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ABSTRACT 

The theoretical investigations of Prandtl and Karman, and the experimental 
work of Nikuradse, have led to rational formulas for velocity distribution and 
hydraulic resistance for turbulent flow in circular pipes. With certain assumptions 
regarding the effects of secondary currents and of the free surface, and with the 
adoption of the hydraulic radius as the characteristic length, similar rational 
formulas are deduced for open channels. The validity and the applications of 
these formulas are illustrated by a study of Bazin's experiments. In this study 
the equivalent sand roughnesses of the channels used by Bazin are determined. 
The criterion for determining the conditions under which a channel with wooden­
plank surfaces is to be considered hydrodynamically wavy or hydrodynamically 
rough is also evaluated. The rational formulas with constants determined from 
Bazin's experiments are expressed in the form of power laws. It is shown that 
Manning's empirical formula is a good approximation to the rational formula 
for rough channels when the relative roughness is large. 
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1. INTRODUCTION 

The theoretical investigations of the phenomena of turbulent flow 
by Prandtl and by Karman have prepared the way for rational inter­
pretations of experimental results. In these investigations two 
distinct relationships of basic importance are expressed. First, in a 
unidirectional turbulent flow the apparent shear at any point depends 
on the square of the velocity gradient at that point. Second, the 
factor of proportionality in the relation of the apparent shear to the 
square of the velocity gradient is determinate once the similarity 
of turbuJence is assumed. As a result of these two relationships, not 
only the velocity distribution, but also the hydraulic resistance factor 
for circular pipes, has been expressed in a rational form; that is, in a 
form derived by analytical methods involving only two constants 
to be determined by experiments. One of these constants is a uni­
versal constant, which IS a characteristic of turbulence. The other 
constant is a characteristic of the surface of the pipe, which will be 
called the "surface characteristic" in this paper. In his classic 
experiments on circular pipes, Nikuradse [1, 2] 1 determined the 
universal constant of turbulence and the surface characteristics for 
smooth pipes and for pipes with one type of rough surface. These 
genera] results are well known and are presented in detail in recent 
works [3]. 

This paper is an attempt to apply these same principles to the 
problem of turbulent flow in open channels, mainly for the purpose 
of developing formulas for resistance or for mean flow in forms similar 
to those obtained for circular pipes. Two assumptions are made 
in developing the formulas. The first assumption IS that Karman's 
universal law of velocity distribution near a solid boundary is of 
general applicability. The second assumption is one in regard to 
the effects of secondary currents and of the free surface. It is assumed 
that the average resllIt of these effects over the cross section of a 
channel is, in general, a small quantity which can be merged in the 
surface characteristics entering the flow formulas. Furthermore, it 
is found that when the hydraulic radius is adopted as the characteristic 
length of a channel cross section, the resulting formulas become prac­
tically independent of the shape of the channel except for a correc­
tion of geometrical origin which can likewise be merged with the 
surface characteristic. Thus the formulas for flow in open channels 
are identical in form with those for flow in circular pipes, the differ­
ences being in the values of the surface characteristics. 

The necessary experimental data used in this paper are taken 
exclusively from Bazin's pioneer research [4] on flow in open channels, 
which constitutes an outstanding monument to early scientific work 
in this field. These experiments were carried o'-!k .9n. a large scale 
near Dijon, France, in the years 1855 to 1860. 

As a matter of convenience, the following definitions are adopted. 
A "pipe" is a conduit for carrying water in which the flowing stream 
is entirely bounded by solid surfaces. A "channel" is a conduit for . 
carrying water in which the flowing stream is in part bounded by an 
air surface; that is, the stream has a free surface. The word "channel" 
is thus used as a synonym for the expression "open channel." 

1 Figures in brackets indicate the literature references at the end of this paper. 

I 

.J 
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II. DEVELOPMENT OF THE THEORY 

1. THE KARMAN LAW OF VELOCITY D ISTRIBUTION 

The discussion here of the theory of velocity distribution relates 
to unidirectional flow in the neighborhood of a plane wall of large 
extent. When it is necessary to consider experiments for verifica­
tion of the theoretical results, reference will be made to studios of 
flow in circular pipes, since numerous and reliable data are available 
for this case. These references are permissible because the flow in 
circular pipes is also unidirectional. 

Again, in these discussions the thin laminar layer at the wall will 
be ignored, since the portion that it contributes to the total flow is 
negligible. 

(a) GENERAL LAW OF VELOCITY DISTRIBUTION NEAR A SOLID WALL 

Prandtl [5] has given the following expression for the turbulent 
shear stress at any point in a fluid moving past a solid wall (see fig. 1): 

,- du 
-V7/p=Zdy (1) 

where 
7=the shearing stress at the point, 
p=the density of the fluid, 
u=the velocity at the point, 
y=the distance of the point from the wall, and 
l=the so-called mixing length of momentum exchange. 

For the purpose of finding an approximate law of velocity distribu­
tion in the neighborhood of the wall, we write eq 1 in the form 

,- du ,-
-V 70/ p= Z dy -V 70/7, 

where 70 is the shear in the fluid at the wall. 

The quantity in the left member I 

of eq 2 has the dimensions of a 
velocity, and, because of its signifi- rl7 
cance, has been called by Prandtl I II 
the shear velocity, denoted by the 
symbol u*. To mal"e the concept >, I 

u 

TURBULENT CORE 

of shear velocity more concrete, it I I 
may be pointed out that it can be I I tii __ 1_~ LAMINAR~~~ 
expressed in the following simple *~;,;~wm/,fhY,i/7#,0W/l/##///7/­
manner in terms of more customarily To 
used quantities: 

u*=.JRig, (3) 
FIGURE I.-Diagram of velocity distri­

bution in a stream flowing past a solid 
wall to illustrate notot1:on. 

both for flow in circular pipes and 
for uniform flow in wide channels, where 

R=the hydraulic radius, 
i=the hydraulic gradient, and 
g=the acceleration of gravity. 

Introducing the notation for the shear velocity, we write eq 2 as 

~70)llt u -l - . *- dy T 
(4) 

1 
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As a consequence of his principle of similarity of turbulence, 
Karman derived the following expression for the mixing length l at 
any point y in terms of the velocity gradient at y: 

u' 
l=K-;; , 

u 
(5) 

where the primes indicate differentiation with respect to y, and K 

is a universal constant characterizing the turbulence [5]. This latter 
expression for l, however, requires a modification for the following 
reason. The two experimental determinations of l from the inde­
pendent expressions, eq 4 and 5, using the velocity measurements 
in smooth or rough circular pipes, may be made to agree with each 
other for small values of y by selecting K properly. But, then, for the 
same value of K the two values of l show gradually increasing differ­
ences for increasing y, the largest difference occurring for Y=Ym, Ym 
being the wall distance corresponding to r=O [1]. Obviously, the 
agreement between the two determinations would be improved if now 
we select in the place of eq 5, 

(5a) 

where kl and k2 are constants. 
Since in the types of flows we shall be considering, the component of 
acceleration normal to the direction of mean flow would be negligible, 

r=ro(l-Y/Ym), 

eq 4 then may be written also as 

(4a) 

When l from eq 5 is substituted in eq 4 there results, for values of Y 
approaching zero, 

which can be integrated, yielding 

u 1 
-=- In (Y/Yo), 
u* K 

(6) 

(7) 

where Yo is a constant of integration. The other constant resulting 
from the first integration of eq 6 is put equal to zero as the consequence 
of the limiting value of u' at the wall. This is Karman's law of 
velocity distribution in the neighborhood of a solid wall. The deriva­
tion is made for small values of y. Experience, on the other hand, 
shows that eq 7 is sufficiently accurate also for large values of y, even 
when Y is as large as Ym. In the second approximate solution, the 
differential equation corresponding to eq 6 would contain Y/Ym. The 
form of the resulting equation is necessarily complex and hardly suit­
able for the usual computations. Equation 7, being of a simpler 
form and also sufficiently accurate, will serve as the basis for the 
elementary mathematical development of thiR paper. 
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Theoretical considerations indicate that K should be independent of 
the nature of the wall surface. This has been verified in the cases of 
flow in circular pipes and between parallel walls [6] . On the other 
hand, the constant of integration Yo, a length that we may term the 
"characteristic length of turbulence," varies with the shear velocity, 
and the roughness of the wall. 

The next step is to consider the evaluation of Yo. Let 0 be the 
minimum distance from the wall at which eq 7 holds. (See fig. 1.) 
That is, 0 is the thickness of the boundary layer in which the viscous 
stresses either predominate or are of the same order as the apparent 
stresses due to momentum exchan~e. It can be shown easily that 
the rate of energy dissipation EiD this layer per unit of surface is 

(8) 

where u~ is the velocity for y = o. From eq 7: 

and eliminating Ua from the last two equations: 

(9) 

Unfortunately, in the present state of our knowledge of turbulence E 
and 0 cannot be computed, so that eq 9 does not serve as a means of 
computing Yo. 

In the absence of an adequate theory, the natural procedure is to 
resort to experience, using the method of dimensional reasoning as a 
guide. Based on the hydrodynamical effects that they produce, solid 
boundaries are usually classified as smooth, wavy, or rough. For 
these three types of walls, Yo may be expressed in three distinct forms 
which will now be developed. 

(b) GENERAL EQUATION OF VELOCITY DISTRIBUTION FOR SMOOTH WALLS 

If the surface of the wall is smooth, Yo will depend solely on u* and 
v, and dimensional reasoning then furnishes the relation 

where 
m=a constant, and 

You* -1I-=m, 

v=the kinematic viscosity. 

Substitution of this value of Yo in eq 7 yields 

-=as+- In - ,or u 1 (yu*) 
u* K 11 

u i_ +2.30 I (yu*) ---as -- og - , 
u* K 11 

(10) 

(11) 

1 
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which is the universal law of velocity distribution in the neighborhood 
of a smooth wall. The relation between the constants a. and m is 

a =1.ln(l), 
• K m 

which may also be written in the form 

(12) 

The law expressed by eq 11 has been confirmed by Nikuradse [1], 
who obtained from experiments on smooth pipes the relation 

~=5.5+5.7510g (yu*) 
u* v 

(13) 

Comparison of the experimentally determined values in eq 13 with 
the corresponding algebraic expressions in eq 11 gives 

1 v 
K=0.40 and Yo=- -. 

9 u* 

This value of Yo was first given by Prandtl. 
Karman gives for 0 the experimentally determined value 

(14) 

(15) 

(c) GENERAL EQUATION OF VELOCITY DISTRIBUTION FOR WAVY WALLS 

When the wall surface is smooth but wavy in character (see fig. 2) 
and the wall shear is sufficiently 
low, Yo is given by a relation of 
the form 

WAVY SURFACE (16) 

k 
where ~~M~~ L=the length of a wave, and 

ROUGH SURFACE k=the height of a wave. 
FIGURE 2.- Diagrams of wavy and rough 

surfaces. The ratio lelL may be called the 
"relative waviness." For a given 

ratio klL, the functionJ may vary with the shape of the wavy projec­
tions, and hence surfaces with waves of different shapes must be 
treated separately. 

If we introduce in eq 7 the value of Yo from eq 16, there results 

-=aw+- In - ,or u 1 (yu*) 
u* K v 

(17) 
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This is the universal law of velocity distribution for wavy surfaces. 
The relation between aw and the relative waviness is given by 

(18) 

Our present very meager knowledge of wavy surfaces may be 
summarized by the statement that ato decreases as kjL increases. 

(d) GENERAL EQUATION OF VELOCITY DISTRIBUTION FOR ROUGH WALLS 

When the wall surface is rough (see fig. 2), the expression for Yo 
must be derived from k, the elevation of the roughness elements. 
The theory of dimensions then yields the relation 

Yo~* je~*). (19) 

and accordingly the velocity distribution is given by substituting the 
value of Yo thus obtained in eq 7: 

u 1 (Yu*) . -=aT+-ln - ,or 
u* K v 

(20) 
~=aT+ 2.30 log (yu*). 
u* K v 

This is the universal law of velocity distribution for rough surfaces. 
The relation between aT and the Reynolds number based on the 
height of the roughness elements is 

]e~* )=e-KIJ,. (21) 

The function] is known completely only for roughness produced by 
closely packed grains of sand, as determined by Nikuradse [2] by 
experiments on pipes of circular cross section. For the roughness of 
surfaces of the type used by Nikuradse, the symbol k. will be adopted, 
to represent the mean height of the sand grains fOl'ming the roughness 
elements. 

Nikuradse's data are given in figure 3, in which aT is plotted as 
ordinate against log (k.u*/v) as abscissa. Figure 3 shows that, when 
k.u*/v is less than about 3.3, aT is independent of u* and has the value 
5.5, which is the value of as for smooth surfaces. In other words, 
when u*<3.3vjk., the surface behaves as if it were smooth. 

Figure 3 also shows that when k.u* jv is greater than about 67, aT is 
given by the expression. 

5 1 (k.u*) 85 57· 1 (ksu*) a T=8.5-2. n -v- = . - . 0 og -v- . (22) 

Substitution of this result in eq 20 gives 

u: =8.5+5.75 log (1/-.), (23) 

., 
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which is the law of velocity distribution in the vicinity of a surface 
covered with closely packed sand grains. Since the viscosity of the 
fluid does not enter eq 23, the equation applies to flow in the region 
where the hydraulic resistance varies with the square of the mean 
velocity. 

The significant point of Nikuradse's investigation is the establish­
ment of these two critical numbers for rough surfaces: (k,u",,/I')I=3.3 
and (k.U*/V)2=67. These critical numbers define a transition region 
in which both the kinematic viscosity and the relative roughness 
affect the friction. The complete generality of the results of Niku-
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FIGURE 3.-Surface characteristic ar as a function of log (k.u*/v) for circular pipes 
with surfaces of closely packed sand grains, according to Nikuradse. 

radse's investigation has been questioned on the grounds that the 
pipes which he used were not long enough. If this claim is valid, 
then we may expect to find lower values for the criteria if very long 
pipes are used, the effect being more pronounced for the higher critical 
number. 

Schlichting'S investigation [7] of roughness consisting of regular 
geometrical forms having a preassigned distribution has shown that 
in this case the velocity distribution law in the region where the 
quadratic resistance law holds is given by 

(24) 

which is of the same form as eq 23. Here aTo varies both with the 
shape and distribution of the rouglmess elements. 

Thus the significant deduction to be derived from the resultE> of 
experiments with rough surfaces in the region where the quadratic 
resistance law holds is that aT in eq 20 satisfies the relation 



Keuleuanl Turb11lent Flow in Open Channels 715 

(25) 

where aro has different values depending on the shape and distribution 
of the roughness elements of the surface under consideration, For a 
surface covered with sand a ro=8.5. 

Presumably wavy surfaces will also behave like rough surfaces if the 
velocity is high enough. The few investigations of wavy surfaces 
reported in the literature have involved relatively low velocities, and 
the results indicate that the resistance is independent of the relative 
roughness for such velocities. However, it seems reasonable to 
assume that, if the velocity is increased sufficiently, the conditions in 
the boundary layer will be changed so as to produce a resistance that 
will vary with the square of the velocity. This condition will exist for 
wall shears given by the inequality 

(26) 

where cf> is a function to be determined. When eq 26 is satisfied, then 
the velocity distribution for a wavy surface will be given by eq 20. 

The constants as, aw, aT, and aTo will be referred to hereafter in this 
paper as the "hydraulic characteristics of the surfaces," or more 
briefly, the "surface characteristics." 

2. DERIVATION OF RESISTANCE FORMULAS 

Careful experiments have shown that the resistance coefficient in 
pipes for a given Reynolds number R. is not affected by the shape of 
the pipe, provided that in forming the Reynolds number the hydraulic 
radius R is used as the characteristic length of the pipe [8]. This can 
be explained by assuming that turbulent flow exhibits the following 
two properties. First, the velocity at a point in the vicinity of a wall 
depends solely on the shear at the wall element nearest to the point 
and not on the shear over the whole ,vall surface. Secondly, when the 
distance of the point from the wall is large enough, the increase in the 
velocity takes place at a rate much smaller than the rate of increase 
of the distance. This latter property is evident either from the 
lin power law or from the Karman logarithmic velocity law. No 
such simplification exists for laminar flow, since the flow at a given 
point is affected by the whole wall. In fact, viscous uniform flow is a 
boundary-value problem. 

These two properties of the law of velocity distribution permit its 
application to other cases of turbulent flow, once the constants in­
volved in the law have been determined from tests on pipes of circular 
cross section. As examples of such applications there may be cited 
t~e analytical determination of the hydraulic skin friction of circular 
dIsk and flat plates [9, 10]. 

(a) RESISTANCE FORMULAS FOR CIRCULAR AND INFINITELY WIDE 
RECTANGULAR PIPES 

As simple illustrations of the use of the hydraulic radius and of the 
Karman law of velocity distribution, the coefficient of hydraulic re­
sistance will be computed for two forms of pipes: (1) A pipe of circular 
cross section and (2) a rectangular pipe of infinite width. In the 
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first case, the wall shear TO is the same over the entire perimeter of the 
section, and in the second case the variation in TO at the two sides 
of the pipe can be neglected, since the pipe is infinitely wide. Hence, 
in both cases TO=;:o, the bar denoting the average value for the 
section. 

Defining the friction coefficient X in the usual way, the relation 

(27) 

in which u is the mean velocity of flow for the cross section, leads to 
the expression 

u /(2) u* =2, }: , (28) 

where 
u*= -J G-o/p). 

Hence as a measure of the resistance, it is sufficient to consider the 
ratio u/u*, which will be called the "mean flow ratio," instead of the 
resistance coefficient X. This practice will be followed throughout 
this paper. 

(1) Smooth walls.-Considering now a pipe of circular cross section, 
both sides of the expression 

:* =~* =as+b In (y~*} [b=~} 
which is the velocity distribution equation for a smooth surface, are 
multiplied by 27r1'dr, and then the resulting equation is integrated be­
tween the limits (ro- 0) and 0, 0 being the thickness of the laminar 
sublayer and ro the radius of the pipe. The flow in the laminar 
sublayer is negligible in comparison with the flow in the turbulent 
core, and hence the terms involving 0 may be neglected. The re­
sulting equation for the mean velocity of flow in a smooth-walled 
pipe of circular cross section is then 

u = ~ =a -1 5b+b In (rou*). (29) u* u* s, II 

In a similar manner the equation for a smooth-walled pipe of 
rectangular section and of infinite width can be obtained, and is 
found to be 

u u (hu*) -=-=-=as-b+b In -
u* U* II 

(30) 

where h is half the height of the section. 
Introducing the hydraulic radius, R=ro/2 and R=h, respectively, 

in the last two equations, they become 

u u (Ru*) -=-=-=a -0.81b+b In -- and 
u* U* s V ' 

(31) 

u u (Ru*) -=-=-=a.-b+b In - , 
u* U* II 

(32) 

respectively. It should be noted that this last equation applies also 
to a rectangular channel of infinite width and of depth h. 
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N ow, introducing the experimentally determined values as= 5.5. 
and 0= 2.5, and changing to common logarithms, the equations become 

U U (Ru*) -=-=-=3.5+5.75 log -- , 
u* u* v 

(33) 

for smooth-walled pipes of circular cross section, and 

(34) 

for flow between smooth parallel walls of infinite extent. Thus, when 
the hydraulic radius is adopted as the characteristic length, it appears 
that the expressions for the average velocity become nearly identical 
in the two cases just considered. 

(2) Rough walls.-To obtain the corresponding expressions for the 
mean velocity when the surfaces are rough, it is sufficient to replace 
a. in eq 31 and 32 by the value of aT given by eq 25. Hence when the 
walls are rough, eq 31 and 32 become 

u = ~ =aTo -0.81b+bln('.ik. ) u* u* 
(35) 

for circular pipes, and 

(36) 

for parallel walls of infinite extent. 
If the roughness is produced by closely packed sand grains, as in 

Nikuradse's experiments on rough surfaces, ar0= 8.5, and eq 35 and 36 
become 

U U (R) u* = u* = 6.5+5.75 log k, (37) 

for circular pipes, and 

u U (R) u* =u* =6.0+5.75 log k. (38) 

for parallel walls of infinite extent. 

(b) RESISTANCE FORMULAS FOR CHANNELS WITH POLYGONAL CROSS SECTIONS 

In passing from a circular pipe to a polygonal channel, a complica­
tion arises from the presence of secondary currents at the corners of the 
channel. Prandtl [5] has explained these currents as being due to the 
three-dimensional character of the turbulent velocity fluctuations. 
In consequence, the shear at the wall corners is reduced, since other­
wise the resulting dissipation would be greater than that which can 
be maintained by the externally furnished energy. Thus in polygonal 
channels the shear at the wall is not uniform. Also the free surface 
acts as if it were a source of friction. The turbulent fluctuations near 
the surface, now only two-dimensional, again are a source of energy 
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dissipation, as the velocity at the surface is not uniform. If the 
extent of the free surface is decreased, a larger dissipation occurs, and 
the filaments of maximum velocity in any vertical are depressed. 
Accordingly, in applying Karman's velocity law to channels, attention 
must be paid to these factors . 

(1) Trapezoidal channels.-The expression for the mean velocity in 
a channel having a trapezoidal cross section will be derived next, and 
it will be demonstrated that the correction terms due to the variation 
in wall shear over the solid boundary and to the apparent shear at the 
free surface may be neglected without involving an error greater than 
a few percent. In other words, the hydraulic radius as customarily 
computed can be used as the characteristic length of the cross section 
of such a channel. 

It is necessary to treat two cases; (1) when the bisectors of the 
internal angles intersect above the water surface, and (2) when they 
intersect below the water surface. (See fig. 4.) 

Oase 1.-Bisectors intersect above water surface. The internal 
angles of the cross section (see fig. 4) will be denoted by (Jt and (J2, the 
base width by Bo, and the depth of the water by h. For purposes of 
computation, the cross section will be divided into zones of infinitesimal 
width dy in such a way that all portions of any given zone are at the 
same minimum distance y from the wall. 

I. BISECTORS OF BASE ANGLES 2. BISECTORS OF BASE ANGLES 
MEET ABOVE WATER SURFACE MEET BELOW WATER SURFACE 

FIGURE 4.-Diagrams of trapezoidal channels to illustrate notation. 

The velocity u at a given point P in one of the zones can be written 
as 

(39) 

Here y is the normal distance of P from the wall and u* is the shear 
velocity computed from the shear at the foot of the normal from P . 

The term E/U/U* is a correction applied to take account of the effect 
of the free surface. 

The correction is expressed conveniently as a certain fraction E/ of the 
ratio u/u*, where u is the average velocity in the cross section, and u* 
is the average shear velocity over the solid boundary. It is obvious 
that E/ will be a function of the position of the point P. The relation 
of the local shear velocity u* at an element of the wall to the mean 
~hear velocity can be expressed by 
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u* = u* (1 +E*) 

719 

(40) 

Replacing u* in eq 39 by its value from oq 40, and discarding some 
small quantities involving E*, there results 

(41) 

This may be referred to as the exact law of velocity distribution in a 
channel with smooth surfaces, If we neglect the flow in the laminary 
sublayer, the total flow through the cross section is given by 

uA= .r uBdy, (42) 

where A is the area of the wetted cross section and 0 is the thickness 
of the laminar sublayer. 

The length B of any zone is given by the relation 

B = p-ay, (43) 
where 

p=the wetted perimeter, and 
a=a function of the included angJes of the form 
a=ctn {JI + ctn {J2+2CSC {JI +2csc {J2' (44) 

Substituting in eq 42 the value of u from eq 41 and the value of B 
from eq 43, integrating, and neglecting the small quantities involving 
0, there results 

u (hu*) bh2a U -::-=a.- b+b In - +-- E-::-, 
u* jI 4A u* 

(45) 

where ~ is defined as 

(46) 

If the h in the logarithmic term is now replaced by the hydraulic 
radius R by the substitution h=Rh/R, and if {3 is used to represent 
the difference 

(47) 

the expression for the mean velocity of flow in a channel of trapezoidal 
cross section with smooth walls becomes 

u b+b I (Ru",) b - u -::-=as - n --' + {3-E-::-' 
U* jI U* 

(48) 

The corresponding expression for wavy walls .is obtained by sub-
stituting aw for a. in eq 48, and is 

u b b I (Ru*) b - u -::-=aw- + n -- + {3-E-::-' 
U* jI U* 

(4'9) 

If the walls of the channel are rough, a. in eq 48 should be replaced 
by ar as given by eq 25 in which the value of aro depends on the 
roughness of the surface under consideration. The equation for the 
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mean velocity in a rough-walled channel of trapezoidal cross section 
then becomes 

~ = a - b+ b In (!!)+b{3 - E 3£. 
u* ~ k u* 

(50) 

Case 2.- Bisectors intersect below water surface. If the free surface 
is above the point of intersection of the bisectors of the internal angles, 
the value of {3 must be expressed differently. (See fig. 4.) Let the 
bisectors of the included angles meet at a point 0', at a vertical dis­
tance ho from the bottom. The vertical line passing through 0' 
meets the free surface at the point O. The two normals drawn from 
o to the side walls are of length dl and d2• The vertical through 0 
and 0' divides the area A of the trapezoid into two portions Al and 
A 2• Then (3 will be given by the relation 

2A{3= (2 cot 8Ii2+tan 8l)ho2 ln (holdl) + 
(2 cot 82/2 + tan (2)ho2 ln (ho/~) + (51) 

2Al ln (ddR)+2A2 In (~/R)-A, 

where R is the hydraulic radius. 
The value of {3 thus determined can now be substituted in eq 48, 

49 and 50 for this case. 
(2) Channels oj other shapes.-If the mean velocity in a channel of 

any other cross section is computed in the same manner, it will be 
found that the expressions for this velocity have the same form as 
those given for a trapezoidal cross section in eq 48, 49, and 50, except 
that the values of {3 and E vary from section to section. Hence these 
three equations are the rational equations for the mean velocity of 
uniform flow in channels of constant cross section and slope, since they 
are derived from a rational theory. 

(3) Error Jrom neglect oj the correction terms.-Eq 48, 49, and 50 
also enable us to compute the magnitude of the error that is involved 
if we neglect certain additive terms. If these general equations are 
compared with the corresponding equation for a channel of infinite 
width (see eq 32), it will be observed that they differ from it only in 
containing the additive terms b{3-'E u/u*. These terms may be 
interpreted as due to the combined effect of the existence of a free 
surface and of a nonuniform distribution of shear at the walls. The 
term b{3 can be computed readily for any given shape of cross section, 
as this is a mere matter of geometry. Computation shows that for a 
triangular cross section {3 is independent of the depth of the water 
and has the value 

{3=O.19. (52) 
For a rectangular cross section it takes on the value 

( 2h) h 
{3=ln 1+ Bo - Bo' (53) 

as can be seen from eq 47. 
For a semicircular cross section, (3 has the form 

{3= Lh [In (*)] ~; +1, (54) 

Some computed values of {3 for rectangular and semicircular channels 
are given in table 1. The above formulas show that (3 varies with 
the hydraulic radius. Table 1 shows on the other hand that {3 in 
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itself is a small quantity. For polygonal channels other than rec­
tangular, {3 is found to be of approximately the same magnitude as 
for a rectangular channel. For the sake of simplicity then, we may 
take {3=0.1 for all polygonal channels irrespective of shape, since the 
error thus introduced IS small. 

Little is known as yet about the qnantity E. From the manner of 
formation, it can be inferred that € is small, particularly in those 
cases where the depression of the filaments of maximum velocity is 
small. It is conceivable that the magnitude of t will depend on the 

TABLE I. - Values of {3 for rectangular and semicircular channels 

Rectangnlar Semicircnlar 

RIB. fJ RIT' fJ 
------ ------

0.05 0.049 0.05 0.178 
.10 . 098 . 15 .200 
.15 .143 .20 .210 
.20 . 175 .30 .227 
.25 . 193 . 40 .244 

.50 .259 

shape of the cross section. The exact determination of its value no 
doubt is connected with some parameter involving the ratio of the 
transverse length of the free surface to the wetted perimeter. 

It is very likely that € can be evaluated best by means of experiments. 
The above expressions, eq 48, 49, and 50, indicate that in experi­
ments for this purpose the surface characteristics of the channel wall 
will have to be determined in advance by tests on other forms of 
channels, or preferably on very wide rectangular pipes. 

We leave the term E u/u* out of consideration by assuming that it is 
small and can be merged with the surface characteristics a., aw , or arO' 
We adopt 2.5 for the value of band 0.1 for the value of {3 and put 

A.=a.-2.5 (1- (J) =a.-2.25, 
Aw=aw-2.5(1- (3) =a",-2.25, 
A ro=aro-2.5(1- (3) =aro-2.25. 

Thus, the general equations of mean flow, eq 48, 49, and 50, now 
become 

u A 7 1 (Ru*) -::-= .+5. 5 og -- , 
u* p 

(55) 

~ =A",+5.75 log u*, and - (R- ) 
U* p 

(56) 

u (R) u* =Aro +5.75 log Tc I (57) 

for smooth, wavy, and rough surfaces, respectively. The experi­
ments of Bazin will be examined in the light of these expressions. 
But prior to this exaInination it is permissible to effect a further 
simplification in the flow expression for rough channels, eq 57, by 
introducing the concept of "equivalent sand roughness." 

107462-38-2 
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(c) EQUIVALENT SAND ROUGHNESS 

The hydraulic effect of roughness elements of arbitrary shape and 
of arbitrary distribution can be described very conveniently by com­
paring it with the effect of a rough surface consisting of closely packed 
sand grains of the type used by Nikuradse [2] in his studies of rough 
pipes. Such a comparison leads to the concept of equivalent sand 
roughness. The size of sand grains as a measure of roughness was 
first suggested and used by Karman [11]. The basis of the comparison 
is the siInilarity of velocity distribution near a rough surface. In 
general 

~* =aTo+5.75 10g(I), (24) 

where k is a roughness height. In Nikuradse's results aTo was found 
to have the value 8.5, so that 

~=8.5+5.75 10g(Yk-)' 
u* • 

where k. is the size of the closely packed sand grains. 
Eliminating u/u* between these two equations, 

5.75 log k.=8.5-aTo+5.75 log k. 

(23) 

(58) 

This is the expression which gives the equivalent sand roughness k. 
for the particular roughness k. Physically, if a velocity u is observed 
at a point distant y from a wall of an arbitrary roughness k under a 
known shear, the same velocity will be obtained at the same point 
and for the same shear if the particular roughness is replaced by sand 
grains of size k. as given by eq 58. 

If velocity traverses do not exist for a given roughness in a channel, 
let us say, the detennination of the equivalent sand roughness can 
be made to depend on the mean flow. From eq 50 after combining 
the e term with aTo, putting b=2.5 and 13=0.1, we have 

u 
aTo-5.75 log k=-:::--5.75 log R+2.25. 

u* 
Substituting this in eq 58, there results 

5.75 log k;=6.25-(~* -5.75 log R} (59) 

from which k. can be computed. An advantage of this procedure is 
that it is not necessary to make a geometrical specification of rough­
ness in any given case for the purpose of description. With k. 
known, the expression for the mean flow in rough channels can now 
be written as 

~* =6.25+5.75 log (~) (60) 
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III. APPLICATION TO BAZIN'S EXPERIMENTAL DATA 

1. DESCRI PTION OF BAZIN'S CHANNEL INST ALLA TION 

The experiments of Bazin which are reviewed in this paper were 
made in an experimental channel located along the Bourgogne canal, 
near Dijon. [4] The channel was connected at the upper end with 
the canal which supplied the water and at the lower end with the river 
Ouche which received the discharge. It ran parallel with the canal 
for a distance of 450 m and then turned to the left toward the river for 
the remaining length of 146.5 m. It was built of poplar planks placed 
longitudinally and fixed to wooden frames spaced 1.5 m apart. The 
width of the channel throughout its entire length was 2 m. Rammed 
clay under the bed and cement mortar applied to the exterior of the 
vertical walls made the channel watertight. In the initial length of 
200 m the slope of the channel was 0.0049; for the next 250 m to the 
bend the slope was 0.0084. "When it was found necessary to experi­
ment with slopes other than those given above and with different 
cross sections, these were invariably built of wood. To modify the 
slope a wooden floor was placed in the channel, and all spaces under­
neath were filled with clay. 

The forebay at the upper end of the channel consisted of a rectan­
gular chamber 5.40 m wide and 14 m long. The flow of water from 
the canal into the forebay chamber was regulated by means of four 
gates. Each had a width of 1 m and could be elevated to give a 
maximum opening of 0.4 m. The final control of the flow from the 
forebay chamber into the experimental channel was effected by means 
of 12 sharp-edged square orifices made of copper. With this ar­
rangement a very uniform discharge was easily obtained. 

An assistant stationed at the gates maintained the surface of the 
water in the forebay at a level of 0.80 m above the midpoint of the 
orifices, guided by the indications of a float gage. During calibra­
tion the discharge of the orifices was ascertained by putting a bulk­
head in the initial portion of the channel and noting the time taken 
to fill the basin thus created. For determining accurately the volume 
of the water discharged through the orifices, the discharge was made 
into the isolated portion of the channel after the bottom of the latter 
was covered with water. Thus the volume to be measured was one 
between two horizontal water surfaces and the vertical walls of the 
channel. 

The profile of the water surface in each test was measured as fol­
lows. Three metal studs were placed on the upper cross piece of 
each channel frame, one at the midpoint and one on each side, to 
serve as datum points. Their heights were measured from the bot­
tom of the bed and also from the water surface, the difference yield­
ing the depth of water. The depth gage was a graduated rod with 
a sharp metal edge at its lower end. This rod was movable in a 
block which was rested on one of the datum studs during measure­
ments. An examination of the tables of data shows that in a great 
many tests the depth was measured continually over the entire 
length of channel investigated. Sometimes more than 100 such depth 
measurements were made-never less than 40. Again, the depth that 
was used for computing the hydraulic radius was usually the mean of 
some 20, 30, or 40 such determinations. These were selected from a 
reach where the depth was found to be uniform. 
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The profile of the channel bed was carefully determined at the 
commencement of each series of operations in the following simple 
and accurate manner. In each segment of the channel a bulkhead 
was placed downstream, and the section of the channel in which the 
slope was to be measured was filled with water. The profile of the 
channel bottom was then determined by depth measurements with 
reference to the still water surface. 

The velocity traverses were made by means of a pitot-static tube 
of the type developed by Darcy. The constant of proportionality of 
the instrument was based on the results of the following two of the 
three methods used. In one method the surface velocities in the 
channel were measured both by a float and by the tube, and the re­
sults were compared. The comparison was restricted to measure­
ments made in rectangular channels of large dimensions and great 
depth of flow. This comparison gave the value 1.006 for the con­
stant. In another method the integrated discharge determined from 
velocity traverses by the tube was compared with the mean dis­
charge. This method gave 0.993. The mean of the two results, or 
unity, was adopted. 

2. EQUIVALENT SAND ROUGHNESS FOR SOME OF BAZIN'S 
CHANNELS 

The first group of data to be considered is from the experiments 
which Bazin made to determine the effect of roughness on the mean 
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FIGURE 5.-Descriptive diagrams of Bazin's channels. 
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velocity of flow. The experiments were made in rectangular chan­
nels, all of practically the same width. The types of rough surfaces, 
which were the same for the bottom and the vertical walls in each 
individual case, are listed in table 2, together with pertinent experi­
mental data. Also see figure 5. 
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TABLE 2.-Dalajl-om Bazin's tests on rough rectangular channels 

Hydraulic Mean velocity, 

Series Surface 

radius, R a 
Slope, Width , Tern· 

j B o 
M ini- I Maxi-

pera-

Mini· Maxi- twe, 0 

mum mum mUlll mum 
----1----------1'--------------

em em em em/sec em/8ee o C. 2 __________ CemenL _____ __ ______________ ___ 0.0049 181. 2 5. 11 21.23 101. 8 246.0 12.0 3 ____ · _____ _ Brick __________________ _________ .0049 191.1 5.86 23.74 83.9 204. 7 19.0 4 ____ ___ __ _ Fine gravel 1 _______ __ __ __ _ __ ____ .00-19 183.2 7.61 27.72 65.8 169.7 14.5 5 ____ ______ Coarse gr:\vel ' . ___ ____ __ _____ ___ .0049 186.1 8.88 30.09 54.7 149.3 16.0 8 _________ _ Planks __ ____ ___ _________________ .00824 199.0 4 47 19.19 107.4 261. 2 8.5 
12 _________ 

} Planks with closely spaced {'00l5 196.6 9.21 32.81 50.2 127. 8 8.5 13 _________ .0059 190.1 0.26 24. 09 76. 2 197. 4 7. 0 14 ________ _ wood strips.' .00886 195.2 5.56 22.14 86.8 221. 2 14. 0 
15 _________ 

}Planks with widely spaced {' 0015 196. 0 11. 53 39.60 39.0 94.9 16.5 16 __ __ ____ _ .0059 190.0 8.05 29.42 58.1 149.8 7.5 17 _________ wood strips.' .00886 195.1 7.06 26. 99 67.3 169.8 16.5 

1 Gravel from I to 2 em in diameter . 
• Gravel from 3 to 4 em in diameter. 
3 See figure 5. 

To ascertain whether the mean velocity of flow in a channel of a 
given roughness lc is affected by the kinematic viscosity, it is sufficient 
to investigate the relation between the quantities (u/u* -5.75 log R) 
and log (u*/v). 

In order to compute the principal quantities involved in the com­
parison, the following test data were taken from Bazin: The tempera­
ture of the water, 8; the hydraulic radius, R, in centimeters; the mean 
velocity of flow, u, in centimeters per second; and the quantity A= 
Ri/u2 , which is a measure of the hydraulic resistance. As A is not a 
dimensionless quantity, it was multiplied by g, the acceleration of 
gravity, to make it dimensionless. 

In a channel the mean shear velocity is given by 

u* =-v (Rig), (61) 
thus 

u/u*=l!-V(gA), and u*=u-v(gA). 

The kinematic viscosity v follows from the temperature 8. 
The results of the computations are shown in figure 6, where 

(u/u* - 5.75 log R) is plotted as a function of log (u*/v) . 
It is seen that in these tests the observed points for each channel 

can be represented by a straight line parallel to the axis of log (u*/v) . 
Hence, the quantity (u/u* -5.75 log R) is a constant. Therefore, 
the quantity (u/u* -5.75 log R/k) is also a constant and thus is inde­
pendent of ku*/v, where k would be the actual roughness heights of 
any of the roughnesses employed. Thus in these tests the channels, 
including the channel with the cement walls, were hydrodynamically 
rough. 

At this point attention may be invited particularly to the two groups 
of tests which were made with the channels having wooden strips 
using three different slopes. It is seen that, in this specific manner of 
presenting and analyzing the experimental material, the data taken 
with the different slopes are hardly differentiable from each other. 
Lindquist [11] in considering the same data compared the mean flow 
in these channels on the basis of Reynolds number, Ru/v. But this 
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method of treatment did not yield a simple correlation of the results . 
The underlying difficulty now can be readily understood, since the 
appropriate criterion of the hydraulic roughness is obtained by using 
ku*/v and not Ru/v. The Blasius method of plotting the hydraulic 
friction factor A against Ru/v is satisfactory for rough pipes, as the 
relative roughness k/R remains the same for variable u. In channels, 
on the other hand, a variable u signifies a variable k/R. 
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FIGURE 6.-Quantity (u/u" -5.75 log R) as a funct ion of log (ih /v*) for rough rec­
tangular channels. 

Basic data Crom Bazin. 

The results shown in figure 6 indicate that the rational formulas for 
the mean flow which were assumed in the beginning are actually 
serviceable. To complete the examination it now remains to evaluate 
the equivalent sand roughness for each channel, using eq 59. The 
different quantities which are necessary for the computations are 
given in table 3. The values of the quantities R/Bo and Y in table 3 
are the averages from all the observations for a given channel. The 
resulting equivalent sand roughness is given in the next to the last 
column. 
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TABLE 3.-Computation of equivalent sand roughness k, for rough rectangular 
channels listed in table 2 

(5.75 log k.=6.25---(illil.-5.75 log R)=6.25- Y.) 

Series Surface RIB. Y 6.o5- Y log k. k. 

'----------
em 2 __ ___________ Cemcnt. ______ ___ __ _ ._ _________ __ _ 0. 080 16.92 -10.67 -1. 856 0.014 3__________ ___ Brick__ ____ ______ ____ __ ________ ___ . 084 11. 59 - 5.34 -0.928 .118 

6.37 -0.12 -.021 .952 
3.61 +2.64 +-409 2.88 

4 ______ _______ Fine gravel' __________ ___ ___ _____ _ .106 
5 _______ ______ Coarse gravel ,_____ __ ___ _______ ___ .116 
8 __ ___ ________ Planks____________ ______ ________ __ .067 13.58 -7.33 - 1. 275 0.053 

8.46 -2.21 -0.384 .413 
12 ____ ________ }PlankS with closely sp3ced wood } 
13_ ___________ strips '. .090 14 ___________ _ 

15 ____ __ ______ }PlankS with widely spaced wood 
16____ ________ strips.' .110 3. 23 +3.02 +- 526 3. 36 17 ___________ _ 

1 Gravel from 1 to 2 em in diameter. 
, Gravel from 3 to 4 cm In diameter . 
• See figure 5. 

Rlk. 

--

1,030 
135 

20 
7.4 

253 

43 

0.3 

In this connection it is interesting to note that the equivalent sand 
roughness of the fine gravel, 1 to 2 cm in diameter, is 0.95, and that 
of the coarse gravel, 3 to 4 cm in diameter, is 2.9 (table 3). The differ­
ence between the equivalent sand roughness and the nominal size 
of the gravel is not very large. Bazin does not give the proportions 
of different sizes in his gravels. It is quite possible that the mean 
size of the gravel was close to 1 and 3 cm, respectively, in which case 
the agreement between the equivalent sand roughness and the actual 
gravel size is good. If this was not the case, the difference may be 
the result of the way in which the individual particles of gravel were 
distributed, or of the depth to which they were embedded in the sup­
porting cement. 

The analysis of Bazin's experiments on the effect of the roughness 
of channels, therefore, leads to the formula 

u (R) u* =6.25+5.75 log k, , (60) 

where k., the equivalent sand roughness, has the numerical values 
given in table 3. 

Adopting this form of expression for the mean flow, Manning's 
formula, which is used extensively in engineering work, may be changed 
so as to contain the equivalent sand roughness in the place of the 
coefficient n. The advantage of such a change will be discussed 
later. 

3. SURF ACES OF WOOD AS EXAMPLES OF WAVINESS 

In some of Bazin's experiments the effect of kinematic viscosity 
on the mean velocity of flow can be seen. From the experiments 
belonging to this category (see table 4), let series 28 and 29 be con­
sidered first . These tests were made in small rectangular channels 
10 cm wide. The channels were prepared from four pieces of firwood, 
about 5 m long, hollowed out to a cross section of 10 by 10 cm. They 
were assembled end to end, and in the entire length there were only 
three joints_ The surfaces were made as smooth as possible. The 
slopes used were 0.0047 and 0.0152. The data obtained from the 
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tests are shown in figure 7, in which '0,/'0,* is plotted against log (R'O,*/v). 
It appears that the experimental points can be represented with suffi­
cient accuracy by a strai~ht line. This line has the same inclination 
as the two straight lines III the upper part of the figure, which repre­
sent the variation of the mean velocity of flow with kinematic viscosity 
in smooth circular pipes and in smooth rectangular pipes of very 
great width. The interpretation of this fact is that the polished 

28,-------,-------,-------,--------,-------,-------, 

24r-------+-------1--------r---

20r-------+-------

12~------+-------+-------4_------~-------+------~ 

8 

SERIES SYMBOL WIDTH SLOPE 
eM 

6 • 199 .00208 
4 . 9 0 198.3 .0015 

2 8 0 10 .0047 
29 • 10 .0152 

0 
2JJ 2.4 2.8 3.2 3.6 41) 4.4 

log R:* 
FIGURE 7.-Mean flow ratio u/u* as a function of log (Ru*/,,) for small and large 

rectangular wood channels, illustrating characteristics of channels with wavy 
surfaces as compared with smooth pipes. 

Basic data from Bazin 

surface of firwood can not be considered as hydrodynamically smooth, 
since the indicated flow is less than that for a smooth surface. How­
ever, it is of a type classified customarily as wavy, since the effect 
of viscosity is similar to that obtained with a smooth surface. The 
formula for the flow as indicated by the line passing through the experi­
mental points is 
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11, + 7 1 (R11,*) --::-= 1.3 5. 5 og - , 
u* v 

which is of the same form as eq 56 with a",= 1.3. 

Series 

--

28 
29 

6 
9 

TABLE 4.-Rectangular wood channels with wavy surfaces 

[Data from Bazln] 

Hydraulic radius, R Mean velocity, il 
Surface Slope,; Width, 

Eo 
Minimum I Maximum Minimum Maximum 

--
em WI em em/sec em/sec 

Polished fir.. ....... 0.0047 10.0 0.90 2.B4 27.3 65.B 
. •.. Ao .............. .0152 10.0 .92 2.25 57.1 lOB. 6 

Poplar planks ...... .00208 199.0 7.35 28.09 63.5 158.7 
..... do._. __ .. __ .... .0015 19B.3 8.42 30.42 54.B 142.0 

729 

(62) 

Tem· 
pera· 

ture, 8 

·C 
10.0 
10.0 

7.0 
14.0 

A similar effect of the kinematic viscosity is also noticeable in the 
results of the tests made in the larger channels of wooden planks at 
the smaller slopes. The data, which were obtained from the experi­
ments of series 6 and 9 (table 4), that is, from the series of the smaller 
slopes, are reproduced in figure 7. Again in this case the distribution 
of the experimental points can be represented by a straight line with 
the same inclinationIas that of the lines corresponding to smooth cir­
cular pipes and smooth rectangular pipes of great width. In these 
tests with large wooden channels, then, the effect of kinematic vis­
cosity is important when the slopes are small. Thus for the smaller 
slopes the surfaces are to be reckoned as hydrodynamically wavy. 

Yet in the previous section a similar surface is interpreted as being 
hydrodynamically rough. The reason for this double designation of 
the same surface perhaps can be clarified if all the data for large rec­
tangular wooden channels given in table 5 are considered as a whole. 
For thls purpose it is preferable to study the relation between 
(11,/11,* -5.75 log R) and log (11,*/v) as plotted in figure 8. Two straight 
lines are selected to represent the distribution of the experimental 
points, one horizontal and the other inclined. The horizontal line is 
taken from figure 6 and applies to the tests of series 8; the inclined 
line is taken from figure 7 and applies to the tests of series 6 and 9. 
The observed points, therefore, can be divided into two groups. In one 
group, all the points fall near the inclined line, which means that the 
associated flows vary with viscosity. In the other group all the 
points fall near the horizontal line, which means that the associated 
flows do not depend on viscosity. The lines intersect at a point 
given by log (11,*fv) =2.9. To derive a critical number representing 
this intersection, use may be made of the equivalent sand roughness 
already obtained for such wooden surfaces. See table 3. With 
k.=0.053 cm, or log k.= -1.275, the criterion that is sought for is log 
(k.11,*fv)= 1.625 or k s11,*/v=42.2. Accordingly the unplaned wooden 
surfaces of the larger channels behave as wavy surfaces, when 
ks11,*/v<.42.2. 

The mean velocity of flow for these channels with wavy surfaces, 
as derived from figure 7, is 
[rt~"--:::::... 

11, (Ri],) -::-=-3.0+5.75 log - * . 
u* v 

(63) 
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TABLE 5.-Datafrom Bazin's tests on large rectangular wood channels 

Series Slope, i 

6 ___________ __ ___ __ . __ ._ 0.00208 7 __ ________ ____________ . 
.0049 8 ____ ___ ___ ___ __ . _____ ._ . 00824 

9 _________ ______ ________ 
.0015 10 ___________ ____ ____ ___ 
.0059 11. ___ _____ _____ ________ 
.00839 
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Hydraulic radius, R Mean velocity, ii 
Width, Temper-

Bo ature, 8 
Minimum Maximum Minimum Maximum 

em em em em/sec. em/sec. DC 
199.0 7.35 28.09 63.5 158.7 7. 0 
199.0 5.73 22. 15 82.6 217. 9 8. 5 
199.0 4.47 19.19 107.4 261.2 8.5 
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FIGURE S.-Quantity (u/u* -5.75 log R) as a function of log (u*/,,) for large rec­
tangular wood channels, 'illustrating transition from waviness to roughness. 

Basic data from Bazin 

It is interesting to note that the value of the critical number given 
above for the transition of the surface characteristic from waviness to 
roughness is somewhat less than the upper criterion which Nikuradse 
found for his sand-covered surfaces, which was k su*/v=67. 

4. EFFECT OF SHAPE OF CROSS SECTION ON MEAN VELOCITY 

Bazin was also interested in the possible effect of the shape of chan­
nels on the mean velocity of flow. The experiments to this end were 
carried out in channels with wooden walls. In what follows only 
those experiments in which the wooden surfaces have shown them­
selves to be hydrodynamically rough will be considered. These are 
listed in table 6. Also see figure 5. 
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TABLE 6.-Datafrom Bazin's tests on wood channels of various shapes 1 

Series Shape I 

Hydraulic ra· 
dius, R 

Mean velocity, 
ii 

Slope, i W~th,\ __ -:-_ _ \ __ -;-__ \ T~:~.e~a. 

M iui· M axi· M ini- M axi­
mwn mum mum mum 

--- - ·\- - - ------i---- - - ---- - - -1-- - -

em em em em/sec em/sec °C 8 ____ ______ Rectangular __ ____ __ ___ ______ 0. 00824 199.0 4. 47 19.19 107.4 261. 4 8. 5 1L ___ ___ __ ___ __ do _____ ______ __ _______ _ .. .00839 198.2 4.46 18.94 JOS.O 266. 4 16.0 to 21. 0 18 ___ ______ . ___ _ do __ __ __________ _____ ____ 
. 0049 119.7 7. 17 25. 57 102. 6 23 1. 3 8. 0 

2L __ __ ____ Trapezoidal L _________ _____ .0015 100.0 10. 18 33.43 73.0 148.5 7.0 22 _____ ___ _ Traper,oidal1L __ __ _____ . ___ . 0049 94.5 7. 85 25. 51 109. 0 241.6 24. 5 23 _____ --- Triangular _______ ____ ___ __ ._ .0049 9. 97 25.57 125. S 236.3 22.0 
26 ___ _ . ____ Semicircular _______ ________ . .0015 140.0 11.89 35.11 79.5 168.9 22.5 

I See figure 5. 

From the test data of these series the quantity (u/u* -5_75 log R) 
was computed for corresponding values of log (u*/v). The results 
are plotted in figure 9. It is seen that (u/u* -5.75 log R) is practi­
cally independent of log (u*/v), except possibly for the semicircular 
section. The variation of (u/u* -5.75 log R) with log (u*/v) in the 
results for the semicircular section need not be interpreted as being 
necessarily due to the effects of kinematic viscosity. For, in the 
first place, jf the correction term 2.5 f3 is introduced using the values 
in table 1, the variation appears to be less pronounced; and in the 
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~.b . ~ • .... "' ... 111 
;,;lK)e- 13.48 
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00 J'~ ~ Cli! • o~e~ 
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4 
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2.4 2.5 

FIGURE 9_-Quantity 

1 
SERIES SYMBO L SHAPE WIDTH 

c. 
8 a RECTANGULAR 199 

IB • RECTANGUL AR 119.7 
21 0 TRAPEZOIDAL r 100 
22 A TRAPEZOIDAL II 94.5 
23 A TRIANGULAR -
26 • SEMICIRCU LAR 140 , , , " , 

2.6 2.7 2.8 2.9 3.0 3.1 3.2 

log ~ . 
(u/u* -5.75 log R) as a function log 

channels of various shapes. 
(u*M for rough wooden 

Basic data from Bazin. 

second place, the corrective term ~ u/u* which was discarded in this 
discussion, is perhaps important in the case of the semicircular channel. 

Table 7 has been prepared to show the effect of the shape of a 
channel on the mean velocity in these tests. The values given are 
the averages from the experiments of each series. In considering 
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these average values it is seen that the quantity (u/u* -5.75 log R) 
varies but little in the channels of different shapes. If it is permissible 
to assume that the wooden material in every channel had the same 
equivalent sand roughness k" then the conclusion to be drawn is 
that the mean velocity of flow is practically independent of the shape 
of the channel; that is, in two channels of different shapes but of the 
same slope, the mean velocity of flow will be the same if the hydraulic 
radii are equal. 

TABLE 7.-1Vfean velocity of flow in wood channels of various shapes 

[Values of Y=(il!ii.-5.75 lag R) far the channels listed in table 6.] 

Series Shape Y 

8. ••. .•.• .•..... .. ... Rectangular....... ........ ...... .. ........ ... .. ... .. .......... . ..... ... . 13. 4S 
ll ....................... _do.... .... .. ......... . . ..... ........... . ... . ........ ............ . .. . 13. 95 
18 ... . .•. ............ ..... do... ...... ...... ......... ........ ..... .... .... ..... ........ ... .. .. . 12. 80 

21... ............... . Trapezoidall".. . ............. .. .......... ... .. .. .. . ................ . ... 12. 56 
22... ...... . ......... TrapezoidallL ....... .. ........ .............. . . .... .... . ........ ........ 13. 57 
23. • • ••••••••• •• • • ••• Triangular'. . ..... ..... . ........ ...... .. . .... .. . . .... . . . ... . . ...... . . .... 13. 15 

26... ...•.....•.....• Semicircular.. .................. ... .................... ............ .... . 13. 86 

Average. ...... . ..... ...... ..... .... ............... .. ... .. . .... . ......................... 13. 34 

This conclusion will be in agreement with the theoretical formula­
tion of the rational formulas for the mean velocity, provided that in 
these formulas the term € u/u*, expressing the effect of the secondary 
currents and of the free surface, is either negligible or is practically 
a constant for the shapes considered. Whether € u/u* is negligible 
or a constant can be ascertained with certitude only from experiments 
where the surfaces of the walls have known hydrodynamic character­
istics; that is, when am is known previously. 

5. DISTRIBUTION OF VELOCITY IN ROUGH CHANNELS 

It was seen that the mean velocity of flow in the rough channels 
examined by Bazin is given with sufficient accuracy by the rational 
formula proposed. The reason for this must lie primarily in the 
assumption which is made regarding the distribution of velocity. 
Fortunately, Bazin also made measurements of velocity distribution. 
The velocity measurements which were made in large rectangular 
channels and at high velocities will be considered here. These are 
listed in table 8. 

The velocity traverses best suited for examination are the following 
two: (1) A vertical traverse at the midchannel for the velocities in 
the neighborhood of the channel bottom; (2) a horizontal traverse 
about 3 to 5 cm below the water surface for the velocities in the neigh­
borhood of the vertical walls. The examination that is desired 
consists in seeing how accurately the relation 

:* =8.5+5.75 log (rc) (23) 

which is the assumed relation for rough surfaces, is confirmed. Here u 
is the velocity at a distance y from the nearest point on the wall at 
which u'" is the shear velocity. 
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TABLE B.-Distribution of shear at the bottom of rough rectangulm' channels. 

S=distance from nearest corner. 
h = depth of water. 

Bo=width of channel. 

Series 55, comon t. 

h/Bo=0. 15 
fi,/il.=24.4 

2S/Bo u .. lfl. 
--- ---

1.00 1. 07 
0. 67 1. 07 
.34 0.98 
.095 .87 
.044 .89 

Series 59, plank. 
Il /Bo=0.13 
il/il.=21.4 

2S/Bo 

---
I. 00 
0.80 
.60 
.40 
.20 
.10 
.03 

• Widely spaced strips. 
, Closely spaced strips . 

u./il. 
- --

1.00 
1. 07 
1.06 
1.04 
0.92 
. 88 
.78 

Series 56, fine 
gravel. 

h/Bo=O.28 
"/il.=14.7 

2S/Bo u./u. 
------

1. 00 1.16 
0.67 l.10 
.35 0.94 
.13 .88 
.10 . 82 
.05 . 78 

Series 61, plank." 
H /Bo= 0.25 
11/a.=17.4 

fS/Bo u./u. 
------

1.00 I. 14 
0.80 1. 12 

.39 O. !l8 

.19 .92 

.09 . 85 

.04 .79 

Series 57, coarse 
~ravel. 

h/Bo=0.21 
fi, /il.=11. 5 

2S/Bo u./'fl. 
------

1. 00 1. 20 
0.69 1.11 
.37 0.93 
.14 .82 
.10 .76 
.06 .72 

Series 65, plan k.' 
h/Bo=0.21 
u/il.=ll. 5 

fS/Bo u./u. 
------

1. 00 1. III 
0.80 1.12 
.60 1. 08 
.40 0.96 
.20 .86 
.10 .78 
. 04 .63 

Bazin gives the ratio uju of the velocity at a point to the mean 
velocity in the channel for points in a horizontal section and in the 
midvertical section of the channel. An auxiliary computation is 
required to obtain the local shear velocity u* which enters in eq 23. 
This may be obtained if the distribution of the shear velocity, that is 
the ratio u*!u*, along the wall is known. The formula for this dis­
tribution is obtained by dividing each side of eq 23 by the quantity 
(u/u) (u/u*) which gives 

u* 8.5+5.75 log (y/ks) 
u* (u/u)(u/u*) 

(64) 

By means of this relation the distribution of shear velocity in the 
various channels was determined. The results are given in tables 8 
and 9. They show that the shear velocity, and therefore the shear, 
have minimum values at the corners. On the bottom of the channel 
the maximum shear occurs at the midpoint. On the vertical walls 
the maximum shear is found at a point slightly below the water sur­
face, and its value is considerably less than the maximum shear on 
the bottom. 
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TABLE g.-Distribution of shear at the sides of 1·ough rectangular channels 

S =distance from bottom corner 
h =depth of water 
Bo=width of channel 

Series 55, cement. 

hIB,= 0.15 
il{il,='1A.4 

Slh u.lil, 
--- ---

0.89 O. 9:i 
.60 95 
.39 .90 
.17 . 87 

Series 59, plank. 
hlBo= 0.13 
il{iL.=21. 4 

Sih 

---
0.88 
. 49 
.30 
.11 

-- --------

a Widely spaced strips. 
o Closely spaced strips. 

u./u. 
---

0.97 
.96 
.92 
.78 

--- -- --- --

Series 56, fine gravel. 

hlBo= 0.21 
ill,I, =14. 7 

Sin u.lil, 

------
0. 87 0.91 

.62 .96 

.38 .90 

. 13 .83 

Series 61, plank. a 
hlBo= 0.25 
iLlil, =17. 4 

Sih u./u* 
------

0. 92 0.92 
. 69 .96 
.49 .93 
.29 . 91 

I 
.09 .79 

Series 57, coarse. 
gravel. 

hlBo= 0.21 
il{il,=ll. 5 

Sih u./fl. 
--- - --

0.93 O. !JO 
. 67 .94 
. 41 .91 
. 15 .72 

Series 65, plank .• 
h180= 0.21 
Uf,I.=ll. 5 

Slh u*/iltl< 
------

0.95 0.75 
.09 .91 
.46 .87 

I 
.21 .75 
.09 .63 

Now, the ratio U/tl* may be computed from the product 

where the first factor in the product is obtained directly from Bazin's 
data, the second from eq 64, and the third from Bazin's data using 
eq 61. The values of u/u* thus obtained for various channels are 
plotted as ordinates against the quantity log (y/k.) as abscissas in 
figures 10 and 11. The distribution of the points, both for the hori­
zontal and the vertical velocity traverses, is given quite satisfactorily 
by the straight line representing eq 23. 

6. MAXIMUM VELOCITY IN ROUGH RECTANGULAR CHANNELS 

Bazin observed that, when the width of a channel is about five 
times or more the depth of water, the velocity distribution in the 
middle vertical is the same as in the verticals of a channel of infinite 
width. From measurements at the middle verticals in eight different 
channels he derived the velocity formula for wide channels in the 
form 

umax-u (Z)2 
.J (hi) =20 h ' (65) 

where u is the velocity at a point distant z from the surface of the 
water and h is the depth. Introducing the shear velocity u* = .J(hig), 
this law can be expressed in dimensionless form as 

(66) 



[(euleyall] Turbulent Flow in Open Ohannels 735 

It can be ShOWI1 , however, that this is an approximation to the 
equation 
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FIGURE 10.-Velocity distribution for a vertical traverse at the center line of rough 
rectangular channels. 

The straight line represents eq 23. Basic data Crom Bazln. 

which is deduced from the Karman velocity law and is usually referred 
to as the velocity deficiency equation for the turbulent core. On the 
basis of eq 65, Bazin obtained the relation between the mean velocity 
and the maximum velocity in very wide channels in the form 

(68) 

In channels of finite width, on the other hand, the difference between 
the maximum and the mean veloci~y is larger, and for such cases 
Bazin gives on empirical grounds the relation 

umax-U= 14~ (hi). (69) 

After introducing the shear velocity, eq 69 becomes 

(70) 
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Evidently, this formula for channels of finite width lacks generality 
in that it does not contain the width of channel. To correct thIS 
defect the following procedure may be used if we assume that the 
maximum velocity occurs at the surface. First, it is necessary to find 
a relation between U*max, the maximum shear velocity at the midpoint 
of the channel, and the mean shear. By definition 
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1.6 2.0 2.4 2.3 3.2 3.6 

log t; 
FIGURE 11.- Velocity distribution for a horizontal traverse slightly below the water 

surface in rough rectangular channels. 

Tbe straight line represents eq 23. Basic data from Bezin. 

where IT is a function of the depth of the water, the size and roughness 
of the channel, and the velocIty. It will be supposed that for small 
values of hlBo, where h is the depth and Bo is the bottom width, 

(72) 

where (Xl is a constant which may be determined by using some of the 
results of Bazin. The data to be considered are given in table 8, and 
also in table 10, together with the value of (Xl computed on the basis 
of eq 72. It is seen that (Xl for different channels varies between 8.2 
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and 13.2. The mean of all the determinations, 11, is perhaps a good 
value to adopt, since (j is a small quantity. 

The velocity law given by eq 23 and the resistance law given by eq 
60 lead to 

(73) 

As hjR=1+(2hjBo), the logarithmic term in eg 73 can be expressed 
in the series form. Neglecting powers of hjBo hIgher than the second, 
eq 73 now becomes 

(74) 

or from eq 71 

(75) 

Inroducing IJ' from eq 72, 

(76) 

where 

This is a formula which gives the relation of the mean velocity to the 
maximum velocity in rough rectangular channels where the ratio of 
the depth of water to the width of channel does not exceed 1:5. 

TABLE IO.-Computation of the constant Cl 

Series ti.mn/il.= ,./B, il/ii. a 1+.-

1. 07 0.15 24.4 
1.16 .21 14.7 
1. 20 .21 11. 5 

1.08 . 13 21. 4 
1.14 . 25 17. 4 
1.15 .21 11.5 

IV. MANNING'S FORMULA FOR ROUGH CHANNELS­
POWER-LA W FORMULAS 

Manning's formula for mean velocity of flow in rough channels is 
widely used in engineering practice, mamly because of its simple form. 
It will be of considerable interest, therefore, to examine this formula 

107462-38--3 
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in the light of the formulas which have been deduced in this paper. 
The formula as ordinarily written is 

where u and R are expressed in terms of feet and seconds. Introducing 
the acceleration of gravity, g=32.2 ft/sec2, the formula becomes 

or, in the notation of this paper, 

The quantity n is generally called "Manning's n," and is inter­
preted as a measure of roughness. Obviously, if the formula is to be 
dimensionally complete, the factor 0.263/n must have the dimensions 
[L]-1/6. A dimensionless formula resuits when the equivalent sand 
roughness k, is introduced as follows: 

~ =0(R/k.)1/6, 
u* 

(77) 

where 
0= 0.263k/16, (k. in ft), 

n 
(78) 

or 

0 0.00863k.1/6 (k . ) n ,.lncm . (79) 

Eq 77 is then a power law for the mean velocity of flow in the form 

~ =Oi(R)m. 
u* k. 

Lindquist [12] has determined the value of m, using the Karman form 
of the law of resistance for sand-coated pipes and finds that 1/6 is a 
satisfactory value. A proper value of Cmay be obtained by a similar 
comparison. From eq 60 and 77, 

C(~}/6=6.25+5.751og (~} 

Assigning to R/ks the successive values 500, 250, 120, 60, 30 and 15, 
the corresponding values of 0 are found to be 7.72, 7.98, 8.20, 8.32, 
8.36, and 8.30. Adopting for 0 the mean value 8.12, the dimensionless 
form of Manning's formula will be 

il (R)1/6 -:-=8.12 - . 
u* k. 

(80) 
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The relation between the equivalent sand roughness and Manning's n, 
according to eq 79, now is 

n=O.OOI06k,I/6, (81) 

where k. is expressed in centimeters. This last equation, however, is 
not suitable for determining the equivalent sand roughness k. when 
Manning's n for a channel is known. 

The value of the exponent m of the power law formula is related to 
the roughness factor (R/k.). This is readily seen from a study of the 
velocity distribution for flows near rough surfaces. The velocities for 
fully developed turbulence with sand-coated surfaces are shown in 
figure 12, where 100' (u/u*) is plotted against log (y/k.) in accordance 
with eq 23. The line thus obtained is decidedly curved, indicating 
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FIGURE 12.-Log (u/u*) as a function of log (y/k.) for rough channels. 

The curve represents the rational formula given by eq 23. The line 1-1 represents the power·law for· 
mula with exponent .. =1/6, which Is equivalent to Manning's formula. The line 2-2 represents the 
power·law formula with exponent .. =1/7. 

that the value of m in a power law formula depends on R/k.. If then 
it is desired to arrive at a mean flow formula of the power law type, it 
is necessary to select a straight line which will approximate the curve 
of eq 23 for large values of y/k.. A practical range of R/k. is from 
R/lc.=15 to R/k.=500. With this range in mind, two straight lines 
are drawn in figure 12 as fairly good approximations to actual observa­
t,ions. The line 1-1 represents the velocity distribution 

u U (y)1/6 
- =-::-=9.15 -" ' u* u* c, 
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corresponding to eq 80. The line 2-2 which conforms to the relation 

u u (y)l17 -=-::-=10.2,- , 
u* u* IC. 

(82) 

is especially useful for reasons that will now be explained. 
It was mentioned earlier in the paper that the velocity distribution 

near a rough surface consisting of imbedded sand grains is identical 
wi th that near a smooth surface when the velocity of flow is sufficiently 
small. It is to be expected that this will be true also for roughnesses 
represented by cement either plain or mixed with sand, by brick, and 
by ashlar masonry. The departure from smoothness begins when 
u*k./II reaches the value 3.3, according to figure 3. This number, which 
is of considerable interest, may be referred to as the criterion of smooth­
ness. It is seen from figure 3 that the criterion is given by the inter­
section of two lines, one representing the velocity distribution law for 
smooth pipes, and the other the corresponding law for rough pipes. 
This is an important result which must be involved also in the power 
law formulas of velocity distribution for smooth and for rough surfaces. 
The appropriate law for the smooth surface results from the Blasius 
law of resistance, [13] which, in the notation of this paper, is 

~ =6.99(rou*)117. 
u* 11 

This form implies the velocity distribution 

~= ~ =8.62(YU*)I17. (83) 
u* u* 11 

As the exponents of Y in eq 82 and 83 have the same value, the desired 
criterion of smoothness can be obtained by equating to each other the 
right-hand members of these two equations. Then the elimination of 
Y gives 

(ks:* }17=1.18, or 

e·:* )=3.26, 

which is in good agreement with the value 3.3 obtained from figure 3. 
It is now clear that the power law with exponent m= 1/7 is suffi­

ciently accurate when RU*/II or R/k" is large, and the law with exponent 
m= 1/6 when Ru* III or Rlk. is small. The formulas of the logarithmic 
type are free from this restriction. As a maHer of possible interest, 
the results of Bazin's experiments on mean flow in channels will be 
given also in the form of power laws. 

In rough channels the mean flow is given by 

~ =9.1(fi)1!7, or ~ =8.12(!!')1/6 (84) 
u* k. u* k. 

The formula holds for concrete, brick, and gravel when k,u*/v>3.3 
and for planed wood when ksu*III>42.2. Some values of k. are given 
in table 3. 



geuteDan] Turbulent Flow in Open Channels 

In smooth channels, or in rough channels with lc.u*/v<3.3, 

~ =7.6(Ru*.)II7. 
u* v 

In wooden channels with polished surfaces 

~ =6.8(Ru*)117. 
u* v 

In channels of planed wood, when lcsu*/v< 42.2, 

741 

(85) 

(86) 

:* =5.2(R~* }/7. (87) 

The numerical coefficients in these formulas result from the rational 
formula once the exponent m= 1/7 is selected. 

The author acknowledges gratefully the numerous suggestions and 
extensive editorial assistance in the preparation of this paper furnished 
by K. Hilding Beij of the Bureau's staff, and also helpful criticisms by 
Herbert N. Eaton. 
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