U. S. DEPARTMENT OF COMMERCE

RESEARCH PAPER RP1670

Part of Journal of Research of the National Bureau of Standards, Volume 35, September 1945

VAPOR PRESSURES AND BOILING POINTS OF SOME PARAFFIN, ALKYLCYCLOPENTANE, ALKYLCYCLOHEX-ANE, AND ALKYLBENZENE HYDROCARBONS¹

By Charles B. Willingham,² William J. Taylor,³ Joan M. Pignocco,³ and Frederick D. Rossini

ABSTRACT

Measurements of vapor pressures and boiling points, over the range 47 to 780 millimeters of mercury and above about 12° C, were made on 52 purified hydrocarbons. The apparatus consisted of an electrically heated boiler, a vapor space with a vertical reentrant tube containing a platinum thermometer having a resistance of 25 ohms, and a condenser. Measurements of the temperature of the liquid-vapor equilibrium were made at 20 fixed pressures maintained automatically. The values of the fixed pressures were determined by calibration of the apparatus with water by using the vapor pressure-temperature tables prepared at the National Bureau of Standards.

The experimental data on the hydrocarbons were correlated, the method of least squares being used, with the three-constant Antoine equation for vapor pressures, $\log P = A - B/(C+t)$ or $t = B/(A - \log P) - C$. Experimental data, together with the values of the three constants of the Antoine equation, applicable over the range of measurement, are reported for 30 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 alkylbenzene hydrocarbons.

CONTENTS

		T ago
I.	Introduction	219
II.	Apparatus and procedure	220
III.	Determination of pressures	226
IV.	Source and purity of the compounds	228
V.	Experimental data on 52 hydrocarbons	230
VI.	Correlation of the data with the Antoine equation	233
	1. Method of correlation	238
	2. Results of the correlation	238
VII.	Discussion	241
VIII.	References	244

I. INTRODUCTION

On 52 purified hydrocarbons, all but 1 of which were prepared in connection with the work of the American Petroleum Institute

663099-45--5

¹This investigation was performed at the National Bureau of Standards jointly by the American Petroleum Institute Research Project 6 on the Analysis, Purification, and Properties of Hydrocarbons and the American Petroleum Institute Research Project 44 on the Collection, Analysis, and Calculation of Data on the Properties of Hydrocarbons. This paper contains material to be submitted in a thesis to the University of Maryland by Charles B. Willingham in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The interest and advice of Professor M. M. Haring are gratefully acknowledged. ² Research Associate on the American Petroleum Institute Research Project 6 at the National Bureau of Standards.

of Standards. ³ Research Associate on the American Petroleum Institute Research Project 44 at the National Bureau of Standards.

Research Project 6 at the National Bureau of Standards, measurements of vapor pressures and boiling points were made over the range 47 to 780 mm Hg and above about 12° C. This paper describes the experimental procedure and apparatus, gives the method of calculation used in correlating the data with the three-constant Antoine equation for vapor pressures, and presents the experimental data and results of the calculations for 30 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 alkylbenzene hydrocarbons, together with some discussion of the results.

II. APPARATUS AND PROCEDURE

For the measurements of temperature, a precision platinum resistance thermometer (25 ohms, Leeds & Northrup Serial No. 318514) and a Müeller-type resistance bridge with thermostated coils (Leeds

FIGURE 1.—Diagram of the assembly of the boiling-point apparatus.

The letters have the following significance: A, Boiler, etc.; B, mercury manometer for regulating the pressure; C, simple mercury manometer for indicating the pressure in the system; D, valve outlet to the atmosphere; E, gas reservoir for the pressure control system; F, pressure pump; G, vacuum pump; H, I, valves.

& Northrup Serial No. 373146) were used. The thermometric sensitivity was such that 1 mm on the scale was equivalent to 0.0007 degree centigrade.

A diagram and description of the parts of the assembly of the apparatus used in this investigation are given in figure 1.

Details of the boiler and related parts of the apparatus⁴ are shown in figure 2.

The manometer for regulating the pressure at 20 fixed points is shown in figure 3. A detailed view of the top part of the manometer tube is shown in figure 4. The contacts were tungsten, sharply pointed, and shaped as shown in figures 3 and 4. For cleaning the tungsten-point contacts, the manometer tube was filled with a concentrated solution of sodium hydroxide and an alternating current (at 110 volts) was intermittently passed between two contacts at intervals of about 2 seconds until each point contact had a clean metallic appearance. For this latter procedure, the contacts were taken as follows: First and eleventh; second and twelfth; third and

⁴Since the completion of this investigation, a number of improvements have been made in the boiler part of the apparatus for use in subsequent measurements [14]. One of the improvements consisted in replacing the condenser and reflux regulator with the new design recently described [15].

Vapor Pressures tnd Boiling Points 221

FIGURE 2.—Details of the boiler and related parts of the boiling-point apparatus.

The letters have the following significance: A, Tube through which the sample is introduced; B, platinum resistance thermometer; C, stopcock; D, D, condensers; E, ground glass valve for withdrawing distillate (see reference[11]); F, thermocouple, for measuring difference in temperature between the wall of the glass boller and the jacket; G, metal control for the ground-glass valve (see reference [1]; H, receiver for recovering sample at the conclusion of the measurements; J, receiver for collecting distillate removed from the head during the experiment; J, glass well for the platinum resistance thermometer; K, radiation shield of aluminum foil; L, electric heater for bolling the liquid in the pot; M, jacket; ¼-in. wall, of aluminum; N, tube for withdrawing sample from the pot; O, thermal insulating jacket; Prex glass cylinder with an asbestos layer covered with aluminum foil; P, flat electric heater for the aluminum jacket; O, transite support; R, thermal insulation, covered with aluminum foil; W, glass rod supports for the thermometer well; X, glass rod_"spiders"; Y, connecting tube for equalizing pressure; Z, transite collar for centering boller.

FIGURE 3.-Manometer for regulating the pressure at 20 fixed points.

The letters have the following significance: A, Mercury reservoir; B, transite blocks; D, throat; E, approximate distances, in millimeters from the top contact to the other contacts; F, glass male to metal female joint (see reference [2]); G, connection to pressure system and boiler; a, holes for bolts to support frame to wall; b, bolts holding transite board to 1 in. channel steel back of board; c, holes for electric wire leads. All dimensions shown are in millimeters.

Vapor Pressures and Boiling Points

thirteenth; etc. After all the contacts were prepared in this manner, the manometer tube was washed thoroughly with water and dried. The Bureau's Glassblowing Shop evacuated the manometer, baked it at 150° C for about 4 hours, and then distilled into it the appropriate amount of mercury. In the assembly of the manometer, the wiring was arranged so that in the 6-volt direct-current circuit the mercury was positive with respect to the tungsten. In operation, the mercury manometer was encased in an air thermostat. As shown in figure 5, the air thermostat was provided with an electric space heater, a rotary air circulator driven by a motor mounted outside the thermostat, a mercury thermoregulator, and appropriate relays. The temperature

FIGURE 4.—View of the top portion of the manometer tube.

The letters have the following significance: A, Copper wire connections to the relay controls (K in fig. 6); B, tungsten rod (No. 16 AWG), shaped and pointed as shown (see text); C, seal of tungsten rod through Pyrex Uranium and Pyrex Clear glass.

inside the air thermostat was maintained constant to about ± 0.02 degree centigrade.

The wiring diagram for the apparatus is shown in figure 6.

For the purpose of making measurements 10 to 15 degrees centigrade below room temperature, in the case of the more volatile compounds, a vacuum-jacketed condenser, cooled to near -80° C with solid carbon dioxide in a 50:50 mixture of carbon tetrachloride and chloroform, was placed between the upper condenser (D, fig. 2) and the pressure control system. For such measurements below room temperature, the aluminum jacket (M, fig. 2) was cooled to about 10 degrees centigrade below the boiling temperature by means of a stream of air cooled by passing through a coil of metal tubing at -80° C (see above). The cooled air passed into the space between M and O in figure 2.

The procedure for performing a series of measurements on a given hydrocarbon was as follows:

With appropriate refrigerants having been placed in the condensers, the system for regulating the pressure was set at the lowest contact (pressure near 47 mm Hg),⁵ started, and permitted to adjust itself automatically at this pressure. The stopcock between the boiler and the pressure system was then closed and dry air was let into the boiler part of the apparatus through the stopcock on the receiver (I, fig. 2). About 30 to 50 ml of the substance under investigation was introduced into the boiler through the filling tube (A, fig. 2). The openings to the atmosphere were then closed, and the stopcock between the boiler and the pressure-control system was opened. The pot heater

 $^{\rm b}$ For the more volatile compounds, the lowest pressure of measurement was that corresponding to a temperature of about 12° C.

(L, fig. 2) was turned on and adjusted to give a reasonable boiling rate. After equilibrium was established 1 ml of liquid was removed from the condenser through the ground-glass valve (E, fig. 2) into the receiver (I, fig. 2). This procedure served to remove traces of water that may have gotten into the boiler from the atmosphere during the introduction of the sample. The temperature of the aluminum jacket (M, fig. 2) was adjusted to a temperature about 10 degrees centigrade below the boiling temperature.

FIGURE 5.—Manometer assembly, showing the air thermostat.

The letters have the following significance: A, Box enclosure with walls of transite (the cover is not shown); B, aluminum foil, covering inside and outside surface of the transite box; C, partial partition wall of transite (both sides covered with aluminum foil) serving to guide the flow of air; D, rotary air circulator E, electric motor, mounted independently of the thermostat housing; F, electric space heater, 100 watts; G, mercury manometer; H, connection to electric power through relay contacts (G in fig. 6); I, connection to relay coil (G in fig. 6); J, mercury thermoregulator; K, connection to pressure system; L, mercury-inglass thermometer.

At each of the 20 contacts in turn, conditioning of the controlling manometer to obtain high reproducibility was made as follows: The pressure was increased about 7 mm above the contact corresponding to the selected pressure by admitting dry air or inert gas through the appropriate valve. The pressure was then reduced to about 7 mm below the contact corresponding to the selected pressure. The pressure was then increased slowly to the selected value where Vapor Pressures and Boiling Points

FIGURE 6.—Wiring diagram for boiling-point apparatus.

The letters have the following significance: A, Power from main line; B_1 , B_2 , double-pole, single-throw switches; C, variable transformer, 750 watts; D, jacket heater; E, variable transformer, 100 watts; F, pot heater; G_1 , G_2 , small relays, 6 volts, direct current; H, air heater, and I mercury thermoregulator, for controlling air thermostat for main mercury manometer (fig. 3): J, rectifying transformer, 100 volts alternating current to 6 volts, direct current; K, single-pole, double-throw switch; L, 21 contacts for main mercury manometer; M, main relay; N, double-pole, double-throw switch; O, pressure pump; P, vacuum pump.

225

it was thence controlled automatically. This procedure was empirically found necessary in order to obtain a high degree of reproducibility at the respective contacts, in terms of the pressure produced in the system. During the automatic control of the pressure, the leak into the system was adjusted so that the vacuum pump (sharply throttled by a needle valve) operated for about 1 second every 3 The range of pressure in this cycle, as determined from minutes. changes in the temperature of the liquid-vapor equilibrium during the cycle, was on the average about 0.07 to 0.10 mm Hg, with some contacts giving a better performance and others somewhat poorer. Observations of temperature (resistance) corresponding to the given pressure were made just at the moment the contact (mercury-tungsten) was made to start the vacuum pump, which occurred at the highest pressure in the cycle. Several readings were made at the given pressure in this way. Then the apparatus was adjusted to the next higher pressure and similar observations were repeated at this This procedure was continued to the highest preshigher pressure. sure measured (near 780 mm Hg). For the several pressures above the prevailing atmospheric pressure, the pressure pump was used in place of the vacuum pump, with the observations of temperature (resistance) being made at the moment contact (mercury-tungsten) was broken to start the pressure pump, which occurred at the lowest pressure in the cycle. With the observations made in the foregoing manner, the actual reproducibility of pressure at a given contact over a period of several weeks was normally in the range of 0.02 to 0.05 mm Hg. (See sections III and VI.)

The calibration experiments with water were performed in exactly the same manner as with a liquid hydrocarbon.

The rate of boiling was adjusted so that condensation of the hydrocarbon or water was visible in the lower end of the condenser. It was found that doubling this rate of boiling had no significant effect upon the temperature of the liquid-vapor equilibrium. For example, with 2,2,3-trimethylpentane, at contact R, with a normal power input of 70 watts, the observed temperature was 40.6215° C, and when the power input was increased to 125 watts, the observed temperature was 40.6231° C.

III. DETERMINATION OF PRESSURES

The values of the pressures produced by the apparatus when controlled at the 20 fixed points were determined from measurements of the temperature of the liquid-vapor equilibrium made with water in the apparatus. The vapor pressure of water at 1-degree intervals from 35° to 103° C was taken from table 2 of Osborne and Meyers [3], together with unpublished small revisions of these values by Meyers and Cragoe [4]. From these values, several values were interpolated (by Lagrangian five-point curvilinear interpolation) at 0.1-degree intervals in the neighborhood of the temperature of the liquid-vapor equilibrium for water at each of the 20 fixed pressures. The final calculation of the pressure at each observed temperature was made by linear interpolation within the 0.1-degree intervals.

Figure 7 is a plot of the observations made with water in the apparatus over the period from November 1941 to May 1943, and shows on an enlarged scale the calculated pressure at each contact

The scale of ordinates gives the pressure calculated from the observed temperature and the vapor-pressure relations for water [3, 4]. The scale of abscissas gives the time in months.

227

for each observation over this period. The observed points were connected by straight lines, as shown in figure 7, and the pressures to be assigned to the measurements made on a given compound were interpolated from these lines. Calibration measurements were performed on the following dates: November 3, 12, and 13, and December 8 and 9, 1941; April 16, 17, and 20, May 12, October 13 and 15, and December 15, 1942; and February 23, March 16, April 15, and May 8 and 20, 1943.

In the experiments with the hydrocarbons, correction was made for the difference in pressure exerted by the column of hydrocarbon vapor over the pressure exerted by the column of water vapor, between the location at which the temperature of the liquid-vapor equilibrium was measured and the location at which condensation occurred in the condenser (a vertical distance of about 28 cm). The value of this correction to the pressure is, for a given compound, a substantially constant percentage of the pressure, far within the precision of the measurements. At 760 mm, the value of this correction varied from 0.04 to 0.08 mm, corresponding to a range of 0.002 to 0.004 degree centigrade.

IV. SOURCE AND PURITY OF THE COMPOUNDS

With the exception of cyclopentane, which was supplied by Fenske [10] and used as received, the hydrocarbons measured in the present investigation were purified in connection with the work of the American Petroleum Institute Research Project 6 at this Bureau. A complete description of the purification and properties of the compounds appears in another report [8]. The purity of these compounds is summarized in table 1. All the compounds examined in the present investigation were produced as "heart cuts" from distillations, including both regular and azeotropic, performed at a reflux ratio of 100 to 1 in columns of 100 or more theoretical plates [8, 16]. Nonhydrocarbon impurities were removed by adsorption with silica gel [17], which treatment also served to assure that the paraffin and cycloparaffin compounds were freed of any possible aromatic impurities. From the method of preparation and purification of these compounds, it is concluded that (a) the remaining impurities were substantially isomeric and close-boiling and (b) their amount was such as to have no significant effect upon the measurements, within the limits of uncertainty (see section VI), with the possible exception of 2,3-dimethylhexane.

TABLE 1.—Purity of the compounds investigated

[Except for cyclopentane, which was used as received [10], and *n*-dodecane, which was previously prepared [9], all the compounds listed were purified in connection with the work of the API Research Project 6 by means of azeotropic distillation in columns of high efficiency (approximately 100 theoretical plates) at a high reflux ratio (100 to 1) from starting material obtained from various sources [8].]

Compound	Amount of impurity ^a
PARAFFINS	a dan ta
n-Pentane 2-Methylbutane (isopentane) n-Hexane 2-Methylpentane 3-Methylpentane	Mole fraction 0.0014 .0054 .0009 .0011 b(.0015)
2,2-Dimethylbutane 2,3-Dimethylbutane Heptane 2,2-Dimethylpentane 3,3-Dimethylpentane	. 0006 . 0010 . 0012 . 0002 . 0017
n-Octane	.0004 .010 .006 .0015 b(<.02)
2,2-Dimethylhexane 2,3-Dimethylhexane 2,4-Dimethylhexane 2,5-Dimethylhexane 3,3-Dimethylhexane	.0018 b(.05?) b(<.02) .010 <.005
3,4-Dimethylhexane 2-Methyl-3-ethylpentane 3-Methyl-3-ethylpentane 2,2,3-Trimethylpentane 2,2,4-Trimethylpentane	^b (<.02) .005 .005 .007 .0012
2,3,3-Trimethylpentane 2,3,4-Trimethylpentane <i>n</i> -Nonane <i>n</i> -Decane <i>n</i> -Dodecane	$\begin{array}{c} .\ 0059\\ .\ 0016\\ <.\ 003\\ <.\ 004\\ <.\ 0006\end{array}$
ALKYLCYCLOPENTANES	
Cyclopentane Methylcyclopentane <i>n</i> -Propylcyclopentane Isopropylcyclopentane	$\begin{array}{c} 0.\ 0003\\ .\ 0013\\ <.\ 005\\ .\ 0028 \end{array}$
ALKYLCYCLOHEXANES Cyclohexane	$\begin{array}{c} 0.\ 0001\\ .\ 0029\\ .\ 0024\\ .\ 0011\\ .\ 009\\ .\ 023\\ .\ 015\\ .\ 010\\ .\ 004\\ <.\ 005 \end{array}$
ALKYLBENZENES	
Benzene	0.0004 .0010 .0045 .0008 .0028 .0010 .0028
Isopropylbenzene	. 0004

Determined from measurements of freezing points, unless otherwise indicated [8].
 Estimated by analogy with isomers subjected to similar preparation and purification [8].

V. EXPERIMENTAL DATA ON 52 HYDROCARBONS

In table 2 are given the experimental data on the temperatures and pressures of the liquid-vapor equilibrium, obtained as described in the preceding sections, for the 52 compounds, comprising 30 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 aromatic hydrocarbons. The date of measurement of each compound is also given. In those cases in which two samples of the same compound are included, they are distinguished by the roman numerals I and II.

Particular Contraction of Contractio												
t	P	t	P	t	P	t	Р	t	P	t	P	
n-Per March	ntane 30, 1943	2-Methylbutane (Isopentane) April 21, 1943		n-He March	n-Hexane March 31, 1943		2-Methylpen- tane March 25, 1943		3-Methylpen- tane March 26, 1943		2,2-Dimethyl- butane March 24, 1943	
° C 36, 818 36, 379 35, 890 35, 453 34, 981 30, 592 24, 374 18, 647 13, 282	<i>mm</i> Hg 779.40 768.01 755.27 744.07 732.09 627.95 500.71 402.46 324.94	° C 28. 587 28. 160 27. 673 27. 240 26. 773 22. 435 16. 291	mm Hg 779.48 768.08 755.31 744.11 732.12 627.97 500.74	° C 69.541 69.081 68.540 67.554 62.785 56.030 49.803 43.967 38.311 33.661 33.661 28.528 24.717 20.618 a 16.576 a 13.033	<i>mm</i> Hg 779, 41 768, 02 755, 27 754, 09 732, 10 627, 95 500, 72 402, 45 324, 94 261, 74 261, 76 261, 7	° C 61.066 60.602 60.074 59.607 59.099 54.388 47.714 41.567 35.810 30.237 25.617 20.584 a 16.820 a 12.758	<i>mm</i> Hg 779.37 767.99 755.26 744.07 732.09 627.94 500.70 402.44 324.93 261.75 217.18 175.90 \$ 149.42 \$ 124.66	° C 64.083 63.617 63.084 62.610 62.098 57.340 50.598 44.389 38.574 32.941 28.270 23.189 * 19.393 * 15.290	<i>mm</i> Hg 779.38 768.00 755.26 744.07 732.10 627.94 500.70 402.45 324.94 261.75 217.18 175.90 *149.42 *124.66	° C 50. 529 50. 074 49. 078 48. 575 43. 893 37. 269 31. 175 25. 472 19. 946 a 15. 376	<i>mm</i> Hg 779.38 768.00 755.26 744.07 732.09 627.95 500.71 402.44 324.93 261.75 a 217.18	
2,3-Dimethyl- butane March 24, 1943		n-Heptane (I) March 27, 1942		n-Heptane (II) April 10, 1943		2,2-Dimethyl- pentane January 21, 1942		2,2-Dimethyl- pentane January 20, 1943		3,3-Dimethyl- pentane January 6 to 8, 1942		
• C 58.789 58.320 57.700 57.700 57.317 56.806 52.060 45.339 39.150 33.387 27.746 23.009 * 18.044 * 14.256	<i>mm</i> Hg 779.37 767.99 755.26 6744.07 732.09 627.94 500.71 402.44 324.93 261.75 217.18 * 175.90 * 149.42	• C 99. 285 98. 773 97. 702 97. 154 92. 053 84. 823 71. 930 65. 882 60. 862 55. 394 51. 320 46. 929 42. 599 38. 822 36. 017 33. 024 29. 699 25. 925	$\begin{array}{c} mm \ Hg \\ 779, 37 \\ 768, 01 \\ 755, 23 \\ 743, 96 \\ 627, 85 \\ 500, 66 \\ 402, 39 \\ 324, 97 \\ 261, 75 \\ 217, 14 \\ 175, 84 \\ 103, 67 \\ 87, 76 \\ 77, 34 \\ 67, 33 \\ 57, 49 \\ 47, 78 \end{array}$	° C 99. 289 98. 217 97. 710 97. 710 92. 060 84. 832 71. 926 65. 877 60. 859 55. 400 51. 320 46. 929 42. 597 38. 795 35. 993 32. 973 29. 648 25. 827	$\begin{array}{c} mm \ \mathrm{Hg} \\ 779, 47 \\ 768, 08 \\ 755, 31 \\ 744, 11 \\ 732, 12 \\ 627, 98 \\ 500, 75 \\ 402, 47 \\ 324, 94 \\ 261, 74 \\ 217, 22 \\ 175, 91 \\ 149, 40 \\ 124, 65 \\ 103, 66 \\ 87, 72 \\ 77, 28 \\ 67, 22 \\ 77, 28 \\ 67, 22 \\ 57, 42 \\ 47, 66 \end{array}$	 C 72.945 65.868 59.349 53.255 47.348 42.445 33.151 28.870 24.676 20.989 18.246 	<i>mm</i> Hg 627.70 500.56 402.37 324.96 261.72 217.17 175.81 149.40 124.60 103.69 87.78 77.37	° C 80.050 79.550 78.496 77.959 72.958 65.879 59.362 53.261 47.359 42.454 47.359 42.454 33.160 33.160 28.879 24.670 29.97 18.253 15.325	<i>mm</i> Hg 779.35 768.04 755.28 744.07 732.11 627.94 402.46 324.99 261.79 217.21 175.94 149.46 124.68 103.68 87.74 77.31 67.27	 C 86. 928 86. 421 85. 335 84. 780 79. 651 72. 384 65. 697 59. 440 53. 370 44. 340 42. 872 38. 700 34. 406 30. 086 26. 318 23. 521 20. 533 17. 221 13. 443 	<i>mm</i> Hg 7779. 28 767. 89 743. 84 731. 87 627. 67 500. 54 402. 87 324. 94 261. 72 217. 17 175. 86 149. 39 124. 61 103. 77 87. 79 77. 38 67. 39 57. 58 47. 88	

 TABLE 2.—Experimental data for 52 hydrocarbons on the temperatures and pressures of the liquid-vapor equilibrium

* This point was not used in the evaluation of the constants A, B, and C of the Antoine equation.

t	P	t	P	t	Р	t	Р	t	Р	t	Р	
3, 3 methyl Janua 19	-Di- pentane ary 21, 43	n-Octa Febru 19	ane (I) ary 23, 42	n-Octa Decem 19	ne (II) ber 31, 42	2-Meth tand Febru 19	2-Methylhep- tane (I) February 6, 1942		ylhep- (II) ber 23, 42	3-Methylhep- tane (I) April 2, 1942		
° C 86. 429 85. 854 85. 344 84. 792	mm Hg 768.03 755.28 744.07 732.11	° C 126. 570 126. 035 125. 433 124. 899 124. 319 118. 924 111. 277	<i>mm</i> Hg 779. 32 767. 96 755. 03 743. 92 731. 94 627. 77 500. 61	• C 126.040 125.442 124.906 124.327	mm Hg 768.09 755.29 744.06 732.11	° C 118. 544 118. 022 117. 426 116. 888 116. 318 110. 971 103. 397	<i>mm</i> Hg 779. 31 767. 94 755. 00 743. 74 731. 92 627. 73 500. 58	° C 118.020 117.427 116.895 116.319	mm Hg 768.11 755.29 744.06 732.11	° C 119. 814 119. 283 118. 693 118. 160 117. 584 112. 217 104. 616	<i>mm</i> Hg 779.37 768.01 755.08 743.98 731.97 627.85 500.66	
59. 444 53. 385 38. 804	324. 98 261. 79 149. 46	$\begin{array}{c} 104.\ 233\\ 97.\ 635\\ 91.\ 230\\ 85.\ 916\\ 80.\ 134\\ 75.\ 820 \end{array}$	$\begin{array}{r} 402.\ 38\\ 324.\ 97\\ 261.\ 73\\ 217.\ 16\\ 175.\ 82\\ 149.\ 40 \end{array}$	97. 633 91. 235 75. 825	325. 00 261. 81 149. 48	96. 422 89. 892 83. 549 78. 278 72. 580 68. 308	$\begin{array}{r} 402.\ 38\\ 324.\ 96\\ 261.\ 73\\ 217.\ 16\\ 175.\ 81\\ 149.\ 40 \end{array}$	68.306	149.48	97. 615 91. 057 84. 698 79. 418 73. 676 69. 372	$\begin{array}{r} 402.\ 39\\ 324.\ 98\\ 261.\ 75\\ 217.\ 14\\ 175.\ 84\\ 149.\ 41\\ \end{array}$	
34. 355 20. 484 17. 163	124. 68 67. 27 57. 44	$\begin{array}{c} 71.\ 163\\ 66.\ 587\\ 62.\ 592\\ 59.\ 616\\ 56.\ 456\\ 52.\ 927\\ \end{array}$	$124.57 \\103.68 \\87.77 \\77.36 \\67.35 \\57.53$	71. 171 56. 407 52. 874	124. 69 67. 29 57. 46	$\begin{array}{c} 63.\ 711\\ 59.\ 192\\ 55.\ 229\\ 52.\ 301\\ 49.\ 165\\ 45.\ 687\\ 41.\ 707\end{array}$	$124.59 \\103.69 \\87.78 \\77.36 \\67.17 \\57.55 \\47.84$	63.703 49.100 45.612	124. 70 67. 29 57. 46		$124.53 \\103.67 \\87.76 \\77.33 \\67.33 \\57.48 \\47.78$	
3-Meth tane Decem 19	Acthylhep- tane (II) cember 30, 19424-Methylhep- tane (I) April 7, 1942		4-Methylhep- tane (II) December 22, 1942		3-Ethylhexane December 9, 1942		2,2-Din hex Novem 19	nethyl- ane lber 19, 42	2,3-Dimethyl- hexane November 25, 1942			
° C 119.299 118.703 118.169 117.593 91.060 84.707 69.400 64.783 50.134 46.630	mm Hg 768.09 755.29 744.06 732.11 325.00 261.81 149.48 124.69 67.28 67.28	° C 118, 605 118, 079 117, 483 116, 949 116, 376 111, 029 103, 453 96, 475 89, 943 83, 601 78, 347 72, 620 68, 348 63, 746 55, 261 52, 314 49, 183 45, 694	<i>mm</i> Hg 779.38 768.02 755.09 743.98 731.96 627.87 500.67 402.40 324.98 261.75 217.14 147.584 149.41 124.53 103.67 87.76 87.76 87.76 87.76 87.76 87.73 367.32 57.48	• C 118. 084 117. 489 116. 958 116. 383 89. 943 83. 610 68. 360 63. 760 49. 152 45. 662	<i>mm</i> Hg 768, 11 755, 29 744, 06 732, 11 325, 00 261, 82 149, 48 124, 70 67, 29 57, 47	$^{\circ}$ C 119, 439 118, 911 118, 311 117, 777 117, 200 111, 829 104, 217 97, 204 90, 634 84, 274 73, 247 68, 957 64, 331 59, 784 55, 794 55, 794 56, 794 56, 794 56, 794 57, 794 56, 794 57, 794 77, 7	<i>mm</i> Hg 779, 32 768, 12 755, 29 744, 05 732, 12 627, 93 520, 79 402, 46 325, 01 261, 83 217, 24 175, 97 149, 49 124, 70 103, 69 87, 76 77, 33 67, 29 57, 47	$\begin{array}{c} \circ \ C \\ 107, 731 \\ 107, 209 \\ 106, 095 \\ 105, 526 \\ 100, 234 \\ 92, 741 \\ 85, 839 \\ 79, 379 \\ 73, 128 \\ 67, 935 \\ 62, 292 \\ 53, 546 \\ 49, 087 \\ 49, 087 \\ 45, 173 \\ 42, 278 \\ 39, 179 \\ 35, 747 \end{array}$	<i>mm</i> Hg 779.31 768.09 755.28 744.04 732.11 627.92 500.70 402.46 325.01 261.82 217.22 217.22 217.22 175.96 149.47 124.69 103.69 87.75 77.33 67.29 57.46	° C 116, 512 115, 985 115, 384 114, 849 114, 849 114, 849 114, 849 114, 849 114, 849 114, 849 114, 849 11, 849	<i>mm</i> Hg 779, 31 768, 10 755, 29 744, 05 732, 12 627, 92 500, 70 402, 46 325, 01 261, 82 217, 23 175, 96 149, 48 124, 69 103, 69 87, 75 77, 33 67, 29 57, 46	
2,4-Dir hex Decen 19	nethyl- ane nber 1, 142	41. 706 2,5-Dir hex Decen 19	47.77 nethyl- ane aber 2, 42	3,3-Dir hex Noven 19	nethyl- ane iber 27, 42	42.144 47.71 3,4-Dimethyl- hexane December 8, 1942		2-Methyl-3- ethylpentane December 10, 1942		39. 239 47. 71 3-Methyl-3- ethylpentane December 17, 1942		
$^{\circ}$ C 110, 323 109, 801 109, 209 108, 681 108, 109 102, 802 95, 284 88, 1874 88, 358 81, 874 88, 358 81, 874 47, 596 64, 715 55, 993 51, 452 47, 523 44, 615 541, 502 83, 648 95, 549 84, 648 95, 549 84, 648 95, 549 84, 648 94,	mm Hg 779. 31 768. 11 755. 29 744. 05 732. 12 627. 93 500. 70 402. 46 325. 02 261. 82 217. 23 715. 97 149. 48 124. 70 103. 69 87. 76 77. 33 67. 29 57. 47	$^{\circ}$ C 110.000 109.474 108.356 107.788 102.502 95.011 88.109 81.651 75.398 70.200 64.552 51.331 47.416 44.517.416 44.517.41244.517.412 45.557.412 45.557.41245.557.412 45.557.41245.557.412 45.557.41245.5	<i>mm</i> Hg 779, 31 768, 11 755, 29 744, 05 732, 12 627, 93 627, 93 625, 01 261, 82 217, 23 175, 97 149, 48 124, 70 103, 69 87, 76 77, 33 67, 29 57, 47 47, 71	° C 112.877 112.349 111.745 111.082 105.232 97.500 90.552 83.961 77.579 72.282 66.521 62.228 53.041 49.049 46.043 42.930 39.407 35.402	mm Hg 779.31 768.10 755.29 744.05 732.12 627.92 6	• C 118. 638 118. 108 117. 500 116. 962 116. 382 110. 971 103. 305 96. 246 89. 633 83. 230 77. 910 72. 126 67. 810 63. 158 58. 579 54. 571 51. 598 48. 413 44. 882	<i>mm</i> Hg 779.31 768.12 755.29 744.05 732.12 627.93 500.70 402.46 325.01 261.83 217.24 175.97 149.49 124.70 103.69 87.76 77.33 67.29 57.47	° C 116.565 116.035 115.420 114.888 114.306 108.902 81.198 87.500 81.198 75.888 70.114 65.880 61.168 56.588 52.592 46.453 42.935 38.903	<i>mm</i> Hg 779, 31 768, 12 755, 29 744, 05 732, 12 627, 93 627, 9	° C 119.189 118.648 118.031 117.482 116.889 111.376.839 98.632 83.109 77.693 71.801 67.404 62.665 58.002 53.918 50.896 47.655 44.064 39.950	<i>mm</i> Hg 779, 31 768, 12 755, 29 744, 06 732, 12 627, 94 627, 94 627, 94 625, 01 261, 83 217, 24 175, 97 149, 49 124, 70 103, 69 87, 76 77, 33 67, 29 57, 47 47, 71	

 TABLE 2.—Experimental data for 52 hydrocarbons on the temperatures and pressures of the liquid-vapor equilibrium—Continued

				1	1 1						
t	P	t	P	t	Р	t	P	t	Р	t	P
2, 2, 3 methylr May 13	-Tri- bentane 2, 1943	2, 2, 4 methylj (I March	I-Tri- pentane) 25, 1942	2, 2, 4 methyl (I April 1	4-Tri- pentane I) 13, 1943	2, 3, 3 methylj Novem 19	3-Tri- pentane iber 18, 42	2, 3, 4 methylj Decen 19	t-Tri- pentane iber 3, 42	n-No April 2	onane 28, 1943
$\begin{array}{c} \circ \ C \\ 110, 757 \\ 110, 221 \\ 109, 618 \\ 108, 496 \\ 103, 085 \\ 95, 422 \\ 88, 362 \\ 88, 362 \\ 81, 752 \\ 75, 354 \\ 70, 050 \\ 64, 282 \\ 59, 972 \\ 55, 339 \\ 50, 767 \\ 46, 768 \\ 43, 800 \\ 40, 622 \\ 37, 119 \\ 33, 094 \end{array}$	$\begin{array}{c} mm \ \mathrm{Hg} \\ 779, 43 \\ 768, 03 \\ 755, 29 \\ 755, 29 \\ 755, 22 \\ 755, 21 \\ 755, 22 \\ 755, 2$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} mm \ \mathrm{Hg} \\ 779, 37 \\ 768, 02 \\ 755, 22 \\ 743, 97 \\ 731, 99 \\ 627, 84 \\ 500, 65 \\ 402, 39 \\ 324, 98 \\ 261, 75 \\ 217, 15 \\ 175, 84 \\ 149, 41 \\ 124, 54 \\ 103, 68 \\ 87, 76 \\ 77, 34 \\ 67, 33 \\ 57, 49 \\ 47, 79 \end{array}$	$^{\circ}$ C 100. 138 99. 610 99. 022 98. 495 97. 926 92. 634 85. 141 78. 240 71. 781 65. 524 60. 346 54. 711 50. 505 54. 711 50. 505 54. 711 50. 505 54. 711 50. 505 54. 711 50. 505 54. 712 54. 722 31. 620 28. 201 24. 274	$\begin{array}{c} mm \ \mathrm{Hg} \\ 779.\ 50 \\ 768.\ 10 \\ 755.\ 32 \\ 744.\ 13 \\ 732.\ 14 \\ 627.\ 98 \\ 500.\ 76 \\ 402.\ 47 \\ 324.\ 97 \\ 261.\ 73 \\ 221.\ 732.\ 14 \\ 402.\ 47 \\ 324.\ 97 \\ 217.\ 22 \\ 175.\ 91 \\ 149.\ 39 \\ 124.\ 92 \\ 124.\ 75.\ 91 \\ 149.\ 39 \\ 124.\ 92 \\ 124.\ 77.\ 28 \\ 67.\ 23 \\ 57.\ 42 \\ 47.\ 66 \end{array}$	$\begin{array}{c} \circ \ C \\ 115.\ 688 \\ 115.\ 144 \\ 114.\ 532 \\ 113.\ 985 \\ 113.\ 985 \\ 107.\ 895 \\ 1007.\ 1007.\ 895 \\ 1007.\ 1007.\ 1007.\ 1007.\ 1007.\ 1007.\$	$\begin{array}{c} mm \ \mathrm{Hg} \\ 779, 31 \\ 768, 09 \\ 755, 28 \\ 744, 04 \\ 732, 11 \\ 627, 92 \\ 500, 70 \\ 402, 46 \\ 325, 01 \\ 240, 246 \\ 325, 01 \\ 2217, 22 \\ 175, 96 \\ 149, 47 \\ 124, 69 \\ 103, 69 \\ 87, 75 \\ 77, 33 \\ 67, 29 \\ 57, 47, 71 \end{array}$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} mm \ \mathrm{Hg} \\ 779, 31 \\ 768, 11 \\ 755, 29 \\ 744, 05 \\ 732, 12 \\ 627, 93 \\ 500, 70 \\ 402, 46 \\ 325, 01 \\ 261, 82 \\ 217, 23 \\ 175, 97 \\ 149, 48 \\ 124, 70 \\ 103, 69 \\ 87, 75 \\ 77, 33 \\ 67, 29 \\ 57, 47 \\ 47, 71 \end{array}$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} mm \ \mathrm{Hg} \\ 779, 47 \\ 768, 07 \\ 755, 31 \\ 744, 11 \\ 732, 13 \\ 627, 96 \\ 500, 72 \\ 402, 43 \\ 324, 92 \\ 261, 71 \\ 217, 16 \\ 175, 90 \\ 149, 36 \\ 124, 59 \\ 103, 61 \\ 87, 66 \\ 77, 21 \\ 67, 17 \\ 57, 38 \\ 47, 62 \end{array}$
<i>n</i> -De April 3	cane 0, 1943	n-Dodecane May 6, 1942		Cyclopentane April 20, 1943		Methy pent April	lcyclo- tane 6, 1943	n-Propylcyclo- pentane May 14, 1943		Isopi cyclop May 1	copyl- entane 11, 1943
$^\circ$ C 175, 121 174, 538 173, 832 173, 295 172, 661 166, 772 158, 419 150, 718, 499 130, 690 124, 372 119, 640 114, 540 109, 526 105, 118 99, 352 94, 481	$\begin{array}{c} mm \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	• C 217.345 216.006 215.383 214.709 208.417 199.488 191.255 183.537 176.039 169.814 163.030 157.986 152.529 147.152 142.444 138.962 135.223 131.108 8131.088	$\begin{array}{c} mm \ \ {\rm Hg} \\ 779. \ 39 \\ 767. \ 95 \\ 755. \ 10 \\ 743. \ 98 \\ 732. \ 02 \\ 627. \ 81 \\ 500. \ 67 \\ 402. \ 44 \\ 325. \ 01 \\ 261. \ 74 \\ 217. \ 13 \\ 175. \ 84 \\ 149. \ 39 \\ 124. \ 59 \\ 103. \ 63 \\ 87. \ 73 \\ 67. \ 29 \\ 57. \ 48 \\ 47. \ 74 \end{array}$	° C 50.031 49.073 48.621 48.131 43.574 43.574 43.574 25.598 20.196 • 15.707	mm Hg 779.47 768.07 755.30 744.10 732.12 627.97 500.74 402.45 324.94 261.71 a 217.19	° C 72.634 72.150 71.612 71.128 70.604 65.739 958.847 52.499 46.552 40.791 30.816 26.935 22.757 a 18.642 a 15.035	mm Hg 779, 44 768, 05 755, 29 744, 10 732, 11 627, 96 500, 73 402, 46 500, 73 402, 46 324, 95 261, 74 217, 20 175, 91 149, 40 124, 65 • 103, 66 • 87, 73	$^{\circ}$ C 131. 878 131. 326 130. 706 130. 706 130. 706 132. 991 116. 108 102. 028 95. 437 89. 964 84. 007 79. 559 74. 768 70. 642 65. 896 62. 837 55. 904 55. 904 56. 904 57. 905 57. 905 57. 905 57. 905 57. 905 57.	$\begin{array}{c} mm \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	<i>mm</i> Hg 779, 44 768, 04 755, 29 744, 08 732, 11 627, 94 402, 39 7261, 70 217, 11 175, 89 149, 33 124, 54 103, 56 87, 61 77, 15 67, 12 57, 34 47, 59
Cyclol April 1	nexane 14, 1943	Methy hex April	vlcyclo- ane 7, 1943	Ethylcyclo- hexane April 22, 1943		cis-1,2-Di- methylcyclo- hexane February 16, 1943		trans-1,2-Di- methylcyclo- hexane February 9, 1943		cis-1, methy hex Febru 19	3-Di- leyclo- ane lary 17, 43
$^{\circ}$ C 81. 582 81. 093 80. 534 80. 037 79. 502 74. 520 67. 467 60. 069 54. 884 48. 991 44. 108 38. 798 34. 821 30. 556 26. 347 22. 657 19. 915	<i>mm</i> Hg 779. 49 768. 09 755. 32 744. 13 732. 13 627. 98 500. 76 402. 48 324. 96 261. 73 217. 22 175. 91 149. 39 124. 65 103. 67 87. 72 77. 28	$^{\circ}$ C 101. 832 101. 312 100. 715 99. 614 94. 299 86. 771 79. 840 73. 349 67. 067 61. 857 56. 194 47. 407 42. 929 38. 998 36. 089 32. 976 29. 533 25. 586	<i>mm</i> Hg 779.46 768.05 755.29 744.10 732.12 627.96 627.96 627.96 6324.95 261.74 402.46 324.95 261.74 402.46 6324.95 261.74 2175.91 149.40 124.65 87.73 77.28 877.22 57.42 47.66	$^{\circ}$ C 132.742 132.181 131.551 130.988 130.379 124.723 116.709 102.412 95.716 90.158 84.115 79.587 74.738 69.948 65.755 62.655 55.636 55.636 51.412	<i>mm</i> Hg 7779.48 768.09 755.31 744.12 732.13 627.97 500.74 402.46 324.93 261.72 217.19 175.90 149.38 124.62 103.64 87.69 77.25 67.20 57.40 47.64	$^{\circ}$ C 130. 684 130. 125 129. 491 128. 926 128. 315 122. 639 114. 600 107. 192 114. 600 107. 192 114. 600 107. 192 100. 258 93. 548 87. 974 81. 921 77. 540 77. 540 63. 543 67. 742 63. 553 67. 744 67. 742 67. 742 67. 742 67. 742 67. 742 77. 743 77. 744 77. 742 77. 743 77. 744 77. 742 77. 744 77. 742 77. 742	<i>mm</i> Hg 779.38 767.98 755.27 744.08 732.11 627.94 626.261 262.94 261.76 217.18 175.90 149.44 124.67 103.66 87.73 77.29 67.25 57.42 47.65	° C 124.372 123.810 123.183 122.622 122.016 116.384 07 101.057 94.178 87.519 81.991 75.979 71.497 66.664 61.910 57.748 54.668 51.365 51.365	<i>mm</i> Hg 779.31 768.00 755.27 744.08 732.11 627.94 402.45 324.97 261.77 217.19 175.91 149.45 124.68 103.67 87.73 77.30 77.30 77.30 77.30 77.30 77.42 47.66	° C 125.391 124.841 123.661 123.061 117.475 109.562 102.274 95.450 88.842 83.362 77.402 72.958 68.168 63.453 59.316 52.983 49.351	<i>mm</i> Hg 779.39 767.97 755.27 744.08 732.11 627.94 500.73 402.45 324.97 261.76 217.18 175.90 149.44 124.67 103.67 87.73 77.29 67.25 57.42 47.65

 TABLE 2.—Experimental data for 52 hydrocarbons on the temperatures and pressures of the liquid-vapor equilibrium—Continued

• This point was not used in the evaluation of the constants A, B, and C of the Antoine equation.

TABLE	2E	xperim	ental do of the la	ita for t iquid-vo	52 hydr apor eq	ocarbon uilibriu	s on the m—Co	e <i>tempe</i> ntinuec	ratures 1	and pr	essures
t	Р	t t		t	P	t	P	t	P	t	P
trans-1 methy hex	l,3-Di- leyclo- ane	cis-1, methy hex	4-Di- vlcyclo- cane	trans- methy hey	-1,4-Di- vlcyclo- tane	n-Prop	ylcyclo- ane	Ben March	zene 10, 1943	Toh March	uene 11, 1943

Februa 19	ary 11, 43	Februa 19	ary 18, 43	Febru 19	ary 12, 43	April	27, 1943	March	10, 1943	March	11, 1943	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} mm {\rm Hg} \\ 779. 38 \\ 767. 99 \\ 755. 27 \\ 744. 08 \\ 732. 11 \\ 627. 94 \\ 500. 73 \\ 402. 45 \\ 324. 97 \\ 261. 77 \\ 217. 19 \\ 175. 91 \\ 149. 45 \\ 124. 68 \\ 103. 67 \\ 87. 73 \\ 67. 25 \\ 57. 42 \\ 47. 66 \end{array}$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} mm Hg \\ 779. 39 \\ 767. 97 \\ 755. 27 \\ 744. 08 \\ 732. 11 \\ 627. 94 \\ 500. 73 \\ 402. 45 \\ 242. 48 \\ 261. 76 \\ 217. 18 \\ 175. 90 \\ 149. 44 \\ 124. 67 \\ 103. 67 \\ 87. 73 \\ 77. 30 \\ 67. 25 \\ 57. 42 \\ 57. 42 \\ 47. 65 \end{array}$	° C 120.293 119, 739 119, 117 118, 561 117, 964 112, 385 104, 487 97, 212 90, 403 83, 812 90, 403 84, 804 94, 804 84, 804 85, 804 84, 804 85, 804 86,	$\begin{array}{c} mm{\rm Hg}\\ 779,39\\ 767,99\\ 755,27\\ 744,08\\ 732,11\\ 627,94\\ 500,73\\ 402,45\\ 324,98\\ 261,77\\ 217,19\\ 175,91\\ 149,45\\ 124,67\\ 103,67\\ 87,73\\ 77,30\\ 67,25\\ 57,42\\ 47,65\end{array}$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	mm Hg 779, 47 768, 07 755, 31 744, 11 732, 13 627, 96 500, 72 402, 44 324, 92 261, 71 217, 17 7175, 90 149, 36 124, 60 103, 62 87, 67 77, 22 67, 18 57, 38 47, 62	$^{\circ}$ C 80, 922 80, 442 79, 588 67, 135 60, 784 54, 832 49, 066 44, 284 39, 078 35, 191 31, 004 26, 886 23, 270 20, 554 17, 720 14, 548	$\begin{array}{c} mmHg\\ 779,34\\ 767,94\\ 775,23\\ 744,04\\ 732,07\\ 627,93\\ 500,69\\ 402,42\\ 324,93\\ 261,75\\ 217,16\\ 175,89\\ 149,43\\ 124,67\\ 103,64\\ 87,75\\ 77,28\\ 67,22\\ 57,41\\ \end{array}$	$^{\circ}C$ 111, 509 110, 991 110, 403 109, 879 109, 312 104, 037 96, 559 89, 667 83, 202 76, 942 71, 738 66, 079 61, 851 57, 293 52, 802 48, 867 45, 948 42, 810 39, 343 35, 366	mm Hg 779, 34 767, 95 755, 24 744, 05 732, 08 627, 93 500, 68 402, 43 3261, 75 217, 16 175, 89 149, 43 124, 67 77, 28 67, 22 57, 41 47, 68	
Ethylt March	Ethylbenzene March 9, 1943		o-Xylene March 2, 1943		<i>m</i> -Xylene March 4, 1943		<i>p</i> -Xylene February 3, 1943		<i>n</i> -Propyl- benzene February 24, 1943		Isopropyl- benzene February 25, 1943	
$^{\circ}$ C 137, 124 136, 574 135, 954 135, 399 134, 800 129, 221 114, 020 107, 183 100, 561 95, 056 89, 071 84, 599 79, 777 70, 862 67, 775 64, 463 60, 796 56, 589	<i>mm</i> Hg 779, 34 767, 95 755, 24 744, 05 732, 08 627, 93 500, 70 402, 44 324, 93 261, 75 217, 17 175, 89 149, 44 124, 67 103, 65 87, 75 77, 28 67, 22 57, 41 47, 68	$\begin{array}{c} \circ \ C \\ 145. 367 \\ 144. 309 \\ 144. 176 \\ 143. 007 \\ 137. 346 \\ 129. 009 \\ 114. 965 \\ 108. 227 \\ 102. 632 \\ 96. 541 \\ 91. 987 \\ 87. 081 \\ 82. 242 \\ 96. 541 \\ 91. 987 \\ 87. 081 \\ 82. 44. 857 \\ 77. 993 \\ 74. 857 \\ 77. 485 \\ 77. 466 \\ 63. 460 \end{array}$	<i>mm</i> Hg 779.36 767.95 755.25 744.06 732.09 627.93 500.71 402.44 424.94 261.75.89 149.44 217.17 175.89 149.44 124.67 103.65 77.28 67.23 57.41 47.66	$^{\circ}$ C 140.041 139.493 138.849 138.849 138.849 138.2128 132.128 132.128 132.128 132.128 132.128 132.124 24.205 116.896 110.041 103.396 97.870 91.860 87.867 82.522 77.747 73.558 70.458 63.436 59.203	<i>mm</i> Hg 779, 36 767, 95 755, 25 755, 25 755, 25 755, 25 755, 25 755, 25 75, 26 75, 26 76, 26 77, 27 77, 26 77, 27 77, 28 77, 27 77, 28 77, 27 77, 28 77, 29 77, 29 77, 20 77, 20,	$^{\circ}$ C 139, 289 138, 742 138, 114 137, 558 136, 956 131, 355 123, 409 116, 083 109, 211 102, 546 97, 013 90, 990 86, 488 81, 636 72, 667 72, 667 72, 667 72, 667 58, 288	mm Hg 779, 36 768, 00 755, 27 744, 07 732, 10 627, 93 500, 71 402, 45 324, 97 261, 78 217, 19 175, 92 149, 45 124, 68 103, 67 87, 73 77, 30 67, 25 57, 43 47, 66	° C 160, 202 159, 625 158, 8972 158, 8972 158, 899 157, 760 151, 903 143, 598 135, 942 128, 764 121, 807 116, 032 109, 744 105, 046 99, 986 99, 986 99, 986 99, 986 99, 986 99, 986 99, 986 99, 986 90, 622 87, 383 83, 909 80, 064 75, 646	<i>mm</i> Hg 779, 39 767, 96 755, 96 755, 97 744, 08 732, 11 627, 94 402, 44 500, 72 402, 44 500, 72 402, 44 517, 18 175, 89 149, 44 124, 67 103, 66 87, 73 77, 29 67, 24 67, 41 47, 65	$^{\circ}$ C 153, 367 152, 798 152, 152 151, 576 150, 956 145, 176 136, 983 129, 433 129, 434 13, 604 14, 768 81, 579 78, 155 74, 365 70, 020	<i>mm</i> Hg 779, 39 767, 96 755, 27 744, 08 732, 11 627, 94 500, 72 402, 44 324, 95 261, 76 217, 18 175, 89 149, 44 124, 67 103, 66 87, 73 77, 29 67, 24 57, 41 47, 65	

VI. CORRELATION OF THE DATA WITH THE ANTOINE EQUATION

1. METHOD OF CORRELATION

The simple vapor-pressure equation

$$\log_{10} P = A - (B/T), \tag{1}$$

where T is the absolute temperature in degrees Kelvin, has not proved adequate for the representation of accurate vapor pressure data. A simple modification of eq 1, originally proposed by Antoine [5], is

$$\log_{10}P = A - B/(C+t),$$
 (2)

where t is the temperature in degrees centigrade. The change is thus equivalent to the substitution of the constant C for the ice point, 273.16° K, in eq 1. The Antoine equation has been discussed in detail in a report by G. W. Thomson [6]. The equation has been used successfully by E. R. Smith to represent precise vapor-pressure data over the range 100 to 1,500 mm [7], and has been used by a number of other workers to represent data of moderate precision at higher pressures [6]. Advantages of the Antoine equation are the small number of constants and the fact that the equation may easily be inverted to yield explicitly the temperature corresponding to a given pressure. In addition, there is reason to believe that extrapolation, especially to higher pressures, by means of the Antoine equation is more reliable than for many other equations commonly used.

All the data obtained in the present investigation have been correlated by means of the Antoine equation, and the results show that the equation is entirely adequate to represent the vapor pressures of a wide variety of hydrocarbon liquids over the range 50 to 800 mm.

The constants of the Antoine equation were adjusted by the method of least squares to fit the experimental data on each compound. Certain advantageous simplifications in the calculations were obtained by rewriting the Antoine equation, eq 2, in a different form. Although this modification simplifies the final calculations, the derivation of the necessary equations is complicated, and will therefore be given in some detail.

Equation 2 may be written in the form

$$(A - \log P) (C + t) - B = 0,$$
 (3)

or, on multiplying out the left side, and making a transformation to new constants,

a = A		A=a	
b = (AC - B)	or	B = -(ac+b)	(4)
c = -C		C = -c	

eq 3 becomes

$$F(P,t;a,b,c) = (at+b+c \log P - t \log P) = 0.$$
(5)

Equation 5 is another form of the Antoine equation. It will be observed that eq 5 is linear in the constants a, b, and c, whereas neither eq 2 or eq 3 is linear in A, B, and C. Equation 5 may consequently be fitted to the data by least squares without the necessity of making initial estimates of the constants, as would be necessary for eq 2 or eq 3. However, it is convenient, in using eq 5, to make initial estimates of a, b, and c, in order to reduce the number of significant figures necessary in the subsequent least-squares calculation. The initial approximations, say a_0 , b_0 , and c_0 , may be calculated from three selected experimental points, at a low, an intermediate, and a high pressure. Three simultaneous linear equations of the form of eq 5 are obtained, the solution of which yields a_0 , b_0 , and c_0 . For eq 2 or eq 3, three simultaneous nonlinear equations are obtained, and the solution for A, B, and C is more difficult.

Vapor Pressures and Boiling Points

Substitution of a_0 , b_0 , and c_0 in eq 5 yields the function

$$F_0(P,t; a_0, b_0, c_0) = (a_0 t + b_0 + c_0 \log P - t \log P).$$
(6)

By adding and subtracting F_0 to eq 5 there is obtained

$$f(P,t; F_0; \alpha, \beta, \gamma) = (\alpha t + \beta + \gamma \log P + F_0) = 0, \qquad (7)$$

where

$$\begin{array}{l} \alpha = (a - a_0) \\ \beta = (b - b_0) \\ \gamma = (c - c_0) \end{array}$$
 (8)

are the corrections to be added to the initial approximations, a_0 , b_0 , and c_0 , to obtain the final adjusted values a, b, and c.

Equation 7 is the form of the Antoine equation used in setting up the normal equations of the method of least squares. The small quantities α , β , and γ are to be adjusted to minimize the weighted sum of the squares of the residuals,

$$S = \sum w^i (f^i)^2, \tag{9}$$

where f^i is the value of f when P and t are replaced by the experimental values P^i and t^i , and the sum is over all the experimental points. The weight of the *i*th point, w^i , is defined below. The normal equations, which are three simultaneous linear equations to be solved for α , β , and γ , are [18]

$$(\sum_{i} w^{i} f^{i}_{\alpha} f^{i}_{\alpha}) \alpha + (\sum_{i} w^{i} f^{i}_{\alpha} f^{i}_{\beta}) \beta + (\sum_{i} w^{i} f^{i}_{\alpha} f^{i}_{\gamma}) \gamma = \sum_{i} w^{i} f^{i}_{\alpha} f^{i}_{0}$$

$$(\sum_{i} w^{i} f^{i}_{\beta} f^{i}_{\alpha}) \alpha + (\sum_{i} w^{i} f^{i}_{\beta} f^{i}_{\beta}) \beta + (\sum_{i} w^{i} f^{i}_{\beta} f^{i}_{\gamma}) \gamma = \sum_{i} w^{i} f^{i}_{\beta} f^{i}_{0}$$

$$(10)$$

$$(\sum_{i} w^{i} f^{i}_{\gamma} f^{i}_{\alpha}) \alpha + (\sum_{i} w^{i} f^{i}_{\gamma} f^{i}_{\beta}) \beta + (\sum_{i} w^{i} f^{i}_{\gamma} f^{i}_{\gamma}) \gamma = \sum_{i} w^{i} f^{i}_{\gamma} f^{i}_{0}$$

where

$$\begin{aligned} & \int \alpha^{i} = (\partial f / \partial \alpha)^{i} = t^{i} \\ & \int_{\beta}^{i} = (\partial f / \partial \beta)^{i} = 1 \\ & f_{\gamma}^{i} = (\partial f / \partial \gamma)^{i} = \log P^{i} \end{aligned}$$

$$(11)$$

$$f_0^{i} = f(P^{i}, t^{i}; F_0^{i}; 0, 0, 0) = F_0^{i}$$

= $(a_0 t^{i} + b_0 + c_0 \log P^{i} - t^{i} \log P^{i}.$ (12)

These quantities are to be evaluated for each experimental point (P^{t}, t^{i}) , and the sums in eq 10 are over all the points.

It will be observed that the coefficients (sums) on the left side of the normal equations have a simple form, and do not contain the initial estimates of the constants, as would be the case if the normal equations were set up for eq 2 or eq 3. This is a consequence of the linearity of eq 7 with respect to α , β , and γ , and is the principal advantage of the use of this equation.

It can be seen from eq 5 and eq 12 that the quantities f_0^i which are computed in setting up the normal equations will be small and will 663099-45-6

235

clearly reflect any irregularities in the data. It is therefore possible, by inspection of the quantities f_0^i , to make a preliminary evaluation of the precision of the data before the least squares calculation is carried out.

The weights w (the indices i will be omitted for simplicity) are given by the relation

$$w = (1/\sigma_f^2), \tag{13}$$

where σ_f is the expected standard deviation of the function f, of eq 7, from the value zero. σ_f is calculated from the relation

$$\sigma_f^2 = f_t^2 \sigma_t^2 + f_{\log P}^2 \sigma_{\log P}^2, \tag{14}$$

where σ_t and $\sigma_{\log P}$ are the expected standard deviations (of a single value) of t and log P, and

$$f_{t} = (\partial f/\partial t) = \alpha + (\partial F_{0}/\partial t) = (\alpha + a_{0} - \log P)$$

$$= (a - \log P) = (A - \log P)$$

$$(15)$$

$$\log P = (\partial f/\partial \log P) = \gamma + (\partial F_{0}/\partial \log P) = (\gamma + C_{0} - t)$$

$$= (c - t) = -(C + t).$$

As the data approximately satisfy eq 3,

$$f_{\log P} \simeq -B/(A - \log P). \tag{16}$$

The weight w can be evaluated only approximately because of the inherent uncertainty in σ_t and $\sigma_{\log P}$. It is therefore permissible to use approximate values of A and B in calculating f_t and $f_{\log P}$. The average value of 6.8 for A and 1,250. for B were used in all the calculations of this report.

 $\sigma_{\log P}$ may be replaced by (σ_P/P) , where σ_P is the standard deviation of the pressure. In view of the experimental method, σ_P should be representable by an expression of the form

$$\sigma_P^2 = \sigma_{P_0}^2 + \left(\frac{dP}{dt}\right)^2_w \sigma_{t_0}^2, \tag{17}$$

where σ_{P_0} is the standard deviation of the pressure in the vapor pressure measurements, σ_{t_0} is the standard deviation of the temperature in the calibration measurements with water, and $(dP/dt)_W$ is the temperature coefficient of the vapor pressure of water at the given pressure. The measure of σ_P adopted was the root-mean-square value of the difference in the observed pressure for successive calibrations at a given contact. It was found that these values of σ_P were satisfactorily represented by eq 17 with $\sigma_{P_0} = \pm 0.06$ mm Hg and $\sigma_{t_0} = \pm 0.003$ degree centigrade. The corresponding values of σ_P vary from ± 0.06 mm Hg at the lowest pressure to ± 0.11 mm Hg at the highest pressure. σ_t in eq 12, the standard deviation of the temperature in the vapor pressure measurements, was also taken as ± 0.003 degree centigrade. Finally, the weights, one weight for each contact (or pressure), were calculated from eq 13 to 17. The use of this single set of weights for all the calculations reduced considerably the labor of the calculations.

The evaluation of α , β , and γ by the solution of eq 19 completes the least squares calculation. The adjusted values of the constants A, B, and C, to be used in the original form of the Antoine equation, eq 2, are then calculated from eq 4 and eq 8.

It is not difficult to show that the adjusted values of A, B, and C should satisfy the relations

$$\sum_{i} w^{i} [(A - \log P^{i})(C + t^{i}) - B]t^{i} = 0$$

$$\sum_{i} w^{i} [(A - \log P^{i})(C + t^{i}) - B] = 0 \qquad (18)$$

$$\sum_{i} w^{i} [(A - \log P^{i})(C + t^{i}) - B] \log P^{i} = 0.$$

In practice, these sums are found to be very nearly but not exactly zero, because of the accumulation of numerical errors in the least squares calculation. A readjustment of A, B, and C by using these three relations would be equivalent to a second least squares calculation and equally laborious. However, it is easy to make a final small adjustment of B by using the second relation of eq 18, which is equivalent to a second least squares calculation of S) in which, however, A and C are held constant. The small correction to be added to B is

$$\sum_{i} w^{i} [(A - \log P^{i})(C + t^{i}) - B] / \sum_{i} w^{i}.$$
(19)

This correction was applied in the present calculations. The final values of A, B, and C are therefore very nearly those which minimize the quantity S.

A simple measure of the precision with which the Antoine equation fits the data on a given compound may be obtained from the weighted sum of the squares of the residuals, S. The quantity S is obtained in the course of the solution of the normal equations, without the necessity of computing the individual residuals for each point. From eq 9 and eq 13, S is given by

$$S = \sum_{i} (f^{i}/\sigma_{f}^{i})^{2}, \qquad (20)$$

where f^i is the actual deviation of the function f of eq 7 from zero for the given point (P^i, t^i) , and σ_f^i is the expected deviation calculated from eq 14, with the previously stated values for σ_i and σ_P . (f^i/σ_f^i) is thus the ratio of the actual to the expected error for the given point. Therefore, if the number of points in the given set of data is designated by n,

$$\rho = (S/n)^{1/2} = \left[\frac{1}{n} \sum_{i} (f^{i}/\sigma_{f}^{i})^{2}\right]^{1/2}$$
(21)

is the root-mean-square value of the ratios of the actual deviations to the expected deviations. The actual deviations, f^i , from the value zero may be a result of errors in the measurement of the temperature and pressure or caused by the failure of the Antoine equation to represent exactly the true pressure-temperature relation. The ratio ρ is an averaged measure of these errors.

2. RESULTS OF THE CORRELATION

The values of the three constants of the Antoine equation for vapor pressures, obtained from the data in table 2 as described in the preceding section, are given in table 3, together with the ranges of pressure and temperature over which the experimental data were obtained (and over which, therefore, the resulting equation for each compound is applicable without loss of accuracy). The values of the boiling point, and the pressure coefficient of the boiling point, at 760.00 mm Hg, calculated from the Antoine equation are also given.

In those cases in which two series of measurements on a single compound are given in table 2, the constants in table 3 were derived from the series of more recent date. The earlier series agrees satisfactorily with the equation in every case.

The last column of table 3 gives, for each compound, the rootmean-square value, ρ , of the ratios of the deviations of the observed points from the Antoine equation to the expected standard deviations. The expected deviations were calculated on the basis of standard deviations (of a single value) of ± 0.003 degree centigrade in the temperature and ± 0.06 to ± 0.11 mm Hg in the pressure, for the lowest and highest pressures, respectively. The values of ρ for the 52 compounds vary from 0.09 to 0.52, while the over-all value of ρ , computed for the total of 913 points on 52 compounds, is 0.33. It seems reasonable to conclude that the over-all standard deviations in the measurements were about ± 0.001 to ± 0.002 degree centigrade in the temperature, and ± 0.02 to ± 0.04 mm Hg in the pressure, although it is not possible to separate unambiguously the errors in temperature and pressure. The expected deviations were arrived at from a study of the deviations in the calibration curves of figure 7. As the actual deviations are considerably smaller, it may be concluded that a large part of the variation in the calibration curves represented true changes in pressure at the contacts, and that interpolation on the calibration curves yielded the pressures with the smaller deviations observed.

Compound	Formula	Constants log_1 t=B (P in	of the Antoin $P = A - B/(0 + A - \log_{10} P)$ M = M = M + M + M + M + M + M + M + M +	the equation $C+t$, or $-C$. • C).	Normal boiling point at	Pressure coefficient dt/dP, at	Range of 1	Measure of precision •	
		A	В	С	760 mm Hg	760 mm Hg	Pressure	Temperature	ρ
		PA	RAFFINS						
n-Pentane. 2-Methylbutane (Isopentane). n-Hexane. 2-Methylpentane. 2-Methylpentane. 2. 3-Dimethylbutane. 2. 3-Dimethylpentane. 3Dimethylpentane. 3Dimethylpentane. 3Dimethylpentane. 3Dimethylpentane. 3Dimethylpentane. 3Dimethylpentane. 2Dimethylpentane. 2Dimethylpentane. 2Dimethylhexane. 2Dimethylhexane. 2Dimethylhexane. 2Dimethylhexane. 2Dimethylhexane. 3Dimethylhexane. 3Dimethylhexane. 3Dimethylhexane. 3Dimethylhexane. 3Dimethylhexane. 3Dimethylhexane. 3Dimethylhexane. 2Dimethylhexane. 3Dimethylhexane. 2Dimethylhexane. 3Dimethylhexane. 2Dimethylhexane. 3 Timethylpentane. 2Timethylpentane. 2Timethylpentane. 2Timethylpentane. 3 Timethylpentane. 2Tim	$\begin{array}{c} C_{8}H_{12}\\ C_{4}H_{12}\\ C_{4}H_{14}\\ C_{6}H_{14}\\ C_{6}H_{14}\\ C_{6}H_{14}\\ C_{6}H_{14}\\ C_{7}H_{16}\\ C_{7}H_{16}\\ C_{7}H_{16}\\ C_{7}H_{16}\\ C_{8}H_{18}\\ C_{8}H_{18}$	$\begin{array}{c} 6.\ 87372\\ 6.\ 78967\\ 6.\ 87776\\ 6.\ 87776\\ 6.\ 83910\\ 6.\ 84887\\ 6.\ 75483\\ 6.\ 80983\\ 6.\ 90342\\ 6.\ 81509\\ 6.\ 81509\\ 6.\ 81513\\ 6.\ 92377\\ 6.\ 91737\\ 6.\ 91737\\ 6.\ 91737\\ 6.\ 91737\\ 6.\ 92046\\ 6.\ 85704\\ 6.\ $	$\begin{array}{c} 1075.\ 816\\ 1020.\ 012\\ 1171.\ 530\\ 1135.\ 410\\ 1152.\ 368\\ 1081.\ 176\\ 1127.\ 187\\ 1268.\ 636\\ 1190.\ 298\\ 1223.\ 543\\ 1355.\ 126\\ 1337.\ 468\\ 1331.\ 530\\ 1327.\ 661\\ 1327.\ 884\\ 1237.\ 884\\ 1273.\ 594\\ 1315.\ 503\\ 1287.\ 876\\ 1287.\ 876\\ 1287.\ 876\\ 1287.\ 876\\ 1287.\ 876\\ 1287.\ 876\\ 1315.\ 632\\ 1328.\ 946\\ 1315.\ 684\\ 1315.\ 184\\ 184\ 184\\ 184\ 184\\ 184\ 184\ 184\\ 184\ 184\ 184\ 184\\ 184\$	$\begin{array}{c} 233, 359\\ 233, 097\\ 224, 366\\ 226, 572\\ 227, 129\\ 229, 343\\ 228, 900\\ 216, 951\\ 223, 343\\ 224, 687\\ 209, 517\\ 213, 693\\ 212, 414\\ 212, 595\\ 215, 072\\ 214, 157\\ 214, 790\\ 214, 412\\ 217, 439\\ 214, 412\\ 217, 439\\ 214, 863\\ 212, 505\\ 202, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 375\\ 220, 331\\ 194, 480\\ 180, 311\\ \end{array}$	$\begin{array}{c} \circ \ C \\ 36.\ 073 \\ 37.\ 852 \\ 68.\ 740 \\ 60.\ 271 \\ 63.\ 282 \\ 49.\ 741 \\ 57.\ 988 \\ 98.\ 426 \\ 79.\ 203 \\ 86.\ 069 \\ 125.\ 665 \\ 117.\ 647 \\ 118.\ 925 \\ 655 \\ 117.\ 647 \\ 118.\ 925 \\ 117.\ 709 \\ 118.\ 534 \\ 106.\ 840 \\ 111.\ 969 \\ 111.\ 969 \\ 111.\ 969 \\ 111.\ 969 \\ 111.\ 969 \\ 111.\ 969 \\ 111.\ 969 \\ 111.\ 969 \\ 113.\ 467 \\ 150.\ 796 \\ 174.\ 123 \\ 216.\ 278 \\ 216.\ 278 \end{array}$	$\begin{array}{c} deg \ C/mm \\ Hg \\ 0.03856 \\ .03815 \\ .04191 \\ .04182 \\ .04117 \\ .04173 \\ .04182 \\ .04173 \\ .04182 \\ .04173 \\ .04480 \\ .04394 \\ .04510 \\ .04738 \\ .04691 \\ .04719 \\ .04695 \\ .04719 \\ .04695 \\ .04719 \\ .04695 \\ .04724 \\ .04694 \\ .04646 \\ .04741 \\ .04755 \\ .04651 \\ .04755 \\ .04651 \\ .04833 \\ .04761 \\ .04833 \\ .04761 \\ .04863 \\ .04755 \\ .04651 \\ .04853 \\ .04761 \\ .04965 \\ .05528 \end{array}$	$\begin{array}{c} mm \ \mathrm{Hg} \\ 325 \ \mathrm{to} \ 780 \\ 501 \ \mathrm{to} \ 780 \\ 125 \ \mathrm{to} \ 780 \\ 48 \ \mathrm{to} \ 780 \\ 57 \ \mathrm{to} \ 780 \ \mathrm{to} \ 780 \\ 57 \ \mathrm{to} \ 780 \ \mathrm{to} \ \ 780 \ \mathrm{to} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$^{\circ}$ C 13. 3 to 36. 8 16. 3 to 28. 6 13. 0 to 69. 5 12. 8 to 61. 1 15. 3 to 64. 1 15. 3 to 64. 1 15. 4 to 50. 5 14. 3 to 58. 8 25. 9 to 99. 3 15. 3 to 80. 1 13. 4 to 88. 9 52. 9 to 126. 6 41. 7 to 118. 5 42. 7 to 119. 4 41. 7 to 118. 6 42. 1 to 119. 4 31. 4 to 110. 3 34. 0 to 116. 5 34. 1 to 110. 9 40. 8 to 118. 6 40. 0 to 119. 2 33. 1 to 110. 8 34. 4 to 100. 1 36. 6 to 115. 7 36. 6 to 114. 4 70. 1 to 151. 8 44. 575. 1 126. 4 to 217. 3	$\begin{array}{c} 0.23\\ 0.23\\ .11\\ .41\\ .00\\ .09\\ .41\\ .12\\ .48\\ .39\\ .36\\ .49\\ .36\\ .49\\ .38\\ .46\\ .49\\ .38\\ .46\\ .37\\ .35\\ .26\\ .28\\ .32\\ .43\\ .26\\ .28\\ .32\\ .43\\ .26\\ .37\\ .32\\ .35\\ .29\\ .37\\ .40\\ .25\\ .25\\ .25\\ .25\\ .25\\ .25\\ .25\\ .25$

TABLE 3.—Summary of the results of the correlation of the experimental data with the Antoine equation for vapor pressures

* See footnote at end of table.

Vapor Pressures and Boiling Points

239

Compound	`Formula	Constants $\log_{10} t = B$ (P in	Constants of the Antoine equation $\log_{10} P = A - B/(C+t)$, or $t = B/(A - \log_{10} P) - C$. (P in mm Hg; t in ° C).			Pressure coefficient dt/dP, at	Range of measurement		Measure of precision •
		A	В	C		700 mm Hg	Pressure	Temperature	ρ
		NAP	HTHENES						
Cyclopentane	$\begin{array}{c} C_5H_{10} \\ C_6H_{12} \\ C_8H_{16} \\ C_8H_{16} \\ C_8H_{16} \\ C_7H_{14} \\ C_8H_{16} \\ C_9H_{15} \end{array}$	$\begin{array}{c} 6.\ 87798\\ 6.\ 87283\\ 6.\ 89887\\ 6.\ 88083\\ 6.\ 88083\\ 6.\ 88083\\ 6.\ 88083\\ 6.\ 87041\\ 6.\ 83722\\ 6.\ 83722\\ 6.\ 83266\\ 6.\ 84293\\ 6.\ 83298\\ 6.\ 82180\\ 6.\ 88288\\ \end{array}$	$\begin{array}{c} 1119, 208\\ 1186, 059\\ 1380, 391\\ 1375, 564\\ 1203, 554\\ 1203, 554\\ 1384, 036\\ 1369, 525\\ 1356, 100\\ 1345, 859\\ 1340, 658\\ 13440, 658\\ 13447, 794\\ 1332, 613\\ 1457, 640 \end{array}$	$\begin{array}{c} 230,738\\ 226,042\\ 212,610\\ 217,475\\ 222,863\\ 221,630\\ 215,128\\ 216,040\\ 219,342\\ 215,598\\ 218,281\\ 216,360\\ 218,791\\ 207,511 \end{array}$	°C 49.262 71.812 130.937 126.415 80.738 100.934 131.783 129.728 123.419 124.450 120.088 124.321 119.351 156.711	$\begin{array}{c} deg \ C/mm \\ 0.\ 04003 \\ .\ 04274 \\ .\ 04886 \\ .\ 04913 \\ .\ 04913 \\ .\ 04971 \\ .\ 04963 \\ .\ 04988 \\ .\ 04988 \\ .\ 04988 \\ .\ 04981 \\ .\ 04910 \\ .\ 04983 \\ .\ 04921 \\ .\ 04921 \\ .\ 05201 \end{array}$	$\begin{array}{c} mm \ \mathrm{Hg} \\ 217 \ \mathrm{to} \ 780 \\ 88 \ \mathrm{to} \ 780 \\ 48 \ \mathrm{to} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} {}^{\circ}C\\ 15.7\ {\rm to}\ 50.0\\ 15.0\ {\rm to}\ 72.6\\ 51.7\ {\rm to}\ 131.9\\ 46.9\ {\rm to}\ 127.4\\ 19.9\ {\rm to}\ 81.6\\ 25.6\ {\rm to}\ 101.8\\ 51.4\ {\rm to}\ 132.7\\ 49.2\ {\rm to}\ 130.7\\ 45.2\ {\rm to}\ 130.7\\ 45.2\ {\rm to}\ 125.4\\ 41.3\ {\rm to}\ 125.4\\ 41.3\ {\rm to}\ 125.3\\ 40.3\ {\rm to}\ 125.3\\ 72.5\ {\rm to}\ 157.7\\ \end{array}$	$\begin{array}{c} 0.26\\ -27\\ .52\\ .24\\ .42\\ .29\\ .29\\ .29\\ .24\\ .28\\ .18\\ .23\\ .23\\ .17\\ .36\\ \end{array}$
		AR	OMATICS					A. Constant	
Benzene_ Toluene Ethylbenzene orXylene p-Xylene p-Xylene n-Propylbenzene Isopropylbenzene	$\begin{array}{c} C_{6}H_{6}\\ C_{7}H_{8}\\ C_{8}H_{10}\\ C_{8}H_{10}\\ C_{8}H_{10}\\ C_{8}H_{10}\\ C_{8}H_{10}\\ C_{8}H_{10}\\ C_{9}H_{12}\\ C_{9}H_{12} \end{array}$	$\begin{array}{c} 6,89324\\ 6,95337\\ 6,94998\\ 6,99937\\ 7,00343\\ 6,98648\\ 6,95178\\ 6,92329\end{array}$	$\begin{array}{c} 1203,835\\ 1343,943\\ 1419,315\\ 1474,969\\ 1458,214\\ 1450,688\\ 1491,548\\ 1455,811 \end{array}$	219, 924 219, 377 212, 611 213, 714 214, 609 214, 990 207, 171 207, 202	$\begin{array}{c} 80.103\\ 110.623\\ 136.187\\ 144.414\\ 139.102\\ 138.348\\ 159.216\\ 152.393\end{array}$	$\begin{array}{c} 0.\ 04273\\ .\ 04630\\ .\ 04898\\ .\ 04969\\ .\ 04903\\ .\ 04918\\ .\ 05143\\ .\ 05076\end{array}$	57 to 780 48 to 780	$\begin{array}{c} 14.5 \ to \ \ 80.9 \\ 35.4 \ to \ 111.5 \\ 56.6 \ to \ 137.1 \\ 63.5 \ to \ 145.4 \\ 59.2 \ to \ 140.0 \\ 58.3 \ to \ 139.3 \\ 75.6 \ to \ 160.2 \\ 70.0 \ to \ 153.4 \end{array}$	$\begin{array}{c} 0.24 \\ .40 \\ .29 \\ .31 \\ .32 \\ .24 \\ .27 \\ .29 \end{array}$

TABLE 3.-Summary of the results of the correlation of the experimental data with the Antoine equation for vapor pressures-Continued

*See text, section VI.

240 Journal of Research of the National Bureau of Standards

VII. DISCUSSION

The data obtained in this investigation show clearly several simple correlations between the values of the "B" and "C" constants of the Antoine equation and molecular structure for the compounds of the several classes.

Figures 8 and 9 give plots of the values of the "B" and "C" constants, respectively, of the Antoine equation as a function of the number of carbon atoms in the molecule for several members of the series of normal paraffins, alkylcyclopentanes, alkylcyclohexanes, and alkylbenzenes. From correlations such as these, values of the "B" and "C" constants may be estimated with reasonable certainty for neighboring higher members of these series. With two constants so determined, the normal boiling point would fix the third constant, A,

FIGURE 8.—Values of the "B" constant of the Antoine equation as a function of the number of carbon atoms in the molecule, for the several different classes of compounds investigated.

The scale of ordinates gives the value of the "B" constant and the scale of abscissas gives the number of carbon atoms in the molecule.

and thus permit setting up the complete vapor-pressure equation from a knowledge only of the boiling point at one pressure.

Figure 10 gives, from the data on the hexanes, heptanes, and octanes, a plot of the values of the difference, between a normal paraffin and a given isomer, of the "B" constant of the Antoine equation as a function of the difference in the normal boiling point of the two isomers. Figure 11 gives, from the data on the hexanes, heptanes, and octanes, a plot of the values of the difference, between a normal paraffin and a given isomer, of the "C" constant of the Antoine equation as a function of the number of tertiary and quaternary carbon atoms in the molecule. Correlations of this kind make possible the prediction of vapor pressure equations on the basis of one value of the boiling point, which itself may be estimated by a method already described [13].

The usefulness of the data of the present investigation in formulating simple rules in connection with the separation of close-boiling hydrocarbons by distillation at different pressures will be discussed in another report [12].

242 Journal of Research of the National Bureau of Standards

The scale of ordinates gives the value of the "C" constant and the scale of abscissas gives the number of carbon atoms in the molecule.

FIGURE 10.—Values of the difference, between a normal paraffin and a given isomer, in the "B" constant of the Antoine equation, as a function of the difference in the normal boiling point of the two isomers.

The scale of ordinates gives the value of the "B" constant for the normal paraffin less that of the isoparaffin. The scale of abscissas gives the value of the normal boiling point of the normal paraffin less that of the isoparaffin. This plot represents the data on the bexanes, heptanes, and octanes.

Vapor Pressures and Boiling Points

FIGURE 11.—Values of the difference, between a normal paraffin and a given isomer, in the "C" constant of the Antoine equation, as a function of the number of tertiary and quaternary carbon atoms in the molecule.

The scale of ordinates gives the value of the "C" constant for the isoparaffin less that of the normal paraffin. The scale of abscissas gives the number of tertiary carbon atoms in the molecule, with the upper curve applying to those molecules having one quaternary carbon atom and the lower curve to those having no quaternary carbon atoms. This plot represents the data on the hexanes, heptanes, and octanes.

The data of the present investigation are being correlated with existing other vapor pressure data on the same and additional compounds in connection with the work of the American Petroleum Institute Research Project 44 at this Bureau, and a comparison of the present data with data of previous investigations will appear in a report of that work [11]. This latter report will also contain an extension, with detailed discussion, of the various correlations, together with the prediction of vapor-pressure equations for a number of hydrocarbons for which no data are available. The correlations in this latter report are being made according to the method described in another report from this laboratory [13], which involves a consideration of the interaction among various groups in the molecule.

Grateful acknowledgement is made to C. E. Boord of the American Petroleum Institute Hydrocarbon Research Project at the Ohio State University, M. R. Fenske of the Pennsylvania State College, George Calingaert of the Ethyl Corporation, the Barrett Division of the Allied Chemical & Dye Corporation, the Humble Oil & Refining Company, and the Dow Chemical Company for supplying materials from which, except for cyclopentane [10] and *n*-dodecane [9], were produced [8] the purified samples measured in this investigation.

VIII. REFERENCES

- A. R. Glasgow, Jr., and F. D. Rossini, J. Research NBS 23, 509 (1939) RP1249.
 C. H. Meyers, J. Am. Chem. Soc. 45, 2135 (1923).
 N. S. Osborne and C. H. Meyers, J. Research NBS 13, 1 (1934) RP691.
 C. H. Meyers and C. S. Cragoe, Private communication of revisions to refer-tion of the basis of the second seco ence [3] on the basis of new measurements of the vapor pressure of water made at the National Bureau of Standards by H. F. Stimson and C. S. Cragoe (1943).
- [5] C. Antoine, Compt. rend. 107, 681 (1888).
 [6] G. W. Thomson, The Antoine equation for vapor pressure data (Ethyl Corporation, July 12, 1943). Unpublished. Report made available by G. Calingaert.
- [7] E. R. Smith, J. Research NBS 24, 229 (1940) RP1280; 26, 129 (1941) RP1365.
- [8] A. F. Forziati, A. R. Glasgow, Jr., C. B. Willingham, and F. D. Rossini, API Research Project 6, National Bureau of Standards. Unpublished data.
- [9] B. J. Mair and A. J. Streiff. J. Research NBS 24, 395 (1940) RP1289.

- [10] M. R. Fenske, Pennsylvania State College. Unpublished data.
 [11] W. J. Taylor, J. M. Pignocco, and F. D. Rossini, API Research Project 44, National Bureau of Standards. Unpublished data.
 [12] C. B. Willingham and F. D. Rossini. API Research Project 6, National Bureau of Standards. Unpublished data.
- [13] W. J. Taylor, J. M. Pignocco and F. D. Rossini, J. Research NBS 34, 413 (1945) RP1651.
- [14] A. F. Forziati and F. D. Rossini, API Research Project 6, National Bureau of Standards. Unpublished data.
- [15] C. B. Willingham and F. D. Rossini. J. Research NBS 33, 85 (1944) RP1615.
- [16] C. B. Willingham and F. D. Rossini, API Research Project 6, National Bureau of Standards. Unpublished data.
- [17] B. J. Mair and A. F. Forziati. J. Research NBS 32 151 (1944) RP1582.
- [18] W. Edwards Deming, Statistical adjustment of data, chapters 4 and 8. (John Wiley & Sons, Inc., New York, N. Y. 1943.)

WASHINGTON, July 6, 1945.

Ο