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THE MUTUAL INDUCTANCE OF TWO PARALLEL
CIRCLES

By Chester Snow

ABSTRACT

It is shown that the mutual inductance of two parallel circles is identical with

the electrostatic potential due to a fairly simple surface charge upon an annular

surface. This potential is formulated as a complex line integral, and by deforma-

tion of the path its harmonic expansion is obtained for all possible cases.
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I. INTRODUCTION

If a fixed circle of radius ax lies in the y, z plane with center at the

origin, the position of a second circle parallel to the first whose radius

is a2 may be specified either by the cylindrical coordinates x, p, <f>, or

the spherical coordinates r, 6, <fi, of its center P. It is an interesting

fact that the mutual inductance M(x, p) (independent of 0) of the

two circles satisfies Laplace's equation in the coordinates of P, and

M may, therefore, be identified with the electrostatic potential due

to a certain distribution of electricity. This was pointed out by
Butterworth 1 who did not determine the equivalent distribution of

electrostatic charge, but who made use of the fact that y2M=0, to

find the expansion for M, in zonal harmonics for the case where

r>ai+a2 . For such a type of expansion there are, in fact, three

cases to be considered according as the second circle, when brought

into the plane of the first by keeping the distance between centers

fixed, intersects the first circle or falls wholly within or without it.

Butterworth's formula for the case where r>ai J
r a2 is complete, and

his treatment of the case of equal circles when r<2a would be so

except for the fact that he obtained only the first four terms of the

expansion. The same objection applies to his treatment of the case

of " unequal circles close together." Moreover, the expression for the

i Butterworth, Phil. Mag., 31, p. 443; 1916.
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mutual inductance of coaxial circles upon which Butterworth founds

his solution in this case is an expansion of the type

M(x
> a-st1 + (^MTI>* log +(^?)+sJ

and it is easy to show that such an expression can not be valid for

the entire range ax
— a2<x<a1 + a2 , and indeed, if — <3 — 2^2 = 0.172,

x2

it can never be valid, but there must be negative powers of 1 + ;———

^

in the expansion.

<z^a 2 4 CASE- I

a.-a? <

Figure 1.

—

Showing various relative positions of the

small circle (whose center is P2 ) with respect to larger

one whose center is at

Butterworth tested his solution for this case by showing that it

would (if completely carried out) give the correct solution for equal

circles and also in some cases not clearly denned when the circles

were unequal, but coplanar. That these tests are not crucial may
be seen from the presence of a series in the solution about to be given

of the type ^}A k (
~ -) P2k_1 (cos 0) which vanishes when the

*=i \ r /



snow] Mutual Inductance of Two Parallel Circles 257

circles are equal (a 1
= a2 ), and also when they are unequal but co-

planar, thus satisfying both the above tests without vanishing in

general.

In the following it is shown that the mutual inductance M(r,p) of the

two circles, the center of the smaller being at the point r, p( = cos 0),

is identical with the electrostatic potential due to a symmetrical sur-

face charge of electricity, of total amount zero, upon the annulus in

the plane x = whose boundaries are the two concentric circles

p = ai+a2 and p = a l
— oJ2 where p

2 = y
2 + z

2
. The surface density a of

this distribution is found to be a simple function of p, equation (10),

and its Newtonian potential is expressed as a complex line integral.

By deforming the path of this integral the residues of the poles of the

integrand give the zonal harmonic development of this potential for

the various cases. The three possible cases are shown in Figure 1.

XL THE EQUIVALENT ELECTROSTATIC PROBLEM
It has been shown by the writer 2 that the mutual inductance of

any two parallel circles is given by the equation

M=4ir2aia2 e — sxJ (ps)J1 (a 1s)Ji(a2s)ds (1)

If we make use of Gegenbauer's formula 3

JfaiWitfi*)- 9^ f

r^^ sin2 U* (2)
7T JO Pi

where p x is defined by

P\ — d\
2 — 2a xa2 cos yp + &2

2
(3

)

the expression (1) becomes

M=±ic(hW (

a3

se-sxJ (ps)ds f

X ^^ sin2^
Jo Jo Pi

= 4ira 1W f'^W r se-^J (Ps)J1 (p ls)ds
Jo Pi Jo

= -47ra 1V f*E5W * re-szJ (ps)J (plS)ds
Jo Pi OP1J0

If we use pi instead of \p for the variable of integration, then by equa-

tion (3)

-47raiW - - 2tt V[(«i + a 2 )

2 - p x

2

} [p x

2 - (a x

- a2 )
2
] dpx

Pi

and

M= - 2tt V[(oi + a*)
2 ~ Pi

2
][pi

2 -
(ft i
~ a*f\dpi yr- e~~

sxJ
r

o(Pis)J
r

(pis)ds
Jai-02 OPlJo

2 B. S. Jour. Research, 1, p. 537; 1928.

1 N. Nielsen, Handbuch der Theorie der Cylinderfunktionen, p. 183.
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Integrating by parts (with respect to p L ) gives

•I e-sxJ (Ps)J (Pls)ds (4)

Now from the well-known integral formula

L"
e
~SXJ

° isR)ds=wm (5)

If we now let

R2 = p
2— 2ppi cos (0 — 0O + P1

2

then by the use of Neumann's addition formula

J (sR) = Jo (ps) Jo (pis) + 2S J« (ps) Jra (pi«) cos ?i (0- 00 (6)

it follows that

1

yjx
2 + p

2— 2ppi cos (4> — fa) +pi
2

(7)
/» 00 00 /"co

e-^Jo (ps) Jo (pis) ds + 2S cos n (<j>
- fa) e~s

'

xJn (ps) Jn (Pls) ds
J0 b=1 Jo

If this equation be multiplied by dfa and integrated from to 2ir, it

gives

Jo Jo V^ +P 2ppi cos (0 — 0i) + pi

By the aid of this, the expression (4) for if may be written

)dfax- p** r-7Tri r (pi

cos W>-<fo) + Pi'

(8)

(9)

where if

«i
_ a 2 <pi<ai+a

*(Pi)=^^l(a 1 +a2y- Pl
2
][p 1

2 -(a 1 --a2)
2
} (10)

or

,,( )-
2(q 1

2 + a2
2 -p

1

2
)p 1 (11)

V[(«i + a2)
2- Pl

2
] [Pl

2 - (a1
- a2 )

2
]

The radical in the integrand of the double integral (9) represents the

distance from the point of integration P1} whose cylindrical coordi-

nates are x = 0, p^pi, 4> = fa, to the general point P(#, p, </>), and the
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integration extends over an annulus in the y, z plane which is bounded
by the concentric circles p 1 =a 1

— a2 and p 1
= a 1 + a2 . Since a- is a

function of p: only (not involving (/> x ), the integral is independent of

(f>, and we recognize in this integral the Newtonian potential at P
due to a symmetrical electrostatic charge on this annulus whose

surface density a is the function of px defined by equation (10).

Although this density becomes infinite at the inner and outer edges

of the annulus, it does so in such a manner that its Newtonian poten-

tial is everywhere finite and continuous. This latter vanishes at

infinity to the order of -^ since the total charge 2t
j
piadpi is zero.

Jcti+a2

This establishes the identity of the mutual inductance of the circles

and the electrostatic potential. When the point P comes on to the

charged annulus, this corresponds to the two circles becoming co-

planar and intersecting.

III. A COMPLEX-INTEGRAL REPRESENTATION OF THE
MUTUAL INDUCTANCE

If we multiply together the binominal series for

l-( —^—
J

~2 and for 1 — (
— ) \~ 2 and then rearrange the re-

sulting double series in ascending and descending powers of p 1 , we
find an expansion for the function pio-(pi) given by equation (10).

Since pi is a value of r when 0=~—that is, p^cos = —we may

replace it by r, and the expansion is

3 7c=-oo

if a x
— a2 < r< ai + a2

(12)

o if r<ai~ a2 or if r>ax + a^

where for general values of v, the function of v and X, lp (X) is defined by

&„(X)

r(-f)r(,-i) ,..-

53A
rfr+1)

/<-^4- +1
'
X
)

00

-2
r<HX' +

"-C>,. ,13)
r(s + i)r(s + *> + i)

s=



260 Bureau of Standards Journal of Research [vol s

where F denotes the hypergeometric function. It follows from this

definition that when (and only when) v = Jc = &n integer (positive,

negative or zero), bv satisfies the following equation:

&ft (X)-X-^_76 (X) = (14)

It is evident from the definition (13) of h v (X) as a function of the

complex variable v (with X fixed and less than one) that bv is analytic

at all finite points of the v plane except for the simple poles at v = -^— 1c

where & = 0, 1, 2, 3- • • • Similarly, the poles of b_y are at v— Tc—^'

Consequently all the poles of hv and h_v are the totality of zeros of the

function cos vw and, therefore bv cos vir and 5_„cos vir have no poles and

cos vir (bv— \~vb_v) has no poles but vanishes whenever v is a real

integer; that is, for all points at which sin vir vanishes. Consequently

the function gv (X) defined by

gv (X) = - 7T cot vwQ>v (X) - \-vb_v (X)) (15)

is analytic at all finite points in the v plane. It does not vanish at

the poles of bv and b__v1 nor at the poles of cot vir. This function so

defined satisfies identically the equation

^(X)-X-^_v (X)=b (16)

for all values of v, whereas the corresponding equation (14) for bp

only holds when v is integral.

We find a simpler expression for the function <jr„(X) by applying

(3 3

3, 1 — X V which gives

^(X) =|
2

(l-X) 2

^(|> v+| 3, 1-x)

Q 2^2{a1±a1Y^ w( ,1 ,3 9 a2
2\

(17)

(by Kummer's transformation).

This also shows that <7„(X) has no poles in the complex plane, and

that (16) is an identity. By using Stirling's asymptotic expansion

for the Gamma function in the series (13) which defines &„(X), it may
be shown that if v is not a negative real,

limit b
i,(\) = Q (to the order v~i)
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Hence, if v is not a positive real,

limit &_„(X) = (to the order v~$)

Also since

limit cot vt = 1

M-» °°

if v is not real, it is evident from equation (15) that

limit cot virbv (\) = and hmit cot vTrb_„(\) =
\v\—» oo |j/|—> co

if ^ is not real.

In the equation (15) \~v must be understood to represent the

principal branch e~v log x where log X is the real (natural) logarithm of

X. It is evident from (15) that if v is not a pure real,

,

g„ (X) =0

if the real part of v is negative, but gv (X) becomes infinite with infinite

\v\\i the real part of v is positive. However, in this case

.

c v

gv {\) =

if the real part of v is positive and c is a positive real quantity less

than X.

If we desire a representation of the discontinuous function of r,

namely, —>T~~ as given by equation (12) in the form of an

integral fj(v)r2v&v along some path in the complex i>-plane, the

equation (16) suggests that the poles oijiy) must be the real integers,

and it gives the value of the residues. No great intuition is then

required to find that
( YT ) ma^ *>e represented by the following

path integral in the y-plane

-'fa+ta
- w'

xrBxi -4 3
- -•) (sis)'* "8>

where the path of the integral is down the entire imaginary axis of v

from + i co to — i oo except that it crosses the real axis to the left of the

—T— )

= e
v og \ai+a2) where log (——~ j denotes the real (natural) logarithm.

To verify this induction consider first the case where r>at + a2 so

limit / v \2"

that
| i (

-—;— ) =0 if the real part of v is negative, in which case
\v\~^o^\al

Jra2/
*
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we have seen gv also vanishes. In this case we may make the path

of the integral in equation (18) into a closed contour by adding to it

a semicircular path of infinite radius, center at origin and lying to

the left of the imaginary axis. There are no poles of the integrand

in this contour, and on shrinking it to the vanishing point we conclude

from equation (18) that

6f),=+o

=oifr>ai+ffl2

T
Consider next the case where r<al

— a2 , and, hence, 0< ——— <X.
(Xi ~T &2

limit / t \2"

In this case we have iust seen that,
, (

—:— ) o„(X) = and also

\
v "*"

9 )( —+— ) 9"^ = if the real part of v is positive.

In this case we add a zero quantity to the integral in equation (18)

by closing its path with an infinite semicircle lying to the right of the

imaginary axis. As this contour contains no poles of the integrand,

we deduce from equation (18) that

[ ^— ) =0 it r<a1— a2
\ Ofj, Z^+o

Finally, consider the case where ax
— a2<^r<^a,i + a2 , so that >1

(L\— a2

and — :— <1.
a x + a2

Breaking up the integral as indicated in the last form of equation

(18), the path of the integral

Ol + fl_2

2i J(,
+i)cot^6_,(X)(^)

2^
may be similarly made into a closed contour encircling (in the negative

direction) that part of the real axis to the left of the point v — — 1

(inclusive), where all the poles of the integrand are the negative real

integers. Since the integral f cot v w dv taken in the negative

direction around an infinitesimal loop encircling any one of these

integers is just —2i, this integral reduces to

-l

-c*+^23(*+j)L.w(i^)r
Ti= — co

-1

= -(a1 + «2)S(ft +i)^(X)(^)
2*
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by equation (14). Similarly the path of the integral

may be made a closed contour encircling (in the positive direction)

all the positive real axis (including the origin). The residues from

the poles of cot pit, at &= 0, 1, 2, 3 . . . . gives for this integral

-(0l +«2
)2(*+i>(x)(^)2*

7c=0

These two series give the development of ( -=r—
J

«= — 2irpcr by

equation (12).

Consequently the problem to be solved is to find a function M(r, y)

which, in the range r^ \x ^ 1, 0^ r :< + oo, satisfies Laplace's

equation, vanishes when r—>co and also satisfies the boundary con-

dition in the form given by equation (18). Since

V2(^P2,(m)) = wherePM = F^2u + 1, - 2v, 1,
i^)

(19)

the solution of the problem is

or since

2Vtt

P'*M = -
T
(
v+

V)n_ v)
(2D

(22)

-^£"r
<-'K'

+D oot-^fwG^J

If 0</x^l,this integral defines a harmonic function, continuous with

its derivatives, satisfying the boundary condition (18) at p= + 0,

and (as will be shown presently) one which vanishes when r—>co.

A comparison of the last form of the integral (22) with the last form

of (18) shows that we have introduced an additional factor

r<-»-)r(i.+i)p„G0
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into the integrand, which introduces new poles, all on the real axis.

Since P2v GO is defined as Fl 2v+ 1, '—2v
3 1, —^— X it may be shown by

Stirling's expansion that when v is not real this new factor, when it

becomes infinite with infinite value of \v\, does so in such a manner

that its product by f . ) will vanish if the real part of v is positive,

for example, when r<a,i + a2 . Consequently it is possible in each case

to make the same deformation of path for the integral (22) as was
made in the corresponding case in discussion of the integral (18).

We proceed to do this and to obtain the zonal harmonic expansions

for M in the three cases that arise.

IV. FORMULA WHEN THE DISTANCE BETWEEN CENTERS
IS GREATER THAN THE SUM OF THE RADII OF THE
CIRCLES

If (
—;— ) > 1 , then (

—:— )
—>0 when \v\—» oo the real part of v beina'

negative. Hence, in this case we may swing the path of the integral

in equation (22) to the left until it closes down upon the negative real

axis to the left of and including the point v= — 1 . Here we meet the

only poles of the integrand—those which make the factor r ( v -f — )

3
become infinite—namely, y = — 7c— „> where ^ = 0, 1, 2, 3, • • • Since

s—i I t(v +-n)dv taken positively around an infinitesimal loop inclosing

3
the poin t vh = —Tc—-r

tegral (22) reduces to

3 (~~ l) s

the point vh = — Tc— ~ is just ~jt , ,

x

if & = 0, 1, 2, 3, • • • the in

But since Pv GO =P_„_i (p) for all values of v

P-2fc-3 (/*) =P2k+2 (p)

Also by the identical property of gv (X) expressed by equation (16)

,_,_i(X)=X^+l(X)=(^g)"
+3

<;s+l (X)

Hence, for this case we find

**> rt
= - a

^ffS (
- 1),;^W- »hW(^y

WPM (23a)'

fc=i
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Inserting the two forms of #fc+i(X) given by equation (17) gives

(^J
i+1PM *Qjt+g, Z, 1-x) (23b)

(ai + a2)^(i-x) 2yi
( 1)
Afc+

2) o

4 Z_T iy
r(t)

ft==t

(23c)

by the use of equation (16). Also

fc=l

.P»G*)*l(*+l,* + 2,2
) J)

fc=i

This is Butterworth's formula. The following form may also be of

interest

:

^ ,,)"-is,^L (
- ,) irl-?-->

(23d)

.p,M <i-|4-|. 2<^)
2

)

When the circles are nearly equal it is better to have coefficients

which are expressible in ascending powers of X =1 *
,

- j • For

this purpose we go back to (23a) and evaluate <7jh-$(X) from its

definition (15). It takes the indeterminate form O.co but is easily

evaluated, and we find

limit

9h+i (X) « , 1 [X-" &_ (X) 7T cot vir]

" X^+i r(^ + 2)^V2'
x ^

? 2 *'V
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so that (23a) takes the more convenient form

M(r,ix)=-ir(a 1 + a 2)a-*) 2

Yj(--
1 >'

k=l

(23e)

Also Gauss' transformation changes (23d) to the form

2 1r(a 1
' + a ,') Yl

r
(

fe + l) r
(

fe +
^)

.M(r,n)= 2j ( 1} •' r(ifc)r(fc+2)

—

1=1

(23f)

/2(a1

2 +ai
2
)Y P n/i fc+1 1 ,. /W-«A*Y

!V~^? J
^*(m)^-2' ~2- 2~H«7+*y J

If the circles are equal, ai=a2 = <x and X= (

x

, ) =0, and these re-
\(Xi -t- a2/

duce to

r(fe)r(fe+2) VTJ p»<*> lf r>2a
s=i

V. FORMULA WHEN THE DISTANCE BETWEEN CENTERS
IS LESS THAN THE DIFFERENCE OF THE RADII

In this case 7—;—^ <\ hence
, , (

—
-.—

) qJ\) = if the real

part of v is positive. This vanishes exponentially, so that if v is not

real, the additional factors r (— v)v( v +„ J do not prevent the

integrand from vanishing. The path of the integral in (22) may,
therefore, be shrunk to one encircling in a positive direction the

positive real axis, including the origin. Here the poles of T(— v)

at v= ~k = b, 1, 2, 3 give the residues

yv^ (-D*
2iriJ

x v "Juyy
T(k + 1)

so that the integral (22) in this case reduces to

,,, N a 1 +a 2\L
l , v 2/ / r \2k^(r

'MHT^2 (
- 1)S

Twiy^ (x)
((rf^))

p»w (25a)
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Or, using the two values of gk (X) given in equation (17),

fc=0

{(^r^Kf't-*' 3
'
1 -*)

and

» r(fc+|)

<£)%W>(*+J.*+i.2.g)

There is also the analogue of (23d),

*")-5?a»s<-'>'fet(s47i)'
fc-0

•p,«%+i.i+i.
2,(^)')

If X is small, the coefficients in (25a) may be computed by the follow-

ing formula obtained by evaluating the _, g v
(K) using (13), (14),

and (15). This gives for fc = 0, 1, 2, 3

(25c)

(25d)

g*(A)=-&*(A)

^l r(-s)r(*-±)r(s+fc-|)

8=

-^(s + fc+ l)-^(s + l)
I

where \p{z) is denned in equation (29) below. The formula (25

was derived by the writer in an earlier publication (see footnote \2).
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VI. FORMULA WHEN THE DISTANCE BETWEEN CENTERS
IS GREATER THAN THE DIFFERENCE AND LESS THAN
THE SUM OF THE RADII

Consider first that part of the integral (22) which is

-^LT^- v) rH) cot n 5- (x)feJX(M) *

Since is now^>l, the path of this integral may be deformed
a\ &2

into a closed contour encircling the negative real axis (in the negative

or clockwise direction) and crossing the real axis between the origin

and the point v= — 1 . The only poles of the integrand are the

negative real integers, which are simple poles of cot vir, for &_„ has

no poles on the negative real axis, and the poles of the factor r( ^+0 )

are the zeros of the factor cot v-k.

Hence, since

P_2/
c (m)

= Aa-i(m)

the above integral is given by

a

iC"r(~" ) r
(
v+

i) °ot n i-> (x)typ& (m)*
4iyi

.Next consider the remaining integral of (22), which is

a

iiSPT^ T
(
v +

§)
cot>m&^PM *>

T
Since——— is here < 1, the path of this integralmay be made to encircle

<Zi ~T~ CZ-2

(in a positive direction) the entire positive real axis (including the

origin). On this side of the plane h p has no poles, nor has Tl v +« )»

but the positive integers (and zero) are now second-order poles of

the factor T( — v) cot vw. Since the integral

—
. I T(—v) cot virf(v)dv

2tt

taken around any one of these poles v = 7c, where Jc = O
i 1, 2, 3

is just

n)wP /(>). i
t \JivV{v+\)] r,k
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it is found that

25?JT r( -*)r
("

+D cot ™h- (x)(raJ **«*-

v
fc=0

(27)

P..(m)

Adding equations (26) and (27), we find for the case where ai~a2<
r<ai + a2

k=l
4-J ^(fc-i)

p. wx)(vlTPm-i(m)

(28)

7c=0

It is evident that each term of this series satifies Laplace's equation,

since

V2 ^/Wf*P*0i)-§ V2j{v)r^P2v (M) =

In order to express this series in terms of functions which are suitable

for computation, we may introduce the logarithmic derivative of the

Gamma function which is usually denoted by \p(z) and which may be

computed by the formula

^s)=T^ = - c ~Tl(th-iTl) (29)

t=Q

where c = 0.57721566 = Euler's constant. From the definition (13)

of 6„(X), one finds

Also

00 <v4)<*+*4)
5=

r(s + i)ro + fe + 1 )

;
[^(g + fe-^)-»(g+fe + l)](30)

a
r(^ + i) r / s\ i

r(* +f)
r(fc + i)

rflfc+i)

59791°—29 6

V ^2/ o1 1, 2 L Vl(,,l t+l)
^+iyL21og

2
+ 2i+i + 2j\* +

2 J
t=0

(3D
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J)
/' r V* ' / ' r V* / r \2

'c\a1 + a2J ~\a1 +a2J ^\al + a2)

These three formulas are valid for any value of Tc. It is well known
that if Tc is a positive integer or zero,

so that

[}Wi^rPM log Oir)+^ (33)

where ^(m) is a polynomial in /x of degree ~k, which may be computed

by either of the following formulas

:

feoo =2(-iy^(-!){*£% %-',) ^(«+t+d-^+ i)i

(34)

The first form shows that ^o (m)
= and the second that ^(1)=0.

(Since ^(m) is always written with a subscript, there is no danger of

confusing these polynomials with the logarithmic derivative of the

gamma function defined by equation (29). The notation in both

cases seems well established by usage). Making use of formulas

(30) to (33) in the series (28) gives

aC^—2h>Aw (^)
2^>

r(fc+-)

7c=0

fc-l>0

+ ZJ I . . 1 #+l
*=o W +

)

+ 2 log
r(/*

4(a 2 +
^1
« 2)J (35)

(_1)
*r(* + i) WW L

fc=o

+ 2 6,(X)fe(M)]
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This formula gives the mutual inductance of the two parallel circles

of radii ax and a2 where a2 <a 1 for the case where e&i — a2 <r<a 1 + a2 .

Here r is the distance between centers, /* = cos 9 where 6 is the angle

between the common direction of their axes and the line connecting

their centers, and jw is to be taken as positive. The quantity X is

2

tnd the function ^(X) is to be computed by formula (13)(^)\ ai

and
dfr

°y formula (30); the \p function by (29) and the fcGu) by

either of the formulas (34) where Tc is to be replaced by 27^.

It is not difficult to show that the three expansions here obtained

for M make M and its derivatives continuous at the spherical sur-

faces r = ai — a2 and r = <x1 + a2 and make -j-~ reduce to —2irru{r) when

fx= + 0, and also make M reduce in the first two cases, when fj,— l, to

Maxwell's formula for coaxial circles. However, my direct proof

that Maxwell's formula reduces to formula (35) when /*= 1 and

ai~a2 <r<ai + a2 is very complicated and is therefore left as an

exercise for the reader. For the assistance of those interested, there

follow a few relations valid for general value of v, which are derivable

from the definition (13). They are

00

/ I
j*_ = — 7r cot vnbyQs) v not integral

and

Also

1C= — a>

2rJftW__ r(y)
T(Jc+l) Jc + v

~ T
-f i\°'W

(36)

,_. 4 7r(a1 + q2 )
2- 1

f
a'+a2

_2v ,. , .. , 1gM =— y- P
2v<r(p)dp if v*—*

i £ Jai-a2 ^
V^2

There is also a general relation for O^/i^l which may be useful

(37)

+h

2_l
(
~ 1)n

T(n + 1)
P^) , , IV iA

* ^^(M)

(38)

sin -H- V(i+
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Returning to formula (35), consider the case where the circles are

equal, a x =a2= a and X = 0. Then

&*(0) = -2Vir
r(*+i)

and

die
-Wo)[*(*-i) 7*(*+i)]

H)= -2V?r- TQc+1)

k-iso (39)

[-4-^2^)1
This gives

v-i
r (*

_
l)

r(*+i)/f\»I

fc-0

fc-iso
(40)

The first four terms of this series were given by Butterworth in the

paper mentioned. (Footnote 1.)

The formula for unequal circles which are coplanar and which

intersect is obtained by placing /*=-=() in equation (35). Since

P2,(0) =
cos v-k <-*i)

it is found that

2fe(0)=P27c (0) [2 log 2 +^ +0-^+1)] (41)

fc-1^0

-p*<W 2 fTTT-FfeW+2
so that in this case

)

^ lr?Uj
2tt ZjVoi+oJ r(fc+i

fc=0

<*+i)<*+§):
)r$ + i)

I
d&

+ 26*(X) log

7c—1^0

l0g
4(a1 + a2)

+2FTl + 2j ( "T^ffl )

L
/=

° V +
2 /J

(42)
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Placing <2i
= a2 = a in this gives for equal coplanar, intersecting circles

M[r
'
U) ^Zj\2aJ TQc+l)T(Jc+l)TQc+l)

(

l0g
16a

fc=o

(43)

1 1 \1

4Jc
2 -l

Jr
2LJ\

« +i •+>

which is also the value given by equation (40) for ju = 0.

VII. SUMMARY

The formulas (23,) (25), and (35), therefore, give the mutual in-

ductance of any two parallel circles. It is believed that the formula

(35) is the first formula yet given for this complicated case of unequal

circles. The fact that ^— is not continuous when x-^0 and a>x — a2

<r<a1
Jra2 shows the danger which lies in wait for one who constructs

a solution of Laplace's equation and merely requires that it reduce

to a known value upon a limited part of the axis of symmetry, without

considering the boundary values at ,c = 0.

Washington, February 20, 1929.


