically found necessary in order to obtain a high degree of reproducibility at the respective contacts, in terms of the pressure produced in the system. During the automatic control of the pressure, the leak into the system was adjusted so that the vacuum pump (sharply throttled by a needle valve) operated for about 1 second every 3 minutes. The range of pressure in this cycle, as determined from changes in the temperature of the liquid-vapor equilibrium during the cycle, was on the average about 0.07 to 0.10 mm Hg , with some contacts giving a better performance and others somewhat poorer. Observations of temperature (resistance) corresponding to the given pressure were made just at the moment the contact (mercury-tungsten) was made to start the vacuum pump, which occurred at the highest pressure in the cycle. Several readings were made at the given pressure in this way. Then the apparatus was adjusted to the next higher pressure and similar observations were repeated at this higher pressure. This procedure was continued to the highest pressure measured (near 780 mm Hg). For the several pressures above the prevailing atmospheric pressure, the pressure pump was used in place of the vacuum pump, with the observations of temperature (resistance) being made at the moment contact (mercury-tungsten) was broken to start the pressure pump, which occurred at the lowest pressure in the cycle. With the observations made in the foregoing manner, the actual reproducibility of pressure at a given contact over a period of several weeks was normally in the range of 0.02 to 0.05 mm Hg . (See sections III and VI.)

The calibration experiments with water were performed in exactly the same manner as with a liquid hydrocarbon.
The rate of boiling was adjusted so that condensation of the hydrocarbon or water was visible in the lower end of the condenser. It was found that doubling this rate of boiling had no significant effect upon the temperature of the liquid-vapor equilibrium. For example, with 2,2,3-trimethylpentane, at contact R, with a normal power input of 70 watts, the observed temperature was $40.6215^{\circ} \mathrm{C}$, and when the power input was increased to 125 watts, the observed temperature was $40.6231^{\circ} \mathrm{C}$.

III. DETERMINATION OF PRESSURES

The values of the pressures produced by the apparatus when controlled at the 20 fixed points were determined from measurements of the temperature of the liquid-vapor equilibrium made with water in the apparatus. The vapor pressure of water at 1-degree intervals from 35° to $103^{\circ} \mathrm{C}$ was taken from table 2 of Osborne and Meyers [3], together with unpublished small revisions of these values by Meyers and Cragoe [4]. From these values, several values were interpolated (by Lagrangian five-point curvilinear interpolation) at 0.1-degree intervals in the neighborhood of the temperature of the liquid-vapor equilibrium for water at each of the 20 fixed pressures. The final calculation of the pressure at each observed temperature was made by linear interpolation within the 0.1 -degree intervals.

Figure 7 is a plot of the observations made with water in the apparatus over the period from November 1941 to May 1943, and shows on an enlarged scale the calculated pressure at each contact

Figure 7.-Results obtained with water, as a function of time.
The scale of ordinates gives the pressure calculated from the observed temperature and the vapor-pressure
for each observation over this period. The observed points were connected by straight lines, as shown in figure 7, and the pressures to be assigned to the measurements made on a given compound were interpolated from these lines. Calibration measurements were performed on the following dates: November 3, 12, and 13, and December 8 and 9, 1941; April 16, 17, and 20, May 12, October 13 and 15, and December 15, 1942 ; and February 23, March 16, April 15, and May 8 and 20, 1943.

In the experiments with the hydrocarbons, correction was made for the difference in pressure exerted by the column of hydrocarbon vapor over the pressure exerted by the column of water vapor, between the location at which the temperature of the liquid-vapor equilibrium was measured and the location at which condensation occurred in the condenser (a vertical distance of about 28 cm). The value of this correction to the pressure is, for a given compound, a substantially constant percentage of the pressure, far within the precision of the measurements. At 760 mm , the value of this correction varied from 0.04 to 0.08 mm , corresponding to a range -f 0.002 to 0.004 degree centigrade.

IV. SOURCE AND PURITY OF THE COMPOUNDS

With the exception of cyclopentane, which was supplied by Fenske [10] and used as received, the hydrocarbons measured in the present investigation were purified in connection with the work of the American Petroleum Institute Research Project 6 at this Bureau. A complete description of the purification and properties of the compounds appears in another report [8]. The purity of these compounds is summarized in table 1. All the compounds examined in the present investigation were produced as "heart cuts" from distillations, including both regular and azeotropic, performed at a reflux ratio of 100 to 1 in columns of 100 or more theoretical plates [8,16]. Nonhydrocarbon impurities were removed by adsorption with silica gel [17], which treatment also served to assure that the paraffin and cycloparaffin compounds were freed of any possible aromatic impurities. From the method of preparation and purification of these compounds, it is concluded that (a) the remaining impurities were substantially isomeric and close-boiling and (b) their amount was such as to have no significant effect upon the measurements, within the limits of uncertainty (see section VI), with the possible exception of 2,3-dimethylhexane.

Table 1.-Purity of the compounds investigated
[Except for cyclopentane, which was used as received [10], and n-dodecane, which was previously prepared [9], all the compounds listed were purified in connection with the work of the API Research Project 6 by means of azeotropic distillation in columns of high efficiency (approximately 100 theoretical plates) at a high reflux ratio (100 to 1) from starting material obtained from various sources [8].]

ALKYLCYCLOHEXANES	
Cyclohexane	0.0001
Methylcyclohexane.	. 0029
Ethylcyclohexane	. 0024
cis-1,2-Dimethylcyclohexane .	. 0011
trans-1,2-Dimethylcyclohexane	009
cis-1,3-Dimethylcyclohexane	023
trans-1,3-Dimethylcyclohexane	. 015
cis-1,4-Dimethylcyclohexane	. 010
trans-1,4-Dimethylcyclohexane	-. 004
n-Propylcyclohexane	<. 005

ALKYLBENZENES	
Benzene-.-	0. 0004
Toluene--	. 0010
Ethylbenzene.	. 0045
o-Xylene...--	. 0008
m-Xylene	. 0028
p-X ylene-..-.-.--	. 0010
n-Propylbenzene.	. 0028
Isopropylbenzene	. 0004

a Determined from measurements of freezing points, unless otherwise indicated [8].
b Estimated by analogy with isomers subjected to similar preparation and purification [8].

V. EXPERIMENTAL DATA ON 52 HYDROCARBONS

In table 2 are given the experimental data on the temperatures and pressures of the liquid-vapor equilibrium, obtained as described in the preceding sections, for the 52 compounds, comprising 30 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 aromatic hydrocarbons. The date of measurement of each compound is also given. In those cases in which two samples of the same compound are included, they are distinguished by the roman numerals I and II.

Table 2.-Experimental data for 52 hydrocarbons on the temperatures and pressures of the liquid-vapor equilibrium

[^3]Table 2.-Experimental data for 52 hydrocarbons on the temperatures and pressures of the liquid-vapor equilibrium-Continued

t	P																
$\begin{aligned} & \text { 3, 3-Di- } \\ & \text { methylpentane } \\ & \text { January } 21 \text {, } \\ & 1943 \end{aligned}$		$\begin{gathered} n \text {-Octane (I) } \\ \text { February } 23, \\ 1942 \end{gathered}$		n-Octane (II) $\underset{1942}{\text { December 31, }}$		$\begin{aligned} & \text { 2-Methylhep- } \\ & \text { tane (I) } \\ & \text { February } 6, \\ & 1942 \end{aligned}$		$\begin{gathered} \text { 2-Methylhep- } \\ \text { tane (II) } \\ \text { December } 23, \\ 1942 \end{gathered}$		$\begin{gathered} \text { 3-Methylhep- } \\ \text { tane (I) } \\ \text { April 2,1942 } \end{gathered}$							
86. 429 85. 854 85.344 84. 792	$m \mathrm{Hg}$768.03755.28	$\begin{gathered} { }^{\circ}{ }_{C}^{C} \\ 126.570 \end{gathered}$	$m m \mathrm{Hg}$	${ }^{\circ} \mathrm{C}$ mm Hg		${ }^{\circ} \mathrm{C} m m \mathrm{Hg}$		${ }^{\circ} \mathrm{C}$ mm Hg		${ }^{\circ} \mathrm{C}$	$m{ }_{779.37}$						
		122. 035	767.96	126. 040	768.09	118.022	767.94	118.020	768.11	119.283							
		125.433	755.03	125. 442	755.29	117. 426	755.00	117. 427	755. 29	118. 693	755.08						
	744.07	124.899	743.92	124. 906	744.06	116.888	743.74	116.895	744.06	118. 160	743.98						
	732.11	124.319	731.94	124.327	732.11	116. 318	731.92	116. 319	732.11	117. 584	731.97						
		118.924	${ }^{627 .}$			110.971	${ }^{627.73}$			112.217	627.85						
		111.277	500.61			103. 397	500.			104. 616	500.66						
	324.98261.79	104.233	402. 38			96. 422	402.38			97.615	402.39						
$\begin{aligned} & 59.444 \\ & 53.385 \end{aligned}$		97. 635	${ }^{324.97}$	97.63391.235	$\begin{aligned} & 325.00 \\ & 261.81 \end{aligned}$	89.892	324.			91.057	324. 98						
		91.230 85.916	261.73 217.16			83.549 78.278	261.73 217.16			$\begin{array}{r}84.698 \\ 79.418 \\ \hline\end{array}$	261.75 217.14						
		80.134	175.82			72.580	175.81			73.676	175. 84						
$\begin{aligned} & 38.804 \\ & 34.355 \end{aligned}$	$\begin{aligned} & 149.46 \\ & 124.68 \end{aligned}$	75.820	149.40	75.825	124. 69	68.308	149.40	63.703	124.70	69.372	149.41						
		71.163	124. 57	71.171		63.711	124.59			64.775	124. 53						
		66	103.			59.192				${ }^{60.243}$	103.67						
		62.592	87			55. 229	87.			5.	87.76						
		59.616	77			52.301	77.			53.317							
	67. 27	56.456	67.35	56.40752.874	67.2957.46	49.165	67.	49.100	67.29	50.171	67.33						
17.163		52.92	57.5			45.687 41.707		45.612	57.								
$\begin{aligned} & \text { 3-Methylhep- } \\ & \text { tane (II) } \\ & \text { December } 30 \text {, } \\ & 1942 \end{aligned}$		4-Methylhep-tane (I)April 7, 1942															
		4-Methylheptane (II) December 22, 1942		3-Ethylhexane December 9, 1942		$\begin{gathered} \text { 2,2-Dimethyl- } \\ \text { hexane } \\ \text { November } 19, \\ 1942 \end{gathered}$		$\begin{aligned} & \text { 2,3-Dimethyl- } \\ & \text { hexane } \\ & \text { November } 25 \text {, } \\ & 1942 \end{aligned}$									
	$m m \mathrm{Hg}$	${ }^{\circ} \mathrm{C}$ mm Hg		- C mm Hg		${ }^{\circ} C \quad m m \mathrm{Hg}$		${ }^{\circ} \mathrm{C}$ mm Hg		${ }^{\circ} \mathrm{C}$ mm Hg							
		118.605	779.38			119.439	779.32	107.731	779.31	116. 512	779.31						
119. 299	768.	118.079	768.02	118. 084	68.11	118.911	768.12	107. 209	768.09	115. 985	768.10						
118.703	755. 29	117.483	755.09	117. 489	755. 29	118.311	755. 29	106. 619	755.28	115. 384	755. 29						
117.593	732.11	116. 949	743.98	116. 958	732.11	117.777	744.05	106. 095	744.04	114.849	744.05						
		116. 376	731.96	116. 383		117.200	732.12	105. 526	732.11	114.271	732.12						
		111.029	627.87			111.829	627.93	100. 234	627.92	108.895	627.92						
		103.453	500.67			104. 217	500.70	92.741	500.70	101. 278	500.70						
$\begin{aligned} & 91.060 \\ & 84.707 \end{aligned}$	$\begin{gathered} 325.00 \\ 261.81 \end{gathered}$	96. 475	402.40			97. 204	402.46	85.839	402. 46	94.262	402. 46						
		89.943	324.98	83.610	$\begin{aligned} & 325.00 \\ & 261.82 \end{aligned}$	90.634	325.01	79.379	325.01	87.690	325. 01						
		83. 601	261.75			84.274	261.83	73.128	261.82	81.327	261.82						
		78.347	217.14			78.985	217.24	67.935	217. 22	76.044	217. 23						
		72.620	175.84			73.247	175.97	62.292	175.96	70.293	175.96						
$\begin{aligned} & \text { 69. } 400 \\ & 64.783 \end{aligned}$	$\begin{aligned} & 149.48 \\ & 124.69 \end{aligned}$	68.348	149.41		149.48124	68.957	149.49	58.082	149.47	66.010	149.48						
		63.746	124.53	63.760		64.331	124.70	53.546	124.69	${ }^{61.389}$	124.69						
		220	103. 6			59.784	103.69	49.087	103.69	56.842	103.69						
		55.261	87.76			55.794	87.76	45.173	87.75	52.857	87.75						
						5.84	77.	42.278	77.	49.911	77.33						
50.13446.630	$\begin{gathered} 67.28 \\ 57.46 \end{gathered}$	49.183	${ }^{67.3}$	49. 152	67.2957.47	49.673 46.165 67. 7.145		39.179 35.747 67. 57.		$46.750 \quad 67.29$							
		45.694		45.662				43.245									
				42.144			31.814			47.71	39. 239	47.71					
$\begin{gathered} \text { 2,4-Dimethyl- } \\ \text { hexane } \\ \text { December 1, } \\ 1942 \end{gathered}$		$\begin{aligned} & \text { 2,5-Dimethyl- } \\ & \text { hexane } \\ & \text { December } 2 \text {, } \\ & 1942 \end{aligned}$			$\begin{aligned} & \text { 3,3-Dimethyl- } \\ & \text { hexane } \\ & \text { November } 27, \\ & 1942 \end{aligned}$		$\begin{aligned} & \text { 3,4-Dimethyl- } \\ & \text { hexane } \\ & \text { December } 8, \\ & 1942 \end{aligned}$		2-Methyl-3ethylpentane December 10 , 1942		3-Methyl-3ethylpentane December 17, 1942						
				$m m \mathrm{Hg}$		$\begin{array}{c\|c\|} \hline \circ C_{18} & m m \mathrm{Hg} \\ 118.638 & 779.31 \\ \hline \end{array}$		$\begin{array}{c\|c} \hline{ }^{\circ} C_{6} & m \mathrm{~m} \mathrm{Hg} \\ 116.565 & 779.31 \\ \hline \end{array}$									
110.323	$\begin{array}{r} m \mathrm{Hg} \mathrm{Hg} \\ 79.31 \end{array}$			$112.877{ }^{\text {7 }}$													
109.801	768.11 755.29		768.11	112. 349	768.10	111. 108	768.12	116. 035	768.12	118. 648	768.12						
108. 681	$\begin{aligned} & 755.29 \\ & 744.05 \end{aligned}$	$\begin{aligned} & 108.881 \\ & 108.356 \end{aligned}$	744.05	111.208	744.05	116. 962	744.05	1114.88	754.	117.	755.29						
108. 109	$\begin{aligned} & 732.12 \\ & 627.93 \end{aligned}$	108.788	732.12	110.628	732.12	116. 382	732.12	114.306	732.12	116.889	732.12						
102.802		102.502	627.93	105. 232	627.92	110. 971	627.93	108.902	627.93	111. 376	627.94						
95. 284	627.93 500.70	95.01188.109	500.70	97.590	500.70	103.305	500.70	101. 245	500.70	103. 564	500.71						
88.358	$\begin{aligned} & 402.46 \\ & 325.02 \end{aligned}$		402. 46	90.552	402.46	96. 246	402. 46	94. 195	402.46	96.369	402.46						
81.874		$\begin{aligned} & 81.651 \\ & 75.398 \end{aligned}$	325. 01	83. 961	325.01	89.633	325. 01	87.590	325.01	89.632	325.01						
75.596	325.02 261.82 21		261.82	77.579	261.82	83.230	261.83	81. 198	261.83	83.109	261.83						
70.383	217.23 17.97 1	$\begin{aligned} & 75.398 \\ & 70.200 \\ & 64.552 \end{aligned}$	217.23	72. 282	217.23	77.910	217. 24	75. 888	217.24	77.693	217.24						
64.715			175.97	66.521	175. 96	72.126	175.97	70.114	175.97	71. 801	175.97						
60. 489	149.48 124	64. 552	149.48	62.228	149.48	67.810	149.49	65.810	149.49	67.404	149.49						
55.933		55. 802	124.70	57.598	124.69	63.158	124.70	61.168	124.70	62.665	124.70						
51. 452	124.70 103.69	51.331	103.69	53.041	103. 69	58.579	103. 69	56.588	103.69	58.002	103.69						
47.523 44.615	103.69 87 77 7		87.76	49.049	87.76	54.571	87.76	52.592	87.76	53. 918	87.76						
44.615		$\begin{aligned} & 47.416 \\ & 44.557 \end{aligned}$	77.33	46.093	77.33	51.598	77.33	49. 632	77.33	50.896	77. 33						
502	67.2957.47	44.517 41.41 1	67.29	42. 930	67. 29	48.413	67.29	46. 453	67. 29	47. 655	67. 29						
38. 048		37.97234.028	57.47	39. 407	57. 47	44.882	57.47	42. 935	57. 47	44.064	57.47						
34.092	+ 47.71		47.71	35. 402	47.71	40.832	47.71	38.903	47.71	39.950	47.71						

Table 2.-Experimental data for 52 hydrocarbons on the temperatures and pressures of the liquid-vapor equilibrium-Continued

t	P										
2, 2, 3-Trimethylpentane May 12, 1943		2, 2, 4-Trimethylpentane (I) March 25, 1942		2, 2, 4-Trimethylpentane (II) April 13, 1943		$\begin{gathered} 2,3,3 \text {-Tri- } \\ \text { methylpentane } \\ \text { November } 18, \\ 1942 \end{gathered}$		$\begin{gathered} 2,3,4 \text {-Tri- } \\ \text { methylpentane } \\ \text { December } 3, \\ 1942 \end{gathered}$		n-Nonane April 28, 1943	
C	$m m \mathrm{Hg}$	${ }^{\circ} \mathrm{C}$	$m m \mathrm{Hg}$	${ }^{\circ} \mathrm{C}$	Hg	${ }^{\circ} \mathrm{C}$	g	${ }^{\circ} \mathrm{C}$	Hg	${ }^{\circ} \mathrm{C}$	$m \mathrm{Hg}$
110.757	779.43	100.130	779.37	100.138	779.50	115. 688	779.31	114. 381	779.31	151.754	779.47
110.221	768.03	99.607	768.02	99.610	768. 10	115.144	768.09	113.852	768.11	151.195	768.07
109.618	755.29	99.014	755.22	99.022	755.32	114.532	755. 28	113. 241	755. 29	150.565	755.31
109. 078	744.08	98.487	743.97	98.495	744.13	113.985	744.04	112.703	744.05	150. 002	744.11
108. 496	732.11	97.917	731. 99	97.926	732.14	113.392	732.11	112.121	732.12	149. 394	732.13
103. 085	627.93	92.624	627.84	92.634	627.98	107.895	627.92	106. 702	627.93	143. 738	627.96
95. 422	500.69	85.131	500.65	85.141	500.76	100.107	500.70	99.028	500.70	135.721	500. 72
88.362	402.39	78.232	402.39	78.240	402.47	92.931	402.46	91.960	402.46	128.329	402.43
81.752	324.86	71. 778	324.98	71. 781	324.97	86.215	325.01	85.341	325.01	121.399	324.92
75.354	261.69	65.523	261.75	65.524	261.73	79.713	261.82	78.935	261.82	114.684	261.71
70.050	217.09	60.342	217.15	60.346	217.22	74.313	217.22	73.616	217.23	109.115	217.16
64.282	175.88	54.698	175.84	54.711	175. 91	68.447	175. 96	67.835	175.97	103.047	175.90
59.972	149.33	50.496	149.41	50.505	149.39	64. 068	149.47	63.517	149.48	98.491	149.36
55. 339	124. 53	45.975	124. 54	45.977	124.65	59.347	124. 69	58.865	124.70	93.610	124. 59
50.767	103.54	41.517	103. 68	41.519	103.67	54.711	103. 69	54.290	103.69	88.801	103.61
46.768	87.60	37.628	87.76	37.609	87.72	50.645	87.75	50.280	87.75	84.582	87.66
43.800	77.13	34.746	77. 34	34.722	77.28	47.635	77. 33	47. 305	77. 33	81.458	77.21
40.622	67.12	31.668	67.33	31.620	67.23	44.412	67.29	44.127	67.29	78.097	67.17
37.119	57.33	28. 249	57.49	28.201	57. 42	40.842	57.47	40.606	57. 47	74.388	57.38
33.094	47.59	24.358	47.79	24. 274	47. 66	36.752	47.71	36. 568	47.71	70.127	47.62
n-Decane April 30, 1943		n-Dodecane May 6, 1942		Cyclopentane April 20, 1943		Methylcyclopentane April 6, 1943		n-Propylcyclopentane May 14, 1943		Isopropyl-cyclopentaneMay 11,1943	
${ }^{\circ}{ }^{\text {175. }} 121$	$m m \mathrm{Hg}$	${ }^{\circ} \mathrm{C}$ C	${ }_{\text {mm }}^{779.39}$	$\begin{aligned} & { }^{\circ} C \\ & 50.031 \end{aligned}$	$7 m 9 \mathrm{Hg}$ 77	$\begin{gathered} \circ \\ 72.634 \end{gathered}$	$7 m \mathrm{Hg}$	$\begin{gathered} { }^{\circ}{ }^{C} \\ 131.878 \end{gathered}$	$m m \mathrm{Hg}$	$\begin{gathered} { }^{\circ} C \\ 127.359 \end{gathered}$	$m m \mathrm{Hg}$
174.538	768.07	216.712	767.95	49.587	768. 07	72.150	768.05	131. 326	768.42 768	126.810	779.44 768.04
173. 882	755.32	216. 006	755.10	49.073	755.30	71.612	755.29	130.706	755.28	126. 182	755.29
173. 295	744.11	215. 383	743.98	48. 621	744.10	71.128	744.10	130.152	744.07	125. 625	744.08
172. 661	732.13	214. 709	732.02	48.131	732.12	70.604	732.11	129.554	732.11	125. 024	732.11
166.772	627.97	208. 417	627.81	43.574	627.97	65. 739	627.96	123.991	627.93	119.431	627.94
158. 419	500.72	199. 488	500.67	37.119	500.74	58.847	500.73	116.108	500.67	111.508	500.68
150.718	402.44	191. 255	402. 44	31.172	402.45	52.499	402.46	108.840	402. 38	104. 204	402.39
143.495	324.91	183.537	325.01	25. 598	324.94	46.552	324.95	102. 028	324.85	97.363	324.87
136.499	261.71	176.039	261. 74	20.196	261. 71	40.791	261.74	95.437	261.69	90.734	261.70
130.690	217.15	169. 814	217.13	a 15.707 a	a 217.19	36. 013	217.20	89.964	217.09	85.237	217.11
124.372	175.90	163.030	175.84			30.816	175.91	84. 007	175.88	79.265	175.89
119.640	149.36	157. 986	149.39			26.935	149. 40	79. 559	149.32	74.788	149.33
114. 540	124. 58	152.529	124. 59			22.757	124.65	74.768	124.52	69.971	124. 54
109.526	103.60	147.152	103.63			a 18.642 a	a 103.66	70.042	103.54	65.234	103.56
105.118	87.65	142.444	87.73			a 15.035	a 87.73	65.896	87.59	61.071	87.61
101.859	77. 20	138.962	77. 30					62.837	77.13	57.999	77.15
98.352	67.16	135. 223	67. 29					59.539	67.11	54.694	67.12
94.481	57.37	131. 108	57. 48					55.904	57. 33	51.065	57.34
		126.381	47.74					51.737	47.59	46.880	47. 59
Cyclohexane April 14, 1943		Methylcyclohexane April 7, 1943		Ethylcyclohexane April 22, 1943		$\begin{aligned} & \text { cis-1,2-Di- } \\ & \text { methylcyclo- } \\ & \text { hexane } \\ & \text { February 16, } \\ & 1943 \end{aligned}$		trans-1,2-Di- methylcyclohexane February 9, 1943		$\begin{gathered} \text { cis-1,3-Di- } \\ \text { methylcyclo- } \\ \text { hexane } \\ \text { February } 17, \\ 1943 \end{gathered}$	
C		C				C		C		${ }^{\circ} \mathrm{C}$	
81.582	779.49	101. 832	779.46	132.742	779.48	130. 684	$\begin{aligned} & 1 m \mathrm{Hg} \\ & 779.38 \end{aligned}$	124.372	$\begin{array}{r} m \mathrm{Hg} \\ 779.31 \end{array}$	125. 391	$\begin{aligned} & 2 m \mathrm{Hg} \\ & 779.39 \end{aligned}$
81.093	768.09	101. 312	768.05	132.181	768.09	130.125	767.98	123.810	768.00	124.841	767.97
80.534	755.32	100.715	755.29	131.551	755.31	129.491	755.27	123.183	755.27	124.218	755.27
80.037	744.13	100. 185	744.10	130.988	744.12	128. 926	744.08	122.622	744.08	123.661	744.08
79.502	732.13	99.614	732.12	130.379	732.13	128.315	732.11	122.016	732.11	123.061	732.11
74. 520	627.98	94.299	627.96	124.723	627.97	122. 639	627.94	116. 384	627.94	117.475	627.94
67.467	500.76	86.771	500.74	116. 709	500.74	114. 600	500.73	108. 407	500.72	109.562	500.73
60.969	402. 48	79.840	402. 46	109.327	402. 46	107. 192	402.45	101.057	402.45	102. 274	402.45
54.884	324.96	73.349	324.95	102. 412	324.93	100. 258	324.96	94.178	324.97	95.450	324.97
48.991	261.73	67.067	261.74	95.716	261.72	93. 548	261.76	87.519	261.77	88.842	261.76
44. 108	217.22	61.857	217.20	90.158	217.19	87.974	217.18	81.991	217.19	83.362	217.18
38.798	175.91	56.194	175.91	84.115	175.90	81.921	175.90	75.979	175.91	77.402	175.90
34.821	149.39	51.964	149.40	79. 587	149.38	77. 402	149.44	71.497	149.45	72.958	149.44
30.556	124.65	47.407	124.65	74.738	124.62	72. 533	124.67	66. 664	124.68	68.168	124.67
26. 347	103.67	42. 929	103. 66	69.948	103. 64	67.742	103.66	61.910	103.67	63.453	103.67
22. 657	87.72	38. 998	87.73	65.755	87.69	63.543	87.73	57.748	87.73	59.316	87.73
19.915	77.28	36.089	77.28	62.655	77.25	60,429	77.29	54.668	77.30	56. 261	77.29
		32.976	67.22	59.315	67.20	57. 094	67.25	51.365	67.25	52.983	67.25
		29.533	57.42	55.636	57.40	53.413	57.42	47.710	57.42	49.351	57.42
		25. 586	47.66	51.412	47.64	49.185	47.65	43.520	47.66	45.195	47.65

- This point was not used in the evaluation of the constants A, B, and C of the Antoine equation.

Table 2．－Experimental data for 52 hydrocarbons on the temperatures and pressures of the liquid－vapor equilibrium－Continued

	P		P		P		P	t	P		
trans－1，3－Di－ methylcyclo－ February 11 Februar				trans－1，4－Di－ methylcyclo－ February February1943		n－Propylcyclo－ hexane April 27， 1943		$\begin{gathered} \text { Benzene } \\ \text { March 10, } 1943 \end{gathered}$		Toluene March 11， 1943	
	$m m \mathrm{Hg}$		$m m \mathrm{Hg}$		$m m \mathrm{Hg}$		$m m$ Hg		m Hg		
121．026		${ }_{124.712}^{125.263}$		119． 739	${ }_{767 \text { 799 }}$	157． 114	779.47 768.07	${ }_{80.442}^{80}$	779．34	111.509 110.991	${ }_{76795}^{779.34}$
119.856	755.27	124．0	755	119．117		156． 46	755.31	${ }^{79.898}$	755.23	110．403	755.24
${ }_{119.303}$	${ }_{732.11}^{74.08}$	${ }_{122.929}^{123.530}$	${ }_{732.11}^{74.08}$	${ }_{117.964}^{118.561}$	${ }_{732}$	155． 879	${ }_{732}^{744.11}$	79．413	${ }_{732} 74.04$	${ }_{109}^{109.879}$	${ }^{744.05}$
113．153	627.	117．330	627	112． 385	627.94	149． 322	627.96	74.028	627.93	104．037	627． 93
044	${ }_{402}^{500}$	${ }_{1020}^{109.397}$	500． 75	104．487		140．930	S00． 72	㐌． 78.135	500． 69	${ }_{89}^{96.559}$	500．68
	324．97	${ }_{95} \mathbf{2 5 5}$	324．98	90．403	324．98	125.962	324．92	54．832	324． 93	${ }_{83.202}$	324.93
84． 694	${ }^{261 .}$		${ }^{261.76}$	${ }^{83.812}$	${ }^{261.77}$	118． 947	${ }^{261.71}$	49.066	${ }^{261.75}$	76．942	261.75
${ }_{73}^{79.341}$	${ }_{175.91}^{217.19}$	3．141	217.18 175 18	78．338	${ }_{175}^{217}$	113．124	217.17 175	4． 4.284	217．16	71.738 667	${ }^{217.16}$
	149．45	${ }_{72} 7.708$	149.44	67． 957	149．45	102． 064	149．36	35．191	149．43	66.079 61.851	179.89 149 18.
${ }_{59}^{64.135}$	${ }_{103}^{124}$	67．911	${ }_{\text {103 }}^{124.67}$	63．183	${ }_{103}^{124.67}$	96．973	124．60	31．004	124．67	${ }_{5 .}^{57.293}$	${ }^{124.67}$
	${ }_{87.73}$	59．045	87．73	54． 364		87． 555	${ }_{87.67}$	23．270	87.		
298		55．984		51.316		84.304	77． 22	${ }^{20.594}$	77.	45.	28
				48.045 44.424	67． 25 57.42	80． 805	67． 18 57 58	17．720	67． 22		
${ }_{41.284}^{40}$	${ }_{47}$	44．894		40． 282	${ }_{47}^{57.65}$	${ }_{72.515}$				39.343 35.366	－${ }^{57.41}$
Ethylbenzene March 9， 1943		$\begin{gathered} \text { o-Xylene } \\ \text { March 2, } 1943 \end{gathered}$		m－Xylene March 4， 1943		$\begin{gathered} p \text {-Xylene } \\ \text { February } \\ 1943 \end{gathered}$		$\begin{gathered} n \text {-Propyl- } \\ \text { benzene } \\ \text { February } 24, \\ \text { 1943 } \end{gathered}$		$\begin{gathered} \text { Isopropyl- } \\ \text { benzene } \\ \text { February } 25 \text {, } \\ 1943 \end{gathered}$	
	$m m \mathrm{Hg}$		m_{Hg}								
l 137.124	779.34 767.95	145.367 144.809	767.95	140.041 139.493	${ }_{767.95}^{779}$	139．289	${ }^{779.368}$	160．202	779.39	${ }^{153.367}$	
${ }^{1355.954}$	755.24	144.176	755． 25	138.869	755.25	138．114	755.27	${ }_{158.972}$	755.27	152． 152	${ }_{755.27}$
135.399 134.800	${ }_{732} 74$	${ }_{143}^{143}$	743	138.314 137 13	${ }_{7} 742$	137． 558	${ }_{7} 74.07$	158．389	${ }^{742} 08$	${ }^{151.576}$	${ }^{742.08}$
129．221	627.	${ }_{137.3}^{143}$	627		${ }_{627.93}$	${ }_{\text {131．}}^{135}$	${ }_{627.93}$	${ }_{151}^{157}$	${ }_{627.94}^{732.11}$	${ }^{56}$	
121．312	500	129．318	500.71	124． 205	500.70	123．409	500.71	143．598	500.72	${ }_{136.983}$	500.72
183	${ }_{324}^{402}$	114．9	${ }_{324}^{402}$	${ }_{110}^{116 .}$	年22．444	116.083	402．45	135．942	${ }^{402.44}$	129．433	${ }^{402.44}$
100.561	${ }_{261.75}^{324 .}$	108．227	${ }_{261.75}^{324.94}$	${ }_{103.396}^{10.041}$	261.75	102． 546	261． 78	${ }_{121.807}^{128.764}$	${ }_{261.76}^{324.95}$	${ }_{1}^{115.495}$	${ }_{261.76}^{324.95}$
	${ }_{175}^{217}$	102	${ }_{175}^{217}$		${ }^{2175} 817$	97．013	217.19	116.032	217．18	109．802	18
84.597	14	91	149.44	87.367	149．44	86．488	149．45	105．046	149． 44	103.604 98.975	175.89 149.48
		${ }_{82}^{87}$	${ }_{103}^{124 .}$	522	${ }_{103}^{124.67}$	81． 836	124．68	99．986	124．67	93． 991	${ }^{124.67}$
70.862	${ }^{187} 7$	77．92	10．	73.558	87．74	${ }_{72.657}$	103． 73	90．622	87．73	${ }_{84.768}$	－${ }_{\text {87．73 }}^{10366}$
						69.549		87．383	29	81.579	29
986	57．41		57． 41	63．436	${ }_{57}^{67}$	62． 523	57．43	80．064	－6．${ }^{64} .41$	74.3	67． 57.41
589	47.68	63.460	源	59．203	47.67	58.288	47.	75.6	47.6	70.020	47．65

VI．CORRELATION OF THE DATA WITH THE ANTOINE EQUATION

1．METHOD OF CORRELATION

The simple vapor－pressure equation

$$
\begin{equation*}
\log _{10} P=A-(B / T), \tag{1}
\end{equation*}
$$

where T is the absolute temperature in degrees Kelvin，has not proved adequate for the representation of accurate vapor pressure data．A simple modification of eq 1，originally proposed by Antoine ［5］，is

$$
\begin{equation*}
\log _{10} P=A-B /(C+t) \tag{2}
\end{equation*}
$$

where t is the temperature in degrees centigrade. The change is thus equivalent to the substitution of the constant C for the ice point, $273.16^{\circ} \mathrm{K}$, in eq 1 . The Antoine equation has been discussed in detail in a report by G. W. Thomson [6]. The equation has been used successfully by E. R. Smith to represent precise vapor-pressure data over the range 100 to $1,500 \mathrm{~mm}$ [7], and has been used by a number of other workers to represent data of moderate precision at higher pressures [6]. Advantages of the Antoine equation are the small number of constants and the fact that the equation may easily be inverted to yield explicitly the temperature corresponding to a given pressure. In addition, there is reason to believe that extrapolation, especially to higher pressures, by means of the Antoine equation is more reliable than for many other equations commonly used.
All the data obtained in the present investigation have been correlated by means of the Antoine equation, and the results show that the equation is entirely adequate to represent the vapor pressures of a wide variety of hydrocarbon liquids over the range 50 to 800 mm .

The constants of the Antoine equation were adjusted by the method of least squares to fit the experimental data on each compound. Certain advantageous simplifications in the calculations were obtained by rewriting the Antoine equation, eq 2, in a different form. Although this modification simplifies the final calculations, the derivation of the necessary equations is complicated, and will therefore be given in some detail.

Equation 2 may be written in the form

$$
\begin{equation*}
(A-\log P)(C+t)-B=0, \tag{3}
\end{equation*}
$$

or, on multiplying out the left side, and making a transformation to new constants,

$$
\begin{array}{lll}
a=A & & A=a \\
b=(A C-B) & \text { or } & B=-(a c+b) \tag{4}\\
c=-C & & C=-c
\end{array}
$$

eq 3 becomes

$$
\begin{equation*}
F(P, t ; a, b, c)=(a t+b+c \log P-t \log P)=0 \tag{5}
\end{equation*}
$$

Equation 5 is another form of the Antoine equation. It will be observed that eq 5 is linear in the constants a, b, and c, whereas neither eq 2 or eq 3 is linear in A, B, and C. Equation 5 may consequently be fitted to the data by least squares without the necessity of making initial estimates of the constants, as would be necessary for eq 2 or eq 3. However, it is convenient, in using eq 5, to make initial estimates of a, b, and c, in order to reduce the number of significant figures necessary in the subsequent least-squares calculation. The initial approximations, say a_{0}, b_{0}, and c_{0}, may be calculated from three selected experimental points, at a low, an intermediate, and a high pressure. Three simultaneous linear equations of the form of eq 5 are obtained, the solution of which yields a_{0}, b_{0}, and c_{0}. For eq 2 or eq 3, three simultaneous nonlinear equations are obtained, and the solution for A, B, and C is more difficult.

Substitution of a_{0}, b_{0}, and c_{0} in eq 5 yields the function

$$
\begin{equation*}
F_{0}\left(P, t ; a_{0}, b_{0}, c_{0}\right)=\left(a_{0} t+b_{0}+c_{0} \log P-t \log P\right) . \tag{6}
\end{equation*}
$$

By adding and subtracting F_{0} to eq 5 there is obtained

$$
\begin{equation*}
f\left(P, t ; F_{0} ; \alpha, \beta, \gamma\right)=\left(\alpha t+\beta+\gamma \log P+F_{0}\right)=0, \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha=\left(a-a_{0}\right) \\
& \beta=\left(b-b_{0}\right) \tag{8}\\
& \gamma=\left(c-c_{0}\right)
\end{align*}
$$

are the corrections to be added to the initial approximations, a_{0}, b_{0}, and c_{0}, to obtain the final adjusted values a, b, and c.

Equation 7 is the form of the Antoine equation used in setting up the normal equations of the method of least squares. The small quantities α, β, and γ are to be adjusted to minimize the weighted sum of the squares of the residuals,

$$
\begin{equation*}
S=\sum w^{i}\left(f^{i}\right)^{2}, \tag{9}
\end{equation*}
$$

where f^{t} is the value of f when P and t are replaced by the experimental values P^{i} and t^{i}, and the sum is over all the experimental points. The weight of the i th point, w^{i}, is defined below. The normal equations, which are three simultaneous linear equations to be solved for α, β, and γ, are [18]

$$
\begin{align*}
& \left(\sum_{i} w_{j}^{i} f_{\alpha}^{i} f_{\alpha}^{i}\right) \alpha+\left(\sum_{i} w_{f_{\alpha}^{i}}^{i} f_{\beta}^{i}\right) \beta+\left(\sum w^{i} f_{\alpha}^{i} f_{\gamma}^{i}\right) \gamma=\sum w^{i} f_{\alpha}^{i} f_{0}^{i} \\
& \left(\sum_{i} w_{j}^{i} f_{\beta}^{i} f_{\alpha}^{i}\right) \alpha+\left(\sum_{i} w_{j}^{i} f_{\beta}^{i} f_{k}^{\prime}\right) \beta+\left(\sum_{i} w^{i} f_{\beta}^{i} f_{\gamma}^{i}\right) \gamma=\sum w^{i} f_{\beta}^{i} f_{0}^{i} \tag{10}\\
& \left(\sum_{i} w_{f}^{i} f_{\alpha}^{i} f_{\alpha}^{i}\right) \alpha+\left(\sum_{i} w_{j}^{i} f_{\gamma}^{i} f_{\beta}^{f}\right) \beta+\left(\sum_{i} w_{j}^{i} f_{\gamma}^{i} f_{\gamma}^{i}\right) \gamma=\sum w_{j}^{i} f_{\gamma}^{i} f_{0}^{j}
\end{align*}
$$

where

$$
\begin{align*}
& f_{\alpha^{i}}^{i}=(\partial f / \partial \alpha)^{i}=t^{i} \\
& f_{b}^{i}=(\partial f / \partial \beta)^{i}=1 \tag{11}\\
& f_{\gamma}=(\partial f / \partial \gamma)^{i}=\log P^{i}
\end{align*}
$$

and

$$
\begin{align*}
f_{0}{ }^{i} & =f\left(P^{i}, t^{i} ; F_{0}{ }^{i} ; 0,0,0\right)=F_{0}{ }^{i} \\
& =\left(a_{0} t^{i}+b_{0}+c_{0} \log P^{i}-t^{i} \log P^{i} .\right. \tag{12}
\end{align*}
$$

These quantities are to be evaluated for each experimental point (P^{i}, t^{i}), and the sums in eq 10 are over all the points.
It will be observed that the coefficients (sums) on the left side of the normal equations have a simple form, and do not contain the initial estimates of the constants, as would be the case if the normal equations were set up for eq 2 or eq 3 . This is a consequence of the linearity of eq 7 with respect to α, β, and γ, and is the principal advantage of the use of this equation.

It can be seen from eq 5 and eq 12 that the quantities $f_{0}{ }^{i}$ which are computed in setting up the normal equations will be small and will
clearly reflect any irregularities in the data. It is therefore possible, by inspection of the quantities $f_{0}{ }^{i}$, to make a preliminary evaluation of the precision of the data before the least squares calculation is carried out.

The weights w (the indices i will be omitted for simplicity) are given by the relation

$$
\begin{equation*}
w=\left(1 / \sigma_{f}^{2}\right), \tag{13}
\end{equation*}
$$

where σ_{f} is the expected standard deviation of the function f, of eq 7 , from the value zero. σ_{f} is calculated from the relation

$$
\begin{equation*}
\sigma_{f}^{2}=f_{t}^{2} \sigma_{t}^{2}+f_{\log P}^{2} \sigma_{\log P}^{2}, \tag{14}
\end{equation*}
$$

where σ_{t} and $\sigma_{\log P_{P}}$ are the expected standard deviations (of a single value) of t and $\log P$, and

$$
\begin{align*}
f_{t} & =(\partial f / \partial t)=\alpha+\left(\partial F_{0} / \partial t\right)=\left(\alpha+a_{0}-\log P\right) \\
& =(a-\log P)=(A-\log P) \tag{15}\\
f_{\log P} & =(\partial f / \partial \log P)=\gamma+\left(\partial F_{0} / \partial \log P\right)=\left(\gamma+C_{0}-t\right) \\
& =(c-t)=-(C+t)
\end{align*}
$$

As the data approximately satisfy eq 3 ,

$$
\begin{equation*}
f_{\log P \cong} \cong-B /(A-\log P) \tag{16}
\end{equation*}
$$

The weight w can be evaluated only approximately because of the inherent uncertainty in σ_{t} and $\sigma_{\log P}$. It is therefore permissible to use approximate values of A and B in calculating f_{t} and $f_{\text {log } P \text {. The }}$ average value of 6.8 for A and 1,250 . for B were used in all the calculations of this report.
$\sigma_{\log P}$ may be replaced by $\left(\sigma_{P} / P\right)$, where σ_{P} is the standard deviation of the pressure. In view of the experimental method, σ_{P} should be representable by an expression of the form

$$
\begin{equation*}
\sigma_{P}{ }^{2}=\sigma_{P_{0}}{ }^{2}+\left(\frac{d P}{d t}\right)_{w}^{2} \sigma_{t_{0}}{ }^{2} \tag{17}
\end{equation*}
$$

where $\sigma_{P_{0}}$ is the standard deviation of the pressure in the vapor pressure measurements, $\sigma_{t_{0}}$ is the standard deviation of the temperature in the calibration measurements with water, and $(d P / d t)_{w}$ is the temperature coefficient of the vapor pressure of water at the given pressure. The measure of σ_{P} adopted was the root-mean-square value of the difference in the observed pressure for successive calibrations at a given contact. It was found that these values of σ_{P} were satisfactorily represented by eq 17 with $\sigma_{P_{0}}= \pm 0.06 \mathrm{~mm} \mathrm{Hg}$ and $\sigma_{t_{0}}= \pm 0.003$ degree centigrade. The corresponding values of σ_{P} vary from ± 0.06 mm Hg at the lowest pressure to $\pm 0.11 \mathrm{~mm} \mathrm{Hg}$ at the highest pressure. σ_{t} in eq 12, the standard deviation of the temperature in the vapor pressure measurements, was also taken as ± 0.003 degree centigrade. Finally, the weights, one weight for each contact (or
pressure), were calculated from eq 13 to 17 . The use of this single set of weights for all the calculations reduced considerably the labor of the calculations.

The evaluation of α, β, and γ by the solution of eq 19 completes the least squares calculation. The adjusted values of the constants A, B, and C, to be used in the original form of the Antoine equation, eq 2 , are then calculated from eq 4 and eq 8.

It is not difficult to show that the adjusted values of A, B, and C should satisfy the relations

$$
\begin{align*}
& \sum_{i} w^{i}\left[\left(A-\log P^{i}\right)\left(C+t^{t}\right)-B\right] t^{t}=0 \\
& \sum_{i} w^{i}\left[\left(A-\log P^{i}\right)\left(C+t^{i}\right)-B\right]=0 \tag{18}\\
& \sum_{i} w^{i}\left[\left(A-\log P^{i}\right)\left(C+t^{i}\right)-B\right] \log P^{i}=0 .
\end{align*}
$$

In practice, these sums are found to be very nearly but not exactly zero, because of the accumulation of numerical errors in the least squares calculation. A readjustment of A, B, and C by using these three relations would be equivalent to a second least squares calculation and equally laborious. However, it is easy to make a final small adjustment of B by using the second relation of eq 18 , which is equivalent to a second least squares calculation (minimization of S) in which, however, A and C are held constant. The small correction to be added to B is

$$
\begin{equation*}
\sum_{i} w^{i}\left[\left(A-\log P^{i}\right)\left(C+t^{i}\right)-B\right] / \sum_{i} w^{i} . \tag{19}
\end{equation*}
$$

This correction was applied in the present calculations. The final values of A, B, and C are therefore very nearly those which minimize the quantity S.

A simple measure of the precision with which the Antoine equation fits the data on a given compound may be obtained from the weighted sum of the squares of the residuals, S. The quantity S is obtained in the course of the solution of the normal equations, without the necessity of computing the individual residuals for each point. From eq 9 and eq $13, S$ is given by

$$
\begin{equation*}
S=\sum_{i}\left(f^{i} / \sigma_{f}^{i}\right)^{2}, \tag{20}
\end{equation*}
$$

where f^{i} is the actual deviation of the function f of eq 7 from zero for the given point (P^{i}, t^{i}), and $\sigma_{f}{ }^{i}$ is the expected deviation calculated from eq 14 , with the previously stated values for σ_{t} and σ_{P}. $\left(f^{i} / \sigma_{f}{ }^{i}\right)$ is thus the ratio of the actual to the expected error for the given point. Therefore, if the number of points in the given set of data is designated by n,

$$
\begin{equation*}
\rho=(S / n)^{1 / 2}=\left[\frac{1}{n} \sum_{i}\left(f^{i} / \sigma_{f}^{i}\right)^{2}\right]^{1 / 2} \tag{21}
\end{equation*}
$$

is the root-mean-square value of the ratios of the actual deviations to the expected deviations. The actual deviations, f^{i}, from the value zero may be a result of errors in the measurement of the temperature and pressure or caused by the failure of the Antoine equation to represent exactly the true pressure-temperature relation. The ratio ρ is an averaged measure of these errors.

2. RESULTS OF THE CORRELATION

The values of the three constants of the Antoine equation for vapor pressures, obtained from the data in table 2 as described in the preceding section, are given in table 3 , together with the ranges of pressure and temperature over which the experimental data were obtained (and over which, therefore, the resulting equation for each compound is applicable without loss of accuracy). The values of the boiling point, and the pressure coefficient of the boiling point, at 760.00 mm Hg , calculated from the Antoine equation are also given.

In those cases in which two series of measurements on a single compound are given in table 2, the constants in table 3 were derived from the series of more recent date. The earlier series agrees satisfactorily with the equation in every case.
The last column of table 3 gives, for each compound, the root-mean-square value, ρ, of the ratios of the deviations of the observed points from the Antoine equation to the expected standard deviations. The expected deviations were calculated on the basis of standard deviations (of a single value) of ± 0.003 degree centigrade in the temperature and ± 0.06 to $\pm 0.11 \mathrm{~mm} \mathrm{Hg}$ in the pressure, for the lowest and highest pressures, respectively. The values of ρ for the 52 compounds vary from 0.09 to 0.52 , while the over-all value of ρ, computed for the total of 913 points on 52 compounds, is 0.33 . It seems reasonable to conclude that the over-all standard deviations in the measurements were about ± 0.001 to ± 0.002 degree centigrade in the temperature, and ± 0.02 to $\pm 0.04 \mathrm{~mm} \mathrm{Hg}$ in the pressure, although it is not possible to separate unambiguously the errors in temperature and pressure. The expected deviations were arrived at from a study of the deviations in the calibration curves of figure 7. As the actual deviations are considerably smaller, it may be concluded that a large part of the variation in the calibration curves represented true changes in pressure at the contacts, and that interpolation on the calibration curves yielded the pressures with the smaller deviations observed.

Table 3.-Summary of the results of the correlation of the experimental data with the Antoine equation for vapor pressures

Compound	Formula	Constants of the Antoine equation $\log _{10} P=A-B /(C+t)$, or $t=B /\left(A-\log _{10} P\right)-C$. (P in mm Hg ; t in ${ }^{\circ} \mathrm{C}$).			$\begin{array}{\|c} \text { Normal } \\ \text { boiling } \\ \text { point at } \\ 760 \mathrm{~mm} \mathrm{Hg} \end{array}$	Pressure coefficient $d t / d P$, at 760 mm Hg	Range of measurement		$\begin{gathered} \text { Measure } \\ \text { of } \\ \text { precision } \\ \rho \end{gathered}$
		A	B	C			Pressure	Temperature	
PARAFFINS									
					C	$\operatorname{deg} \mathrm{C} / m \mathrm{~m}$			
n-Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	6. 87372	1075.816	233.359	36.073	0.03856	325 to 780	13.3 to 36.8	0.23
2-Methylbutane (Isopentane)	$\mathrm{C}_{5} \mathrm{H}_{12}$	6.78967	1020.012	233.097	27.852	. 03815	501 to 780	16.3 to 28.6	. 11
n-Hexane--	$\mathrm{C}_{6} \mathrm{H}_{14}$	6. 877776	1171. 530	224. 366	68.740	. 04191	88 to 780	13.0 to 69.5	. 41
2-Methylpentane	$\mathrm{C}_{6} \mathrm{H}_{14}$	6. 83910	1135. 410	226.572	60.271	. 04141	125 to 780	12.8 to 61.1	. 10
3-Methylpentane.....	$\mathrm{C}_{6} \mathrm{C}_{6} \mathrm{H}_{14}$	6.84887	1152.368 1081.176	227.129 229.343	63.282 49.741	. 04182	125 to 780	15.3 to 64.1 15.4 to 50.5	.09 .41
2, 3-Dimethylbutane.	$\mathrm{C}_{6} \mathrm{H}_{14}$	6. 80983	1127.187	228.900	57. 988	. 04173	149 to 780	14.3 to 58.8	. 12
n-Heptane -	$\mathrm{C}_{7} \mathrm{H}_{16}$	6. 90342	1268.636	216.951	98. 426	. 04480	48 to 780	25. 9 to 99.3	. 48
2, 2-Dimethylpentane	$\mathrm{C}_{7} \mathrm{H}_{16}$	6. 81509	1190. 298	223.343	79. 203	. 04394	67 to 780	15.3 to 80.1	. 39
3, 3-Dimethylpentane	$\mathrm{C}_{7} \mathrm{H}_{16}$	6. 81813	1223.543	224.687	86.069	. 04510	48 to 780	13.4 to 86.9	. 36
n-Octane --.----------	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 92377	1355. 126	209. 517	125. 665	. 04738	58 to 780	52.9 to 126.6	. 49
2-Methylheptane	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 91737	1337.468	213. 693	117. 647	. 04691	48 to 780	41.7 to 118.5	. 40
3-Methylheptane	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 899945	1331. 530	212. 414	118. 925	. 04712	48 to 780	42.7 to 119.8	. 38
4-Methylheptane	$\mathrm{C}_{88} \mathrm{H}_{18}$	6. 900065	1327. 661	212. 568	117.709	. 04695	48 to 780	41.7 to 118.6	. 46
3-Ethylhexane-..---	$\mathrm{C}_{88} \mathrm{CH}_{8} \mathrm{H}_{18}$	6.89099 6.83716	1327.884 1273.594	212.595	118.534 106.840	. 04719	48 to 780	42.1 31.8 to 119.4 to	.37 .35
2, 3-Dimethylhexane	$\mathrm{C}_{8} \mathrm{H}_{18}$	6.87004	1315. 503	214.157	115. 607	. 04724	48 to 780	39.2 to 116.5	. 26
2, 4-Dimethylhexane	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 85306	1287.876	214.790	109.429	. 04664	48 to 780	34.1 to 110.3	. 31
2, 5-Dimethylhexane -	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 85984	1287.274	214. 412	109.103	. 04646	48 to 780	34.0 to 110.0	. 45
3, 3-Dimethylhexane-	$\mathrm{C}_{8} \mathrm{H}_{18}$	6.85122	1307.882	217. 439	111. 969	. 04741	48 to 780	35.4 to 112.9	. 28
3, 4-Dimethylhexane-	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 87986	1330.035	214.863	117.725	. 04752	48 to 780	40.8 to 118.6	. 32
2-Methyl-3-ethylpentane	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 86358	1318. 120	215. 306	115.650	. 04749	48 to 780	38.9 to 116.6	. 43
3-Methyl-3-ethylpentane	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 86731	1347. 209	219. 684	118. 259	. 04844	48 to 780	40.0 to 119.2	. 26
2, 2, 3-Trimethylpentane.	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 82546	1294.875	218. 420	109.841	. 04755	48 to 780	33.1 to 110.8	. 37
2, 2, 4-Trimethylpentane.	$\mathrm{C}_{8} \mathrm{H}_{18}$	6. 81189	1257.840	220.735	99.238	. 04651	48 to 780	24. 4 to 100.1	. 32
2, 3, 3-Trimethylpentane-	$\mathrm{C}_{8} \mathrm{H}_{18}$	6.84353	1328.046	220.375	114. 760	. 04833	48 to 780	36.8 to 115.7	. 35
2, 3, 4-Trimethylpentane.	$\mathrm{C}_{88} \mathrm{C}_{1} \mathrm{H}_{18}$	6. 854396	1315.084 1435.158	217.526	113.467 150.796	. 04761	$48 \text { to } 780$	36. 6 to 114.4	. 29
n-Nonane.-	$\mathrm{C}_{9} \mathrm{H}_{20}$	6. 94495 6. 95367	1435.158	202. 331	150.796	. 04965	$48 \text { to } 780$	70. 1 to 151.8	. 37
n-Decane.	$\xrightarrow[\mathrm{C}_{12} \mathrm{H}_{26}]{\mathrm{C}_{2} \mathrm{H}_{22}}$	6. 95367 6. 98059	1501. 268	194. 480	174.123 216.278	.05172 .05528	57 to 780 48 to 780	94. 5 to 175. 1	. 40
-Dodecane.	$\mathrm{C}_{12} \mathrm{H}_{26}$	6. 98059	1625.928	180.311	216.278	. 05528	48 to 780	126.4 to 217.3	. 25

a See footnote at end of table.

Table 3.-Summary of the results of the correlation of the experimental data with the Antoine equation for vapor pressures-Continued

Compound	'Formula	Constants of the Antoine equation $\log _{10} P=A-B /(C+t)$, or $t=B /\left(A-\log _{10} P\right)-C$. (P in mm Hg ; t in ${ }^{\circ} \mathrm{C}$).			$\begin{gathered} \text { Normal } \\ \text { boiling } \\ \text { point at } \\ 760 \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Pressure coefficient $d t / d P$, at 760 mm Hg	Range of measurement		$\begin{gathered} \text { Measure } \\ \text { of } \\ \text { precision } \\ \rho \end{gathered}$
		A	B	C			Pressure	Temperature	
NAPHTHENES									
					${ }^{\circ} \mathrm{C}$	deg C / mm	$m m \mathrm{Hg}$	${ }^{\circ} \mathrm{C}$	
Cyclopentane	$\mathrm{C}_{5} \mathrm{H}_{10}$	6.87798	1119.208	230.738	49. 262	0.04003	217 to 780	15.7 to 50.0	0.26
Methylcyclopentane	$\mathrm{C}_{6} \mathrm{H}_{12}$	6. 86283	1186.059	226. 042	71.812	. 04274	88 to 780	15.0 to 72.6	. 27
n-Propylcyclopentane	$\mathrm{C}_{8} \mathrm{H}_{16}$	6. 89887	1380.391	212.610	130. 937	. 04886	48 to 780	51.7 to 131.9	. 52
Isopropylcyclopentane	$\mathrm{C}_{8} \mathrm{H}_{16}$	6. 88083	1375. 564	217.475	126.415	. 04913	48 to 780	46. 9 to 127.4	. 24
Cyclohexane -...-.	$\mathrm{C}_{6} \mathrm{H}_{12}$	6. 844988	1203. 526	222.863	80.738	. 04376	77 to 780	19.9 to 81.6	. 42
Methylcyclohexane	$\mathrm{C}_{7} \mathrm{C}_{8} \mathrm{H}_{14}$	6.82689	1272.864 1384	221.630 215.128	100.934 131.783	.04671 .04969	48 to 780 48 to 780	25.6 to 101.8 51.4 to 132.7	.29 .29
cis-1, 2-Dimethylcyclohexane	$\mathrm{C}_{8} \mathrm{H}_{18}$	6.84164	1369. 525	216.040	129.728	. 049498	48 to 780	49.2 to 130.7	. 29
trans-1, 2-Dimethylcyclohexane	$\mathrm{C}_{8} \mathrm{H}_{16}$	6.83722	1356. 100	219.342	123. 419	. 04951	48 to 780	43.5 to 124.4	. 28
cis-1, 3-Dimethylcyclohexane.-.	$\mathrm{C}_{8} \mathrm{H}_{16}$	6. 83866	1345.859	215.598	124.450	. 04910	48 to 780	45.2 to 125.4	. 18
trans-1, 3-Dimethylcyclohexane	$\mathrm{C}_{8} \mathrm{H}_{16}$	6. 84293	1340.658	218. 281	120.088	. 04880	48 to 780	41.3 to 121.0	. 23
cis-1, 4-Dimethylcyclohexane	$\mathrm{C}_{8} \mathrm{H}_{16}$	6. 83699	1347. 794	216. 360	124. 321	. 04921	48 to 780	44.9 to 125.3	. 23
trans-1, 4-Dimethylcyclohexane	$\mathrm{C}_{8} \mathrm{H}_{16}$	6. 82180	1332.613	218. 791	119.351	. 04903	48 to 780	40.3 to 120.3	. 17
n-Propylcyclohexane-.--------	$\mathrm{C}_{9} \mathrm{H}_{18}$	6. 88288	1457.640	207.511	156.711	. 05201	48 to 780	72.5 to 157.7	. 36
AROMATICS									
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	6. 89324	1203.835	219. 924	80.103	0.04273	57 to 780	14. 5 to 80.9	0.24
Toluene.	$\mathrm{C}_{7} \mathrm{H}_{8}$	6. 95337	1343.943	219. 377	110.623	. 04630	48 to 780	35.4 to 111.5	. 40
Ethylbenzene	$\mathrm{C}_{8} \mathrm{H}_{10}$	6. 94998	1419.315	212. 611	136.187	. 04898	48 to 780	56.6 to 137.1	. 29
0 -Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	6. 99937	1474.969	213.714	144.414	. 04969	48 to 780	63.5 to 145.4	. 31
m-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	7. 00343	1458.214	214. 609	139. 102	. 04903	48 to 780	59.2 to 140. 0	. 32
p-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	6. 98648	1450.688	214. 990	138.348	. 04918	48 to 780	58.3 to 139.3	. 24
n-Propylbenzene.-	$\mathrm{C}_{9}^{\mathrm{C}_{9} \mathrm{H}_{12}}$	6.95178 6.92929	1491.548 1455.811	207. 171 207.202	159.216 152.393	. 05143	48 to 780 48 to 780	75.6 to 160.2 70.0 to 153.4	.27 .29

a See text, section VI.

VII. DISCUSSION

The data obtained in this investigation show clearly several simple correlations between the values of the " B " and " C " constants of the Antoine equation and molecular structure for the compounds of the several classes.

Figures 8 and 9 give plots of the values of the " B " and " C " constants, respectively, of the Antoine equation as a function of the number of carbon atoms in the molecule for several members of the series of normal paraffins, alkylcyclopentanes, alkylcyclohexanes, and alkylbenzenes. From correlations such as these, values of the " B " and " C " constants may be estimated with reasonable certainty for neighboring higher members of these series. With two constants so determined, the normal boiling point would fix the third constant, A,

Figure 8.-Values of the " B " constant of the Antoine equation as a function of the number of carbon atoms in the molecule, for the several different classes of compounds investigated.
The scale of ordinates gives the value of the " B " constant and the scale of abscissas gives the number of carbon atoms in the molecule.
and thus permit setting up the complete vapor-pressure equation from a knowledge only of the boiling point at one pressure.
Figure 10 gives, from the data on the hexanes, heptanes, and octanes, a plot of the values of the difference, between a normal paraffin and a given isomer, of the " B " constant of the Antoine equation as a function of the difference in the normal boiling point of the two isomers. Figure 11 gives, from the data on the hexanes, heptanes, and octanes, a plot of the values of the difference, between a normal paraffin and a given isomer, of the " C " constant of the Antoine equation as a function of the number of tertiary and quaternary carbon. atoms in the molecule. Correlations of this kind make possible the prediction of vapor pressure equations on the basis of one value of the boiling point, which itself may be estimated by a method already described [13].

The usefulness of the data of the present investigation in formulating simple rules in connection with the separation of close-boiling hydrocarbons by distillation at different pressures will be discussed in another report [12].

Figure 9.-Values of the "C" constant of the Antoine equation as a function of the number of carbon atoms in the molecule, for the several different classes of compounds investigated.
The scale of ordinates gives the value of the " C " constant and the scale of abscissas gives the number of carbon atoms in the molecule.

Figure 10.-Values of the difference, between a normal paraffin and a given isomer, in the " B " constant of the Antoine equation, as a function of the difference in the normal boiling point of the two isomers.
The scale of ordinates gives the value of the " B " constant for the normal paraffin less that of the isoparaffin.
The scale of abscissas gives the value of the normal boiling point of the normal paraffin less that of the
The scale of abscissas gives the value of the normal boiling point of the normal paraffin less that of the isoparaffin. This plot represents the data on the hexanes, heptanes, and octanes.

Figure 11.-Values of the difference, between a normal paraffin and a given isomer, in the "C" constant of the Antoine equation, as a function of the number of tertiary and quaternary carbon atoms in the molecule.
The scale of ordinates gives the value of the " C " constant for the isoparaffin less that of the normal paraffin. The scale of abscissas gives the number of tertiary carbon atoms in the molecule, with the upper curve applying to those molecules having one quaternary carbon atom and the lower curve to those having no quaternary carbon atoms. This plot represents the data on the hexanes, heptanes, and octanes.

The data of the present investigation are being correlated with existing other vapor pressure data on the same and additional compounds in connection with the work of the American Petroleum Institute Research Project 44 at this Bureau, and a comparison of the present data with data of previous investigations will appear in a report of that work [11]. This latter report will also contain an extension, with detailed discussion, of the various correlations, together with the prediction of vapor-pressure equations for a number of hydrocarbons for which no data are available. The correlations in this latter report are being made according to the method described in another report from this laboratory [13], which involves a consideration of the interaction among various groups in the molecule.

Grateful acknowledgement is made to C. E. Boord of the American Petroleum Institute Hydrocarbon Research Project at the Ohio State University, M. R. Fenske of the Pennsylvania State College, George Calingaert of the Ethyl Corporation, the Barrett Division of the Allied Chemical \& Dye Corporation, the Humble Oil \& Refining Company, and the Dow Chemical Company for supplying materials from which, except for cyclopentane [10] and n-dodecane [9], were produced [8] the purified samples measured in this investigation.

VIII. REFERENCES

[1] A. R. Glasgow, Jr., and F. D. Rossini, J. Research NBS 23, 509 (1939) RP1249.
[2] C. H. Meyers, J. Am. Chem. Soc. 45, 2135 (1923).
[3] N. S. Osborne and C. H. Meyers, J. Research NBS 13, 1 (1934) RP691.
[4] C. H. Meyers and C. S. Cragoe, Private communication of revisions to reference [3] on the basis of new measurements of the vapor pressure of water made at the National Bureau of Standards by H. F. Stimson and C. S. Cragoe (1943).
[5] C. Antoine, Compt. rend. 107, 681 (1888).
[6] G. W. Thomson, The Antoine equation for vapor pressure data (Ethyl Corporation, July 12, 1943). Unpublished. Report made available by G. Calingaert.
[7] E. R. Smith, J. Research NBS 24, 229 (1940) RP1280; 26, 129 (1941) RP1365.
[8] A. F. Forziati, A. R. Glasgow, Jr., C. B. Willingham, and F. D. Rossini, API Research Project 6, National Bureau of Standards. Unpublished data.
[9] B. J. Mair and A. J. Streiff. J. Research NBS 24, 395 (1940) RP1289.
[10] M. R. Fenske, Pennsylvania State College. Unpublished data.
[11] W. J. Taylor, J. M. Pignocco, and F. D. Rossini, API Research Project 44, National Bureau of Standards. Unpublished data.
[12] C. B. Willingham and F. D. Rossini. API Research Project 6, National Bureau of Standards. Unpublished data.
[13] W. J. Taylor, J. M. Pignocco and F. D. Rossini, J. Research NBS 34, 413 (1945) RP1651.
[14] A. F. Forziati and F. D. Rossini, API Research Project 6, National Bureau of Standards. Unpublished data.
[15] C. B. Willingham and F. D. Rossini. J. Research NBS 33, 85 (1944) RP1615.
[16] C. B. Willingham and F. D. Rossini, API Research Project 6, National Bureau of Standards. Unpublished data.
[17] B. J. Mair and A. F. Forziati. J. Research NBS 32151 (1944) RP1582.
[18] W. Edwards Deming, Statistical adjustment of data, chapters 4 and 8. (John Wiley \& Sons, Inc., New York, N. Y. 1943.)

Washington, July 6, 1945.

[^0]: ${ }^{1}$ This investigation was performed at the National Bureau of Standards jointly by the American ${ }^{5} \mathrm{Pe}$ troleum Institute Research Project 6 on the Analysis, Purification, and Properties of Hydrocarbons and the American Petroleum Institute Research Project 44 on the Collection, Analysis, and Calculation of Data on the Properties of Hydrocarbons. This paper contains material to be submitted in a thesis to the University of Maryland by Charles B. Willingham in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The interest and advice of Professor M. M. Haring are gratefully acknowledged.
 ${ }^{2}$ Research Associate on the American Petroleum Institute Research Project 6 at the National Bureau of Standards.
 ${ }_{3}$ Research Associate on the American Petroleum Institute Research Project 44 at the National Bureau of Standards.

[^1]: ${ }^{4}$ Since the completion of this investigation, a number of improvements have been made in the boiler part of the apparatus for use in subsequent measurements [14]. One of the improvements consisted in replacing the condenser and reflux regulator with the new design recently described [15].

[^2]: ${ }^{8}$ For the more volatile compounds, the lowest pressure of measurement was that corresponding to a temperature of about $12^{\circ} \mathrm{C}$.

[^3]: a This point was not used in the evaluation of the constants A, B, and C of the Antoine equation.

