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A first-principles–based model for predicting the effect of germicidal radiation interventions for air disinfection is presented. 
Calculation of the “capacity” of an intervention expressed in volumetric flow rate allows for a direct comparison against fresh-air 
dilution ventilation and filtration systems, which are quantified in terms of the clean air provided. A closed-form expression to predict 
the combined quantitative impact of spatial gradients and mixing currents on the efficiency with which an intervention is applied is 
introduced. If validated, this would allow for systems to be selected and sized based on simple metrics across a broad range of settings 
and applications. The expressions developed are compared against available experimental data sets, and future validation efforts are 
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disease transmission against the cost of capacity is derived using the Wells-Riley equation and presented as an appendix. 
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has provided further evidence that aerosol
transmission of respiratory-disease–causing pathogens, such as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and influenza, is a greater threat than previously acknowledged [1]. Unlike 
fomite and droplet transmission, aerosol transmission can occur across long distances and over long time 
periods, making it less susceptible to controls such as social distancing and hand or surface sanitization [2]. 
The Wells-Riley equation, shown in Eq. (1), is a widely accepted epidemiological model used to predict 
transmission risk of airborne pathogens. It shows that the risk of disease transmission in a shared space is 
dependent on a series of variables, including the number of infected individuals present, I, the 
infectiousness and strength of the source(s), q, the inhalation rate, p, the exposure time, t, and the pathogen-
removal capacity, Q, in units of clean-air flow rate [3].  
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 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡 = 1 −  𝑒𝑒�
−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑄𝑄 �   (1)  

Airborne pathogens may be removed from a space using fresh-air ventilation and filtration and may 
also be inactivated in place through exposure to germicidal irradiation in the ultraviolet-C (UV-C) spectrum 
(between 200 nm and 280 nm), which is equivalent in effect to physical removal and may be quantified 
similarly. An optimized risk-mitigation strategy for a given indoor setting will involve balancing the cost of 
disease transmission against the cost of pathogen-removal capacity while minimizing the specific cost of 
said capacity. In Appendix B (Sec. 9), the Wells-Riley equation is used to facilitate such an optimization 
process. UV-C inactivation has been shown to be the most cost-effective solution available today in this 
regard, but it is not well characterized and remains underutilized as a risk-mitigation mechanism [4]. One 
reason for this situation is the lack of sizing tools that are adaptable to a variety of pathogens and settings, 
and simple enough for application in a typical building-technology workflow, which is due to the 
complexities associated with the ways in which radiation spreads and air mixes in a room. A framework is 
presented here that is based on well-established first-principles relationships and attempts to distill 
relatively complex engineering equations into a form that a variety of stakeholders can use when deploying 
UV-C systems for the purpose of removing airborne pathogens.  

 
2. Glossary of Variables 

 

𝑰𝑰 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒐𝒐𝒐𝒐 𝒊𝒊𝒏𝒏𝒐𝒐𝒏𝒏𝒊𝒊𝒊𝒊𝒏𝒏𝒊𝒊 𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊            𝒒𝒒 = 𝒒𝒒𝒏𝒏𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊 𝒈𝒈𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏 𝒏𝒏𝒊𝒊𝒊𝒊𝒏𝒏 �
𝟏𝟏
𝒊𝒊� 

𝒑𝒑 = 𝒏𝒏𝒏𝒏𝒊𝒊𝒑𝒑𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏 𝒏𝒏𝒊𝒊𝒊𝒊𝒏𝒏 �𝒏𝒏
𝟑𝟑
𝒊𝒊� �                              𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏 (𝒊𝒊) 

𝑸𝑸 = 𝒑𝒑𝒊𝒊𝒊𝒊𝒑𝒑𝒐𝒐𝒈𝒈𝒏𝒏𝒏𝒏 − 𝒏𝒏𝒏𝒏𝒏𝒏𝒑𝒑𝒐𝒐𝒊𝒊𝒊𝒊𝒊𝒊 𝒏𝒏𝒊𝒊𝒊𝒊𝒏𝒏 �𝒏𝒏
𝟑𝟑
𝒊𝒊� �     𝑵𝑵 = 𝒑𝒑𝒊𝒊𝒊𝒊𝒑𝒑𝒐𝒐𝒈𝒈𝒏𝒏𝒏𝒏 𝒊𝒊𝒐𝒐𝒏𝒏𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏 (%) 

𝑽𝑽 = 𝒏𝒏𝒐𝒐𝒐𝒐𝒏𝒏 𝒊𝒊𝒐𝒐𝒊𝒊𝒏𝒏𝒏𝒏𝒏𝒏 (𝒏𝒏𝟑𝟑)                                         𝑬𝑬 = 𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒊𝒊𝒏𝒏 �𝑾𝑾 𝒏𝒏𝟐𝟐� � 
𝒁𝒁 = 𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒏𝒏𝒑𝒑𝒊𝒊𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒔𝒔 (𝒏𝒏𝟐𝟐/𝑱𝑱)                                    𝑷𝑷 = 𝒐𝒐𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒑𝒑𝒐𝒐𝒑𝒑𝒏𝒏𝒏𝒏 (𝑾𝑾)  
𝑳𝑳 = 𝒏𝒏𝒏𝒏𝒊𝒊𝒏𝒏 𝒊𝒊𝒏𝒏𝒏𝒏𝒈𝒈𝒊𝒊𝒑𝒑 (𝒏𝒏)                                             𝑨𝑨 = 𝒑𝒑𝒊𝒊𝒊𝒊𝒏𝒏 𝒐𝒐𝒏𝒏𝒐𝒐𝒏𝒏𝒊𝒊 𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊 (𝒏𝒏𝟐𝟐)  
𝑶𝑶𝑶𝑶 = 𝒐𝒐𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒔𝒔 (𝑾𝑾𝒏𝒏)                            𝑮𝑮𝑶𝑶 = 𝒈𝒈𝒏𝒏𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒔𝒔 �𝒏𝒏

𝟑𝟑
𝒊𝒊� �             

𝑫𝑫𝑶𝑶 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒐𝒐𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏 𝒊𝒊𝒊𝒊𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒔𝒔 �𝒏𝒏
𝟑𝟑
𝒊𝒊� �             𝑫𝑫𝑬𝑬 = 𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒔𝒔 𝒏𝒏𝒐𝒐𝒐𝒐𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊𝒔𝒔 (%)   

𝑺𝑺𝑷𝑷𝑬𝑬 = 𝒊𝒊𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒏𝒏𝒐𝒐𝒐𝒐𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊𝒔𝒔                                   𝒏𝒏 = 𝒊𝒊𝒐𝒐𝒊𝒊𝒏𝒏𝒏𝒏𝒏𝒏 𝒐𝒐𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏 𝒊𝒊𝒏𝒏𝒏𝒏𝒐𝒐𝒏𝒏𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏                    
 𝑶𝑶𝒏𝒏𝒊𝒊𝒎𝒎 = 𝒏𝒏𝒊𝒊𝒎𝒎𝒊𝒊𝒏𝒏𝒈𝒈 𝒊𝒊𝒐𝒐𝒏𝒏𝒐𝒐𝒐𝒐𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊 �𝟏𝟏 𝒑𝒑� �                      𝑽𝑽𝒏𝒏𝒊𝒊𝒎𝒎 = 𝒏𝒏𝒐𝒐𝒐𝒐𝒏𝒏 𝒊𝒊𝒊𝒊𝒏𝒏 𝒊𝒊𝒑𝒑𝒏𝒏𝒏𝒏𝒊𝒊 (𝒏𝒏 𝒊𝒊⁄ )                    
 𝑳𝑳𝒏𝒏𝒐𝒐𝒐𝒐𝒏𝒏 = 𝒏𝒏𝒐𝒐𝒐𝒐𝒏𝒏 𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊𝒏𝒏 𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏 (𝒏𝒏)            𝑽𝑽𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒏𝒏 𝒊𝒊𝒊𝒊𝒏𝒏𝒊𝒊𝒏𝒏𝒏𝒏𝒏𝒏 𝒊𝒊𝒐𝒐𝒊𝒊𝒏𝒏𝒏𝒏𝒏𝒏 �𝒏𝒏𝟑𝟑�   
 𝑿𝑿 = 𝒏𝒏𝒊𝒊𝒎𝒎𝒊𝒊𝒏𝒏𝒈𝒈 𝒊𝒊𝒐𝒐𝒏𝒏𝒐𝒐𝒐𝒐𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒏𝒏  

     
 

3. Dilution Ventilation and Transmission Risk 

In fresh-air dilution ventilation, a stream of outdoor air that is presumed to be free of pathogens is 
blown into a space as part of a building’s heating ventilation and air-conditioning (HVAC) system and via 
natural ventilation through doors and windows. The fresh air thus introduced mixes with the air already 
present in the space, and an equal amount of this mixed air is expelled back outdoors. In practice, it is 
assumed that the air in a space is completely mixed, and the rate of ventilation is often expressed in air-
changes-per-hour (ACH). This metric may be considered as the number of times the air in a space “turns 
over” per hour. In the case where airborne pathogens are present in the space, they are removed along with 
this mixed air, and this metric can be applied as the pathogen-removal rate, Q, divided by the volume of the 
space, V. The concentration of a pathogen in a space is expected to decrease exponentially over time 
according to this rate, as shown in Fig. 1. Greater exhaust rates will lower the concentration faster, and the 
resulting decrease in concentration has diminishing returns as the concentration approaches zero. In 
dilution ventilation, the pathogen-removal rate is simply the volumetric flow rate of fresh air being 
introduced into the room. When considering alternative removal methods such as filtration and UV-C 
inactivation, it is convenient to compare their impact in terms equivalent to fresh-air ventilation. This may 
be considered as the rate of pathogen-free air delivered to a space even if there is no actual fresh air being 
added (e.g., when using UV-C disinfection procedures instead of fresh-air ventilation) [5]. 
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Fig. 1. Pathogen concentration decay in response to fresh-air dilution ventilation. 

 
4. UV-C Inactivation of Airborne Pathogens 

 
The ability of certain wavelengths in the ultraviolet spectrum to disinfect air and surfaces by 

inactivating microorganisms has been observed for well over a century [6]. It is now understood that this 
germicidal radiation disrupts the genetic reproduction of these organisms, and that every pathogen has a 
characteristic susceptibility to inactivation tied to the specifics of its genotype. For a given pathogen, each 
wavelength in the germicidal band has its own characteristic relative germicidal strength, which is captured 
in the germicidal effectiveness curve and varies from wavelength to wavelength in a similar fashion across 
pathogens. While maximum germicidal strength is known to occur at 265 nm, in practice, 254 nm radiation 
produced by mercury vapor lamps has been the most widely available and applied wavelength, and 
experimental results are often standardized to this ubiquitous wavelength.   

 
4.1 First-Order Decay Equation 

 
UV-C inactivation is modeled according to the first-order decay relationship presented in Eq. (2). It 

shows that the concentration of a pathogen exposed to a given amount of optical irradiance, E, will 
logarithmically decay over time, much like the concentration of a pathogen in a space will decay because of 
fresh-air dilution ventilation [7]. In the case of UV-C inactivation, the portion of the exponent in the 
equation equivalent to ACH (Q/V) in dilution ventilation is the irradiance expressed in optical power per 
unit area multiplied by the susceptibility, Z, of the organism to the wavelength applied, expressed in unit 
area per unit energy. This equivalence is the basis of germicidal engineering for air disinfection, but it is 
only applicable for a single irradiance value. This is limiting in practice, because a range of irradiance 
values exists simultaneously in a space, and air flow within the room will carry pathogen particles across 
this varying field over time. Much like the well-mixed room assumption is applied in fresh-air ventilation 
modeling, a well-mixed condition is often assumed in germicidal engineering, and the average irradiance of 
the volume is used to predict the resulting bulk inactivation. When measuring the susceptibility of a 
pathogen, a uniform irradiance field is used to eliminate the impact of this simplification. 

 𝑁𝑁 = 𝑒𝑒−(𝐸𝐸𝑍𝑍)𝑡𝑡  (2)  

While the exponential relationship in Eq. (2) is a reflection of natural phenomena, we know that 
susceptibly in practice occurs in multiple distributions across a population of pathogens, and that it is 
impacted by environmental conditions [8]. Additionally, pathogens exist in the air in different size particles 
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of variable compositions, which may impact the inactivation mechanisms at play. While the idealized first-
order equation is used in this model, the mechanisms at play in practice are complex and difficult to 
characterize. As such, empirical benchmarks and validation have historically been critical in the application 
of UV-C disinfection systems and are expected to remain so. However, by exploring the mathematical 
implications of the first-order equations, we can build insight on the expected relationship between 
variables and guide empirical investigation and system design. 

 
4.2 Capacity Model 

 
From Eq. (2), the ability of a germicidal system to create irradiance throughout a space will drive the 

germicidal impact for a given pathogen. Here, we propose to term the sum of irradiance across a volume as 
“capacity,” much like volumetric flow rate is the sum of turnover rate in air-changes-per-unit-time across a 
volume. This represents the ability, or capacity, of a germicidal system to cause inactivation in a given 
volume. At the dimensions of concern (1 m to 20 m), UV-C radiation will exit a source and travel through 
open air effectively unimpeded until it hits an opaque surface because there is very low transmission loss 
through environmental air at typical conditions [9]. Accordingly, in this model, we consider that power is 
conserved along a propagating wave front as shown in Fig. 2. 

 
Fig. 2. Representation of a propagating wave front without transmission losses where P is the optical power of the source, x is position 
along the beam length (Lbeam), A(x) is the beam area at position x, and E(x) is the average irradiance of the beam section at position x. 

 
The “optical capacity (OC)” of an irradiance field may be considered as the sum of the irradiance 

(power per unit area) across a volume and will have units of power multiplied by unit length. It may be 
evaluated as a bulk property by multiplying average irradiance by volume or by integrating a spatially 
variable irradiance field across a volume as shown in Eq. (3). It may also be considered as the optical 
power multiplied by the beam length, also derived in bulk form with an average beam length, or as an 
integral across the power as shown in Eq. (4). Both forms will constitutively result in the same value. This 
may be demonstrated by considering the volume integral of the irradiance expression in Fig. 2 as is shown 
in Eq. (5). 

 
 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 (𝑊𝑊𝑡𝑡) = 𝐸𝐸 �𝑊𝑊

𝑚𝑚2�  ×  𝑉𝑉(𝑡𝑡3) =  ∫𝐸𝐸 𝑑𝑑𝑑𝑑 (3) 
 

 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 (𝑊𝑊𝑡𝑡) = 𝑃𝑃 (𝑊𝑊)  ×  𝐿𝐿(𝑡𝑡) =  ∫𝑃𝑃 𝑑𝑑𝐿𝐿 = ∫𝐿𝐿 𝑑𝑑𝑝𝑝 (4) 
 

 ∫𝐸𝐸 𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃
𝐴𝐴(𝑥𝑥)

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃
𝐴𝐴(𝑥𝑥)

𝐴𝐴(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑃𝑃𝐿𝐿 (5) 

 
  

𝑃𝑃 

𝑥𝑥 

𝐸𝐸(𝑥𝑥) =
𝑃𝑃

𝐴𝐴(𝑥𝑥)
 

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 
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While OC is a useful metric for quantifying germicidal systems, it becomes particularly practical when 
it is combined with pathogen susceptibility to result in a term “germicidal capacity (GC),” as shown in Eq. 
(6). GC is in the units of volumetric flow rate and may be directly compared to flow rate in fresh-air 
dilution ventilation when applied uniformly, as it will have an equivalent impact on pathogen 
concentration. Because susceptibility is expected to be consistent across a volume, it may be multiplied as a 
scalar value to the OC integral. 

 

𝐺𝐺𝑒𝑒𝑝𝑝𝑡𝑡𝑝𝑝𝑂𝑂𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 �𝑚𝑚
3

𝑠𝑠
� = 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 (𝑊𝑊𝑡𝑡)  ×  𝑆𝑆𝑆𝑆𝑡𝑡𝑂𝑂𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑚𝑚

2

𝐽𝐽
� (6) 

 
In practice, there are spatial gradients in the irradiance field produced by divergent radiation sources, 

which combine with air flows to achieve a distribution of doses across the pathogens in the volume and 
result in a reduced amount of disinfection relative to the uniform case. The term “disinfection capacity 
(DC)” is introduced to represent the level of pathogen concentration reduction that is achieved in practice. 
It is conveniently defined in Eq. (7) as the GC multiplied by a subunity scalar termed “delivery efficiency 
(DE).”  

 

 𝐷𝐷𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑒𝑒𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 �𝑚𝑚
3

𝑠𝑠
� = 𝐺𝐺𝑒𝑒𝑝𝑝𝑡𝑡𝑝𝑝𝑂𝑂𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 �𝑚𝑚

3

𝑠𝑠
�  ×  𝐷𝐷𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒𝑝𝑝𝑝𝑝 𝐸𝐸𝑜𝑜𝑜𝑜𝑝𝑝𝑂𝑂𝑝𝑝𝑒𝑒𝑡𝑡𝑂𝑂𝑝𝑝 (%) (7) 

 
An ideal situation where the volume is uniformly dosed would have a 100 % DE, and cases with less 

mixing and greater gradients would have lower efficiencies. This is because of the diminishing returns 
associated with the exponential decay relationship. As the concentration of a pathogen approaches zero, an 
additional unit of optical dose will result in less reduction in pathogen concentration than the same unit of 
dose applied previously. So, a situation where some sections of a volume receive a dose greater than others 
is less efficient than if that dose were applied to the volume uniformly. Equation (8) shows the expected 
reduction of pathogen concentration corresponding to a given DC. This is a powerful metric because it can 
used to intuit and design a system for a specified volume and clearance rate in the same way that flow rate 
is used when sizing ventilation systems. Additionally, a germicidal radiation source, which will have a 
known characteristic distribution pattern, may be evaluated at a discrete number of typical volumes using a 
capacity volume integral to find a series of capacity values corresponding to room size. This way, systems 
may be specified, selected, and sized to an application based on simple metrics  

 

 𝑁𝑁 =  𝑒𝑒−�
𝐷𝐷𝐷𝐷
𝑉𝑉 �𝑡𝑡 =  𝑒𝑒−�

𝐺𝐺𝐷𝐷 𝑥𝑥 𝐷𝐷𝐷𝐷
𝑉𝑉 �𝑡𝑡 (8) 

 
Figure 3 shows the decay over time expected when various DC values are applied to a given volume. 

Each will be logarithmic in nature and trend to a concentration of zero, with greater DCs reducing the 
concentration faster. The logarithmic curves scale linearly with DC. 
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Fig. 3. Decay expected in a 42 m3 volume associated with various disinfection capacities; see Eq. (8). 

 
5. Modeling Delivery Efficiency 

 
The influence of mixing currents and irradiance gradients has long been a focus of research into the 

efficacy of UV-C inactivation in air [7]. It is understood that air mixing is required to carry pathogens 
distributed throughout a volume through the portion of the volume that is irradiated, such as with upper-
room ultraviolet germicidal irradiation (UR-UVGI), where only the upper portion of the room is irradiated 
(which is beneficial to avoid exposing any occupants of the room to the radiation). Computation fluid 
dynamics (CFD) analyses have been successfully used to predict real-world experimental results [10]. In 
these analyses, the measured spatial distribution of irradiance within a volume is combined with a computer 
simulation of air flow expected within that space to find the distribution of doses over time, and the 
corresponding bulk inactivation expected according to the first-order decay relationship. When compared 
against experimental results where inactivation was explicitly measured, this approach has been shown to 
be an effective predictor [10], which further demonstrates the value of the first-order decay relationship as a 
model for inactivation. 

While is it possible to know the spatial variation of irradiance in a deployment through characterization 
and simple modeling, applying CFD to predict air flow is a complex process requiring accurate inputs and 
modeling of many contextual factors. This complexity prohibits it from becoming part of the deployment 
workflow of most UV-C disinfection systems.  

In the model presented here, the first-order decay model is also used to predict the delivery efficiency 
of an irradiance field. This approach involves (1) modeling how a known irradiance field will result in total 
inactivation over time in a static environment, and then (2) defining a characteristic time associated with a 
given level of mixing, followed by (3) using this time to evaluate the static efficiency expression as a 
predictor of overall efficiency. While this approach is expected to be fundamentally less accurate than a 
CFD approach, it has the unique benefit of only requiring knowledge of the spatial irradiance pattern and a 
single mixing value, which may be correlated to characteristic settings using more complex approaches. 
This is aligned with existing methodologies used in building technology workflows such as building codes 
and standards where complex engineering relationships and empirical knowledge are made available in 
simple form in published values and best practices. Furthermore, the closed-form nature of the 
mathematical expressions guides optimization and insight by allowing the relationships between variables 
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to be explicitly analyzed and intuited. This allows manufacturers to develop better radiation sources and 
installers to implement more efficient deployments. 

 
5.1 Inactivation in an Unmixed Room 

 
We start by considering a static volume with a uniformly distributed pathogen concentration. Although 

this is not realistic, it allows for an exploration of spatial gradients and inactivation. If there is a uniform 
irradiance pattern, we expect that the bulk inactivation of the volume will proceed according to the first-
order decay relationship in Eq. (2), tied to the uniform irradiance value. Incidentally, we expect this result 
no matter what the mixing pattern is because all the airborne pathogens will get the same dose no matter 
how they are distributed through the room.  

We can then divide the volume into two discrete sections of known size and consider the case in which 
only one of the sections has a uniform irradiance applied, while the other receives no irradiance at all. The 
pathogen concentration in the irradiated zone is expected to decay over time, approaching zero, while the 
pathogen concentration in the unirradiated section will remain at its starting level. The bulk concentration 
reduction in this case is limited to the volume fraction of the irradiated zone compared to the total volume 
as shown in Eq. (9). Figure 4 shows the inactivation expected over time for different irradiated volume 
fractions where the applied “capacity” is consistent, and n corresponds to the denominator of the volume 
fraction. 

 

 𝑝𝑝𝑡𝑡𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 =  1
𝑛𝑛
�1 − 𝑒𝑒−

𝑛𝑛𝐺𝐺𝐷𝐷 𝐼𝐼
𝑉𝑉 � (9) 

 
 

 
 

Fig. 4. Inactivation expected over time for different irradiated volume fractions, where n corresponds to the denominator of the 
fraction; see Eq. (9). 

 
Taken on its own, the behavior shown is intuitive but irrelevant because of mixing currents. However, 

the approach—considering the inactivation associated with sections of the volume with uniform irradiance 
independently and then adding them together to find bulk inactivation—is important. Equation (10) shows 
how a discrete number of sections may be considered to predict total inactivation, and Eq. (11) shows the 
limit of this approach as a differential expression where the section being considering is a differential 
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volume at a point in space. This form can explicitly predict the bulk inactivation over time of a pathogen 
subject to a known spatial irradiance pattern. Furthermore, the inactivation integral for a spatial distribution 
may be evaluated and equated to a characteristic volume fraction being uniformly irradiated as shown in 
Eq. (12). This is helpful because it allows for a complex distribution to be expressed as a single value and 
the implications to be intuited. 

 

 𝑝𝑝𝑡𝑡𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 =
�1−𝑏𝑏−𝐷𝐷1𝑍𝑍𝐼𝐼�𝑉𝑉𝑛𝑛+�1−𝑏𝑏

−𝐷𝐷2𝑍𝑍𝐼𝐼�𝑉𝑉𝑛𝑛+ …. �1−𝑏𝑏−𝐷𝐷𝑛𝑛𝑍𝑍𝐼𝐼�𝑉𝑉𝑛𝑛
𝑉𝑉

 (10) 
 

 𝑝𝑝𝑡𝑡𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 =  ∫�1−𝑏𝑏
−𝐷𝐷𝑍𝑍𝐼𝐼�𝑑𝑑𝑑𝑑
𝑉𝑉

 (11) 
 

 1
𝑛𝑛
�1 − �𝑒𝑒−

𝐺𝐺𝐷𝐷 𝐼𝐼
𝑉𝑉 �

𝑛𝑛
� = ∫�1−𝑏𝑏−𝐷𝐷𝑍𝑍𝐼𝐼�𝑑𝑑𝑑𝑑

𝑉𝑉
 (12) 

 
5.2 Converting Inactivation to Equivalent Ventilation (Capacity) 

 
Prediction of pathogen inactivation over time, as is done in Eq. (10), Eq. (11), and Eq. (12), has limited 

usefulness in system design efforts. As discussed previously, equating a resultant amount of inactivation to 
the equivalent amount of fresh-air ventilation (capacity) allows for a direct comparison of different 
interventions and for evaluation of expressions such as the Wells-Riley equation. Equation (13) shows how 
the resulting inactivation predicted by Eq. (11) may be equated to that expected from fresh-air ventilation, 
and Eq. (14) shows this expression solved for equivalent flow rate. This equivalent fresh-air rate is the DC 
of the system and may be divided by the GC to find the corresponding DE, as shown in Eq. (15).  

 

 𝑝𝑝𝑡𝑡𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 =  ∫�1−𝑏𝑏
−𝐷𝐷𝑍𝑍𝐼𝐼�𝑑𝑑𝑑𝑑
𝑉𝑉

= 1 − 𝑒𝑒−
𝑄𝑄𝐼𝐼
𝑉𝑉  (13) 

 

 𝑄𝑄𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑡𝑡 = 𝐷𝐷𝐶𝐶 = −1 × 𝑉𝑉
𝑡𝑡

× ln (1 − ∫�1−𝑏𝑏−𝐷𝐷𝑍𝑍𝐼𝐼�𝑑𝑑𝑑𝑑
𝑉𝑉

) (14) 
 

 𝐷𝐷𝐸𝐸 = 𝐷𝐷𝐷𝐷
𝐺𝐺𝐷𝐷

=
−1×𝑉𝑉𝐼𝐼×ln (1−

∫�1−𝑒𝑒−𝐷𝐷𝑍𝑍𝐼𝐼�𝑑𝑑𝑑𝑑
𝑉𝑉 )

𝑍𝑍 ∫𝐸𝐸𝑑𝑑𝑑𝑑
 (15) 

 
5.3 Spatial Efficiency Curve 

 
Equation (15) is notably a time-variant expression. This is intuitive when considered in context of the 

static condition being evaluated. At time zero, there is uniform pathogen concentration in the space, and all 
portions of the volume have received a uniform dose of zero. However, as time progresses, the variability 
of dose builds, and the impact of nonuniform inactivation has a greater effect on the efficiency of 
inactivation. We term the relationship between DE and time as the “spatial efficiency curve.” It is a 
representation of ways in which the spatial nature and power of the irradiance field will drive efficiency at 
different characteristic times. Figure 5 shows the spatial efficiency curves for different irradiated volume 
fractions with a uniform GC. 
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Fig. 5. Spatial efficiency curves for different irradiated volume fractions with a uniform GC. 
 

5.4 Establishing a Mixing Coefficient  
 
Knowing the spatial efficiency over time for a static condition has limited usefulness in real-world 

applications because there are always mixing currents present. However, the expression provides important 
insight into the ways in which different mixing conditions may couple with spatial efficiency to result in a 
total inactivation. It is intuitive that situations with very high levels of mixing will carry particles through 
the field quickly, and there will be less opportunities for the spatial variation of the irradiance field to drive 
uneven dosing, and vice versa. The characteristic time associated with a well-mixed situation will be less 
than that of a lesser mixed one. It is convenient to define a “mixing coefficient (Cmix),” in the units of 1 
over unit time, which is the inverse of the characteristic time used in the spatial efficiency expression. The 
spatial efficiency curve may then be plotted relative to Cmix instead of time, as is shown in Fig. 6. 

Compared to the approach used in CFD methods, where a single particle is tracked as it moves through 
an irradiance field, this approach tracks the turnover of particles in a single location within said field. If a 
volume is mixed with a characteristic mixing velocity, Cmix could be considered as some function of the 
mixing velocity and linear dimension of the room because this is a representation of the rate at which the 
air is cycling through the space. A three-dimensional space would importantly have three different mixing 
velocities and characteristic lengths corresponding to the three dimensions, but it is possible to combine 
those into a single value for simplicity’s sake or to focus on the dimensions where the spatial gradients are 
greatest. While this definition of Cmix is not based on a specific constitutive relationship, it is reasonable to 
expect that there is a characteristic relationship between the dimensionless parameters that may be 
representative of behavior across a variety of conditions. This is similar to how the Buckingham π theorem 
has been used to develop models of physical phenomena across scientific disciplines [11]. Most 
importantly, it allows for the potential to tie different space and setting characteristics to Cmix in a way that 
can be codified and referenced in an application standard. If we assume a first-order relationship between 
Cmix and the ratio of mixing velocity and room dimension, we get Eq. (16), where X is the scalar 
coefficient. 

 

 𝐶𝐶mix �
1
s
� = 𝑋𝑋

𝑉𝑉mix�
m
s �

𝐿𝐿room(m)
 (16) 
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Fig. 6. Spatial efficiency curves plotted against the mixing coefficient (Cmix); see Eq. (15). 

 
5.5 Scaling of Spatial Efficiency Curves  

 
One of the benefits of maintaining closed-form expressions for DE and equating the spatial efficiency 

integral to a single volume fraction is that the spatial efficiency curve may be used to explore the effects of 
adjusting the parameters of the characteristic irradiance field. We expect all curves to follow a logarithmic 
decay, so the resulting scaling of the curves may be used to draw conclusions relative to the 
interdependencies of the variables. Figure 7 shows that as GC is scaled across consistent spatial patterns  
and equivalent volume fractions, the spatial efficiency curves will scale proportionally. This means that 
greater germicidal capacity applied to a volume will require proportionally greater amount of mixing to 
maintain efficiency, or vice versa. Figure 8 shows how the spatial efficiency curve is expected to scale 
across different GCs for a given spatial pattern and equivalent volume fraction. This relationship would be 
expected if the characteristic power of a source is modulated, or a pathogen with a different susceptibility is 
considered. 

 
Fig. 7. As GC is scaled across consistent spatial patterns and equivalent volume fractions, the spatial efficiency curves will scale 
proportionally in time. 

0 %

20 %

40 %

60 %

80 %

100 %

0 20 40 60 80 100

ef
fic

ie
nc

y

Cmix (ACH)

Spatial efficiency by Cmix (ACH), GC = 0.07 m3/s

n = 1
n = 2
n = 4
n = 5
n = 8

https://doi.org/10.6028/jres.126.057
https://doi.org/10.6028/jres.126.057


 Volume 126, Article No. 126057 (2021) https://doi.org/10.6028/jres.126.057  

 Journal of Research of the National Institute of Standards and Technology 
 
 

 11 https://doi.org/10.6028/jres.126.057  

 
 

Fig. 8. Spatial efficiency curve for different GCs for a given spatial pattern and equivalent volume fraction. 
 

5.6  Use with Enclosed UV-C Air Cleaners and In-Duct Disinfection 
 
Thus far, the relationships explored have been applied generally to an arbitrary volume and 

irradiance/flow fields. In practice, UV-C disinfection is applied across several modalities, including UR-
UVGI, where the unoccupied section of the room above occupants’ heads is irradiated, continuous 
disinfection approaches, where the occupied sections of the room are irradiated, as well as enclosed UV 
solutions, where a stream of air is passed through an enclosed irradiated volume. The relationships defined 
here can be applied to all these cases. The case of enclosed UV-C systems is particularly of interest because 
the nature of the solutions is such that they may be modeled in closed form separately from the expressions 
derived here with a high degree of confidence. In particular, the volume of an enclosed UV-C solution is 
generally much less than the total room size, and the fluid dynamics of the air stream within the irradiance 
field is turbulent in nature to the extent that it is reasonable to treat air flow uniformly. Under these 
assumptions, the expected impact of the intervention may be deterministically modeled and then compared 
to the expressions being presented here. 

Figure 9 shows a schematic diagram of an enclosed UV-C solution where air with a flow rate, Q, is 
passed through an enclosed volume, VC, subjected to a uniform irradiance, E. From the definition of GC, 
we may express it as irradiance multiplied by volume or optical power multiplied by average beam length. 
Also, we know that the dose applied to the air stream will be the residence time in the chamber multiplied 
by the irradiance. Equation (17) shows how this relationship may be used to predict the resulting 
inactivation of pathogens in the air stream. Multiplying this inactivation as a percentage times the flow rate 
represents the amount of fresh air delivered to the space, which is the DC, and if divided by the GC, the 
resulting value is the DE, as shown in Eq. (18). This is a convenient expression with which to consider the 
effect of an enclosed UV-C solution. It shows that the efficiency of an intervention is driven by the ratio of 
the volumetric flow rate to the GC. 
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Fig. 9. Schematics of an enclosed UV-C air cleaner. 

 

 𝑄𝑄𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑡𝑡 = 𝑄𝑄𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓 �1 − 𝑒𝑒
− 𝐷𝐷𝑉𝑉𝑍𝑍
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� = 𝑄𝑄𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓 �1 − 𝑒𝑒

− 𝐺𝐺𝐷𝐷
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� (17) 

 

 𝐷𝐷𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒𝑝𝑝𝑝𝑝 𝐸𝐸𝑜𝑜𝑜𝑜𝑝𝑝𝑂𝑂𝑝𝑝𝑒𝑒𝑡𝑡𝑂𝑂𝑝𝑝 =
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐺𝐺𝐷𝐷

�1 − 𝑒𝑒
− 𝐺𝐺𝐷𝐷
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� (18) 

 
We can then take the general-purpose form of DE as shown in Eq. (15) and evaluate it for the case of 

an enclosed UV setting where the characteristic time is the enclosed volume divided by flow rate, resulting 
in Eq. (19). While this expression in its closed form is different from Eq. (18), solving numerically shows 
that the expressions are equal for the range of interest. This correlation is an indication of the validity of the 
general-purpose delivery efficiency expression from a mathematical perspective.  

 

 𝐷𝐷𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒𝑝𝑝𝑝𝑝 𝐸𝐸𝑜𝑜𝑜𝑜𝑝𝑝𝑂𝑂𝑝𝑝𝑒𝑒𝑡𝑡𝑂𝑂𝑝𝑝 =  
−1×𝑄𝑄×𝑉𝑉𝑅𝑅𝑉𝑉𝐷𝐷

×ln (1−�1−𝑏𝑏
−𝐺𝐺𝐷𝐷𝑄𝑄 �𝑉𝑉𝐷𝐷𝑉𝑉𝑅𝑅

)

𝐺𝐺𝐷𝐷
 (19) 

 
In-duct disinfection systems are expected to behave similarly to air cleaners, with the difference that 

the air stream in a ducted system is potentially supplied to and exhausted from multiple spaces concurrently 
and mixed with some fraction of fresh air. Nevertheless, the efficiency expression should still hold when 
applied to the recirculated fraction, and the delivery efficiency of the GC is related to its proportion of 
volumetric flow rate. A filter may be present in both HVAC systems and air cleaners, which can also be 
quantified as a capacity. In that case, the sum of the germicidal capacity and filter capacity should be used 
in the expression.  

 
5.7 Correlation with Existing Experimental Data 

 
Any model for germicidal efficacy must be compared against real-world experimental results to 

validate its relevance. However, measuring quantitative germicidal efficacy is a difficult task because of the 
methods needed to quantify pathogen concentration with and without a UV-C intervention. Current best 
practices require culturing pathogens to evaluate the percentage that remain viable, which is an onerous 
measurement to carry out with many potential noise sources. However, there are three publicly available 
data sets in the published literature from studies in which this process was carried out across different 
parameters [7, 12, 13]. Two were carried out in a test chamber at the Harvard School of Public Health, and 
one was done in a chamber at the University of Colorado (UC) Boulder. Each one of these live-organism 
experiments was coupled with a corresponding effort to characterize pathogen susceptibility in uniform 
irradiance conditions [14–17]. Each effort varied the characteristics of the mixing and irradiance applied 
while tracking the resulting total inactivation. We took the documented characteristics of the trials and used 
them to evaluate the GC and general-purpose DE expressions and compare the predicted results to 
measured results. Numerical data from the comparisons discussed below are tabulated in Appendix A (Sec. 
8). 

𝑉𝑉𝑅𝑅 = room volume 

𝑉𝑉𝐷𝐷 ,𝐸𝐸 𝑄𝑄𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓 
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In First and Rudnick [7], both irradiance and vertical air speed were modulated and recorded, which 
make the results particularly useful for testing the model presented here. Figure 10 shows the calculated 
mixing coefficient required for the DE expression to match the measured results plotted against the 
measured mixing speed. Also shown is mixing coefficient calculated according to Eq. (16), where the 
scalar value, X, is 1/2. We see a good correlation between the experimental trend lines and the calculated 
mixing coefficients, which at the very least justifies further exploration of the relationships. Note that only 
the average irradiance value in a known upper-room volume fraction is available to calculate the spatial 
efficiency. It is expected that if the gradients of the irradiance field were accounted for, the spatial 
efficiency would be less, and the calculated mixing coefficients would be greater. A scalar value of X up to 
two would be intuitive, considering there is an equal amount of air moving up and down at once. To 
confidently test the relationships proposed here, the complete irradiance field should be considered, not just 
the average upper-room irradiance.  

 

 
 

Fig. 10. Measured vs. calculated mixing coefficient for data from First and Rudnick [7]. 
 
In Miller [12], irradiance and pathogen were the primary variables explored. Except for two 

configurations where no mixing conditions were induced, all experiments involved a baseline level of 
mixing. In three cases, there were greater than 100 % efficiencies measured, which requires further 
investigation. Figure 11 shows the calculated mixing coefficients across organisms and mixing conditions. 
In the no-fan configurations, a low mixing coefficient was calculated as expected. In the other cases, there 
were low mixing rates calculated even when mixing did not follow the model well. Perhaps, in these cases, 
there was another factor inhibiting inactivation or affecting measurement. For Mycobacterium bovis BCG 
(BCG), very high mixing coefficients were measured.  
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Fig. 11. Calculated mixing coefficients from Miller (2002) [12]. 

 
In the study by McDevitt et al. [13], all tests were carried out on Vaccinia virus that has a relatively 

high susceptibility of >2.5 m2/J, depending on relative humidity (RH), which is 10 to 100 times that of the 
organisms used in the other experiments. This results in very high comparative GCs. In the model 
presented here, this high susceptibility results in spatial efficiency curves that require a high Cmix to achieve 
even modest DEs. Figure 12 shows the mixing coefficients corresponding to the measured inactivation 
across summer and winter conditions. These values are significantly greater than those observed by First 
and Rudnick [7], even though they were carried out in the same chamber with presumably similar mixing 
velocities. On its face, this fact would suggest that there is some dependency on GC in the mixing 
coefficient relationship. When mixing conditions were directly modulated, the mixing coefficients varied as 
expected, as shown in Fig. 13. Susceptibility values correlating to 50 % RH in summer and 40 % RH in 
winter were used. 

 

 
Fig. 12. Calculated mixing coefficients from McDevitt et al. [13]. 

 

 
Fig. 13. Calculated mixing coefficients across mixing conditions from McDevitt et al. [13]. 
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5.8 Testing and Validating the Model 
 
Current CFD approaches that model inactivation of combined flow and irradiance fields have been 

validated against real-world results, which means they may be used as a first point of reference when 
evaluating the results of the model presented here. The benefit of a computer simulation is the ability to run 
many different configurations with a single model to test behavior across a range of variables, as opposed 
to a physical experiment, where the number of test configurations is more constrained 

However, empirical validation is also a critical step in the validation of the model presented. A series 
of experiments may be conceived to explicitly evaluate the expressions and relationships empirically by 
comparing the calculated results against measured results. Notably, this may be carried out in a small-scale 
chamber for the sake of convenience to explore many variations, and then at real-life scale for a smaller 
number of conditions to explore the impact of scale. Figure 14 shows a schematic diagram of a chamber 
that may be used to carry out these experiments and candidate variables to modulate. 

 

 
 

Fig. 14. Proposed experimental chamber and variables for exploring validity of expressions derived herein.  

 
6. Implications and Use 

 
Currently, there is not an established metric by which to design and compare UV-C disinfection 

systems for their efficacy, which contributes to market confusion. The capacity model here allows for 
germicidal engineering calculations to be carried out simply by a variety of stakeholders and persons using 
precalculated integrals and look-up tables. Just like fan flow rate is used to size HVAC and filtration 
solutions, DC may be used to find the correct size of a germicidal disinfection system for a given 
application with a small number of characteristic parameters. By contrast, current best practices in upper-
room UVGI engineering recommend an average upper-room irradiance value or a volume-based optical 
power scaling. None of these approaches captures the impact of spatial gradients in the irradiance field or 
allows for a simple modulation of pathogen or the resultant pathogen clearance rate, as is possible with a 
capacity model. While the empirical demonstration of germicidal efficacy in test chambers and real-world 
applications has been a critical step in demonstrating the effectiveness of UR-UVGI, the use cases for 
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which these benchmarks have been established are for critical care settings with relatively high target 
clearance rates, where cost pressures are different from broader commercial applications. In addition, they 
are generally targeted toward bacterial pathogens such as Mycobacterium tuberculosis, which have lower 
susceptibility values than the most ubiquitous viral threats, SARS-CoV-2 and influenza strains. From the 
spatial efficiency model, it may be appreciated that the OC density in an application relative to the 
pathogen susceptibility has a strong impact on the DE achieved. This understanding will allow for the 
sizing and deployment of germicidal systems capable of achieving impactful clearance rates with a high 
degree of DE at a minimized cost. Moreover, the spatial efficiency integral demonstrates how continuous 
disinfection approaches like far-UV, where a greater portion of the room is irradiated, may have a relative 
advantage, optical-watt to optical-watt, when compared to UR-UVGI systems, which would offset the 
relatively higher cost per watt. Similarly, it demonstrates how direct irradiation below exposure limit 
(DIBEL) technology [18] can achieve very high clearance rates at relatively low irradiance values. 

 
7. Conclusion 

 
The costs of airborne infectious disease transmission are far-reaching, and there is a clear and present 

need for improved air safety in shared indoor spaces. High-risk settings and particularly risk-sensitive 
entities have utilized high mechanical ventilation rates, high-efficiency particulate absorbing (HEPA) 
filtration, and UV-C disinfection for decades to combat transmission risk. There is an opportunity and need 
to implement these solutions at a large scale wherever people gather to make our societies more resilient to 
the pathogenic threats that are bound to occur. It is reasonable to imagine a future where a strategic 
capacity for efficient UV-C disinfection, ready to be utilized when risk is elevated, is a basic feature of the 
built environment, with additional capacity available for temporary deployment when risk is extremely 
high. For this future to occur, decision makers must be incentivized to make the investment in equipment, 
and the benefit and costs need to be quantified and justified. For reliable deployment and maintenance, an 
easy-to-use framework and language should be available and understandable for those designing, selling, 
installing, commissioning, maintaining, and buying the equipment. There also needs to be a strategic effort 
to capture the knowledge and insight of public health experts and scientists relative to risk dynamics and 
create robust bridges between that insight and its real-world application.  

The models and concepts presented here can help build the tools that will enable such a future, but first 
they must be refined and validated. A pathogen distribution integral expression can potentially be 
integrated to account for a variable pathogen concentration in space, and the mixing coefficient relationship 
needs to be explored further. Also, standardized methods to capture spatial data and evaluate integrals 
should be developed. 

 
8. Appendix A—Tabulated Experimental Data  

 
Tabulated data from First and Rudnick [7] is shown in Table 1, data from Miller [12] are shown in 

Table 2, and data from McDevitt et al. [13] are shown in Table 3. 
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Table 1. Tabulated data from First and Rudnick [7]. 
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Table 2. Tabulated data from Miller [12].  
 

 
Table 3. Tabulated data from McDevitt et al. [13]. 
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9. Appendix B—Optimizing Transmission Risk Reduction with Capacity 
 

9.1 Overview 
 
A form of the Wells-Riley equation is presented here that allows for the comparison of costs associated 

with disease transmission against the cost of solutions used to prevent such transmissions. Using first 
principles, an optimal pathogen clearance rate is calculated as a function of relevant variables associated 
with transmission risk. This approach provides insight for the sizing and operation of equipment and is 
applicable across air-cleaning modalities, including fresh-air dilution ventilation, filtration, and UV-C 
inactivation. The integration of such an approach into a broadly applicable control system is discussed. 

 
9.2 Introduction 

 
Ventilation in indoor spaces is needed to exchange CO2, remove pollution, and prevent aerosol 

transmission of communicable diseases. Optimally sizing a ventilation system to prevent transmission risk 
is challenging because of the variability of threat level and the distributed nature of the costs of 
transmission. It is clear that when an infectious person is present in a shared space, removal or inactivation 
of exhaled pathogens through ventilation may significantly reduce the likelihood that others in the space 
will become infected. However, many business owners do not feel like they have enough information about 
the threat faced and options available to confidently invest in ventilation. There is an opportunity to use 
scientific understanding of transmission dynamics and build a control framework that identifies the optimal 
operating point, maximizes return on investment for a business, and automates system function. Such a 
model relies on accurate information about disease dynamics and incidence, which is available from 
research and public health institutions. Here, we explore first-principles–based risk modeling expressions 
and utilize them to compare the cost of ventilation against the cost of transmission in a form that enables an 
optimal operating point to be identified for a system. We then use this insight to conceive of a protocol for 
managing the deployment and automation of such a system and discuss the required inputs needed for 
effective operation.   

 
9.3 Wells-Riley Equation 

 
The Wells-Riley equation is the foundational relationship used in airborne transmission risk modeling. 

Introduced in 1970s, it predicts the likelihood that a susceptible individual will become infected in a shared 
space based on the number of infectious individuals present (I), the rate of inhalation (p), the rate of 
pathogen clearance (Q), and a term called quanta generation rate (q), as shown in Eq. (20).  

 

 𝑃𝑃 =  𝑇𝑇
𝑛𝑛

= 1 −  𝑒𝑒
−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑄𝑄  (20) 

 
Quanta was introduced by Wells to represent a quantity of pathogen capable of resulting in an 

infection. It is not measured explicitly but rather calculated based on the outcome of a situation where 
transmissions and other factors are known. In this way, observed epidemiological trends may be used to 
develop metrics that predict the outcome of other situations [3]. The base form of the expression may be 
modified based on the specific application to account for different factors such as the use of masks and 
vaccination rates [19]. 

If we want to predict risk in a generalized setting, the infection status of room occupants is unknown, 
so we express the number of infectious individuals in a space as the number of people present multiplied by 
the infection rate of the general population, as shown in Eq. (21). The population infection rate may be 
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referenced to as specific of a population as is achievable. For instance, it is possible to track infection rate 
across specific geographical locations as well as within demographics.  

 
 𝐼𝐼 = 𝑡𝑡 ×  𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝 (21) 
 
In many applications of the Wells-Riley equation, the number of susceptible individuals is often 

considered to be the number of occupants minus the number of infectors. Because we expect the number of 
infectors to be much less than 1, given typical community infection rates, and for the sake of simplification 
of the expression, we do not incorporate this approach and instead consider the number of susceptible 
individuals to be the total number of room occupants. 

Quanta generation rate may be inferred for a specific disease and activity (e.g., talking, singing, etc.) 
by analyzing epidemiological data sets [20]. Additionally, the variable infectiousness of a given dose to an 
individual or population based on immunity and health factors may be modeled. This is done by including a 
susceptibility term in the units of infections per quantum [19]. Immunity from vaccination or previous 
infection may result in a lower susceptibility value, whereas comorbidities and other factors may result in 
an increased susceptibility. All these factors may be averaged over a population. The impact of mask usage 
by infectors may also be accounted for by inclusion of a mask factor, as expressed in Eq. (22). This 
represents the ability of masks to prevent some portion of the quanta generated by the individual from 
being introduced into the room, and the quanta generation rate is then considered to be that for the 
unmasked case. 

 
 𝑞𝑞 =  𝑞𝑞no−mask  ×  (1 − 𝜂𝜂mask)  ×  𝑆𝑆pop  (22) 
 
The pulmonary inhalation rate, p, used in Eq. (1) represents the amount of (potentially infectious) air 

that a susceptible individual inhales. We expect the use of a mask by susceptible individuals to reduce the 
number of pathogens that are inhaled, so the expression is modified to account for the impact of wearing a 
mask as shown in Eq. (23). 

 
 𝑝𝑝 =  𝑝𝑝no−mask  ×  (1 − 𝜂𝜂mask) (23) 
 
Combining Eqs. (20–23) above, we get Eq. (24) as a predictor of risk. We may call the exponent in the 

expression the “risk exponent” and may further define the “risk coefficient (Crisk)” as all the variables 
except for time, t, clearance rate, Q, and number of people, n, as shown in Eq. (25), which combines with 
Eq. (24) to get Eq. (26). 

 

 𝑃𝑃 =  𝑇𝑇
𝑛𝑛

= 1 −  𝑒𝑒
𝑖𝑖pop × 𝑆𝑆pop × 𝐼𝐼no−mask × 𝐼𝐼no−mask × �1−𝜂𝜂mask�

2
× 𝑛𝑛 × 𝐼𝐼

𝑄𝑄  (24) 
 
 𝐶𝐶risk =  𝑝𝑝pop  ×  𝑆𝑆pop  ×  𝑞𝑞no−mask  ×  𝑝𝑝no−mask  ×  (1 − 𝜂𝜂mask)2 (25) 
 

 𝑃𝑃 =  𝑇𝑇
𝑛𝑛

= 1 −  𝑒𝑒
𝐷𝐷risk × 𝑛𝑛 × 𝐼𝐼

𝑄𝑄  (26) 
 

9.4 Simplification of Risk Expression 
 
For small values, it is possible to simplify the exponential form of Eq. (26). Figure 15 shows that for 

values of P < 10 %, there is a strong correlation between the exponential form (y = 1 − exp[−x]) and the 
simplified form (y = x), while Fig. 16 shows the two forms diverging more greatly at increased risk values. 
At P = 10 %, there is only a 5 % difference between the two, with better correlation at smaller values. 
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Because the risk of transmission is likely to be much less than 10 % in most settings, we may use this 
simplification to express Eq. (26) as Eq. (27), which is much more convenient. 

 

 
 

Fig. 15. Comparison of exponential and simplified forms of risk expression showing good correlation up to 10 %. 
 

 
 

Fig. 16. Comparison of exponential and simplified forms of risk expression showing significant divergence at higher risk values. 

 
 𝑃𝑃 =  𝑇𝑇

𝑛𝑛
=  𝐷𝐷risk × 𝑛𝑛 × 𝑡𝑡

𝑄𝑄
 (27) 

 
9.5 Variation of Risk Relative to Q 

 
We may now use Eq. (27) to explore the effect of different clearance rates on resulting risk. Figure 17 

shows a plot of risk relative to clearance rate, where the numerator in Eq. (27), (Crisk × n × t), is equal to 
one. It shows that the slope of the curve changes significantly across clearance rate. At small values, a 
small increase in clearance rate results in a large decrease in risk, but at higher values, a large increase in 
clearance only results in a small decrease in risk. This demonstrates that each operating clearance rate is 
tied to an incremental risk reduction achievable with added clearance.  
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Fig. 17. Variation of risk expression across Q values for a numerator value of 1; see Eq. (27). 
 
Figure 18 shows the risk curves corresponding to different numerator values in Eq. (27), which may be 

considered as the net risk profile of a setting due to the number of people, length of exposure, and 
parameters captured in Crisk. The characteristic slopes of the curves are different at a single clearance rate, 
meaning that the incremental value in terms of risk reduction depends on both the clearance rate and the 
numerator, (Crisk × n × t).  

 

 
 

Fig. 18. Variation of risk expression across Q values for a range of numerator values; see Eq. (8). 
 

9.6 Cost Modeling  
 
Figure 18 showed that there are diminishing returns for added clearance rate in each situation. An 

optimized risk mitigation strategy will attempt to maximize the reduction in risk achieved for an 
expenditure of resources, and to do that, we must relate the cost of risk and resources in equivalent units. It 
is convenient to use monetary value for this comparison. Equation (28) shows that the total cost of 
transmission over some time, t, may be expressed as the number of transmissions, T, multiplied by a 
characteristic cost (ctrans) in the units of dollars per transmission. This could be the value of lost productivity 
to an employer from a sick employee, and it could also reflect the cost of healthcare associated with 
treating the disease, the impact to quality of life for the sick individual, or the costs of future transmission 
events from the newly infected occupant. Clearly, different stakeholders will have different sensitivities and 
internal cost profiles that may be uniquely captured with this variable. 
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 𝐶𝐶trans = 𝑇𝑇 × 𝑐𝑐trans
𝑡𝑡

 (28) 
 

The cost of added clearance rate may also be modeled. A variety of interventions may be used to clear 
pathogens from a space, including fresh-air dilution ventilation, filtration, and germicidal inactivation [21]. 
The effect of each of these may be quantified in consistent units of clean-air volume per unit time, and the 
operating cost rate of each may be evaluated on a per-unit-flow-rate basis. Each intervention has a fixed 
cost rate, Cfixed, representing the purchase price of equipment plus the cost of installation, commissioning, 
and scheduled maintenance amortized over the operational life of the system. Cfixed is a multiple of the 
specific per-unit-flow-rate fixed cost rate, cfixed, and the installed capacity, Qcap, as shown in Eq. (29). 
Notably, these costs are independent of the relative utilization of the equipment.  

 
 𝐶𝐶fixed =  𝑂𝑂fixed  ×  𝑄𝑄cap (29) 
 

Each intervention also has variable costs, Cvar, tied to the cost of consumables (e.g., filters, lamps), 
unplanned maintenance, personnel operational costs, as well as energy usage. These costs are the multiple 
of the utilized clearance rate, Qused, and the specific variable cost rate, cvar, as shown in Eq. (30). 

 
 𝐶𝐶var =  𝑂𝑂var  ×  𝑄𝑄used (30) 
 

Equation (31) shows the total cost of an intervention per unit time, which depends on the capacity available 
as well as the utilization. 

 
 𝐶𝐶tot =  𝐶𝐶fixed + 𝐶𝐶var =  𝑂𝑂fixed  ×  𝑄𝑄𝑐𝑐𝑏𝑏𝑝𝑝 + 𝑂𝑂var  ×  𝑄𝑄used (31) 
 

9.7 Optimization 
 
With the costs of transmission and clearance rate defined, we may now take Eq. (27) and derive the 

number of expected transmissions as a function of clearance rate as shown in Eq. (32), which may be 
combined with Eq. (28) to result in the total monetary cost rate of transmissions as shown in Eq. (33). 

 

 𝑇𝑇 =  𝐷𝐷risk × 𝑛𝑛2 × 𝑡𝑡
𝑄𝑄

 (32) 
 

 𝐶𝐶trans = 𝐷𝐷risk × 𝑐𝑐trans × 𝑛𝑛2

𝑄𝑄used
 (33) 

 
We may now use our cost expressions to find the operating clearance rate at which the cost savings 

achieved by reducing transmission with added clearance rate are equal to the costs associated with that 
added clearance rate. In effect, this represents the break-even point of an intervention. To do this, we equate 
the absolute value of the first derivatives of Eq. (31) and Eq. (33) relative to clearance rate as shown in Eq. 
(34), Eq. (35), and Eq. (36). We may then solve for Qused, resulting in Eq. (37). This represents the break-
even operating clearance rate.  

 
 

𝑑𝑑
𝑑𝑑𝑄𝑄used

(𝐶𝐶trans) = −𝑑𝑑
𝑑𝑑𝑄𝑄used

(𝐶𝐶tot) (34) 
 

 𝑑𝑑
𝑑𝑑𝑄𝑄used

�𝐷𝐷risk × 𝑐𝑐trans × 𝑛𝑛2

𝑄𝑄used
� = −𝑑𝑑

𝑑𝑑𝑄𝑄used
�𝑂𝑂fixed  ×  𝑄𝑄cap +  𝑂𝑂var  ×  𝑄𝑄used� (35)  
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 −𝐷𝐷risk × 𝑐𝑐trans × 𝑛𝑛2

𝑄𝑄used2
=  − 𝑂𝑂var (36) 

 

 𝑄𝑄optimum = 𝑡𝑡 ×  �𝐷𝐷risk × 𝑐𝑐trans
𝑐𝑐var

 (37) 
 

9.8 Selecting Installed Capacity 
 
Note that the cost model presented in Eq. (31) considers both the installed and utilized capacity, while 

the operating point found in Eq. (37) only establishes an optimum for utilized capacity in response to 
variable costs. There are several approaches that may be used to find the appropriate optimized installed 
capacity. One approach would be to take a reference “worst-case” set of risk conditions (Crisk, n) and set the 
installed capacity to match the optimum utilized capacity in this case, where the fixed costs are blended 
with the variable costs. However, depending on how often worst-case conditions are present, this could 
lead to an inefficient expenditure of resources. Understanding the expected temporal variation of Crisk and n 
would allow for use of an averaging approach to find the optimal reference conditions on which to establish 
Qcapacity.  

The nature of epidemiological trends is that infection rates in a community may vary from season to 
season and year to year for endemic diseases like influenza or may have noncyclical spikes for novel 
pathogens like SARS-CoV-2 variants. In addition, local outbreaks of previously eradicated disease may 
occur [22]. It is often less compelling for a business to invest in protection against a risk that may arise in 
the future. As such, there may be benefit to temporary capacity that can be installed or accessed quickly 
when increased community infection rates occur in a specific geographic area or location. This temporary 
capacity may be shared strategically across a large geographic area, thereby spreading the upfront costs for 
the equipment across several entities.  

 
9.9 Implementation in a Control System 

 
Equation (37) is a powerful insight that provides effective guidance for a challenge that is often 

difficult to navigate (i.e., determining the ventilation rate at which to operate). It allows for a system that 
dynamically changes and adapts to evolving facts on the ground. If captured as inputs, changes in room 
occupancy, community infection rate, and other dynamics can be leveraged to figure out the optimal 
operating point in real-time and deploy a control system in response. Quanta generation rates, q, are known 
to be particularly variable between pathogens and across situations, and this has historically been a 
challenge in establishing guidelines [23]. However, there are established workflows to capture these values, 
and public health experts are continuously gathering and analyzing data to that end [24]. Similarly, 
infection rate tracking and modeling can be carried out with a high degree of location specificity [25, 26, 
27]. A control system is proposed where epidemiological factors are actively obtained from public health 
agencies and researchers in a controlled, contextual, and collaborative manner. The inputs may be provided 
across a range of parameters, and then the system selects the most appropriate input based on some 
knowledge of the situations. For instance, quanta generation rates can be provided for a variety of baseline 
activities and populations, and the system may select the most appropriate value based on an understanding 
of the specific situation to which it is being applied. 

Situational risk parameters like occupancy, mask usage, and activity may be input from multiple 
sources. The most straightforward method is manual input, both during commissioning and during ongoing 
operation. Current digital tools and internet of things (IoT) make this feasible with a relatively simple user 
experience, but any manual process is reliant on continued compliance, and it is desirable to automate as 
much of the information gathering as possible. Automation could address compliance issues and compile 
large data sets, which could be leveraged with machine-learning methods to build insight and accuracy. 
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Existing building management systems (BMS) can track occupancy through a building with a variety of 
methods. Any one of these approaches could be used to understand room occupancy, either through a BMS 
or as a stand-alone capability. Also, CO2 concentration above background is regularly used to monitor air-
quality conditions and often to guide HVAC operation in demand-controlled ventilation applications. 
Rudnick and Milton (2003) [28] showed that environmental CO2 concentration over background may also 
be used as an indicator of transmission risk, because it is a composite measurement of source strength 
(occupancy) and clearance (ventilation), although it does not capture the impact of filtration or UV-C 
inactivation, making it an imperfect stand-alone value. However, if combined with explicit knowledge of 
occupancy or fresh-air ventilation, CO2 concentration may be used to deterministically infer the other 
value. It is a relatively simple proposition to gain knowledge of fresh-air ventilation rate by characterizing a 
space and then monitoring the HVAC system power state through a BMS. Coupled with room CO2 
concentration, this knowledge allows for control of the clearance rate with a high degree of confidence. 

Knowing the most appropriate clearance rate at which to operate for a given situation is only part of a 
complete solution. The clearance capacity must be available, and the means to modulate said capacity is 
also required. Pathogen clearance capacity may come from a range of equipment. As demonstrated in the 
main text, filtration and UV-C inactivation both may be quantified and sized in terms of the equivalent 
clean air provided. It has been shown that both filtration and UV-C inactivation, and particularly UV-C 
inactivation, offer significantly lower fixed and variable costs than HVAC capacity [4], suggesting that 
they are more appropriate interventions as compared to upgrading central HVAC beyond current levels. 
Modulation of the power state of said interventions once they are in place is a relatively simple task. 
Current IoT options to accomplish this are readily available, and there are many building-control interfaces 
currently in operation as precedence for implementation and administration of such intelligent systems. 

The resulting historical data that will be generated by such a monitoring and control system have value 
from a reporting standpoint as well as potential for use in epidemiological analyses.  

 
9.10 Incentives and Externalities 

 
One of the challenges in achieving market adoption of ventilation solutions that have an overall 

compelling value for their cost is that the entity responsible for facilities and infrastructure is just one of 
many stakeholders impacted and may not be exposed to all the costs of a transmission event. In addition, if 
said entity is not subject to incentives relative to their own utility, it is not rational for them to undertake the 
deployment of such a system. This macroeconomic situation results in an outcome where every player acts 
rationally, but the outcome is still suboptimal. Conceptually, this is a situation where regulations or 
subsidies may be used to shift the value of the greater good onto the decision-making entity. The system 
presented here provides a unique opportunity to calculate and administer such a shift through the ctrans 
metric and tracking of the risk characteristics. 

Additionally, medical insurance premiums are another item that may be used to incentivize behavior 
because it is in an insurance provider’s best interest to minimize the number of transmissions because of the 
cost of care. It is conceivable that a provider would entertain lower rates for a workplace that can tangibly 
show a reduction in number of transmissions through optimized capacity implementation. 

 
9.11 Glossary of Variables and List of Equations 

 
𝑺𝑺𝒔𝒔𝒏𝒏𝒏𝒏𝒐𝒐𝒊𝒊 𝑽𝑽𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒏𝒏𝒊𝒊𝒏𝒏 𝑼𝑼𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊 

𝑃𝑃 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑡𝑡𝑜𝑜𝑒𝑒𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑡𝑡 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 (%) 
𝑇𝑇 𝑡𝑡𝑆𝑆𝑡𝑡𝑝𝑝𝑒𝑒𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 𝑝𝑝𝑡𝑡 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 (#) 
𝑡𝑡 𝑡𝑡𝑆𝑆𝑡𝑡𝑝𝑝𝑒𝑒𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑂𝑂𝑂𝑂𝑆𝑆𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡 𝑝𝑝𝑡𝑡 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 (#) 
𝐼𝐼 𝑡𝑡𝑆𝑆𝑡𝑡𝑝𝑝𝑒𝑒𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑡𝑡𝑜𝑜𝑒𝑒𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑡𝑡 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 (#) 
𝑝𝑝 𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑂𝑂𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒 𝑝𝑝𝑒𝑒𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 (𝑡𝑡3 𝑡𝑡⁄ ) 
𝑞𝑞 𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑂𝑂𝑝𝑝𝑝𝑝𝑑𝑑𝑒𝑒 𝑞𝑞𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝 𝑔𝑔𝑒𝑒𝑡𝑡𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 (# 𝑡𝑡⁄ ) 
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𝑝𝑝 𝑝𝑝𝑝𝑝𝑡𝑡𝑒𝑒 (𝑡𝑡) 
𝑄𝑄 𝑑𝑑𝑝𝑝𝑝𝑝𝑆𝑆𝑡𝑡𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂 𝑜𝑜𝑝𝑝𝑝𝑝𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 (𝑡𝑡3 𝑡𝑡⁄ ) 
𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝 𝑝𝑝𝑡𝑡𝑜𝑜𝑒𝑒𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑝𝑝𝑡𝑡 𝑝𝑝ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 (%) 

𝑞𝑞𝑛𝑛𝑓𝑓−𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚 𝑡𝑡𝑝𝑝 −𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚 𝑞𝑞𝑆𝑆𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝 𝑔𝑔𝑒𝑒𝑡𝑡𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 (# 𝑡𝑡⁄ ) 
𝜂𝜂𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚 𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚 𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑒𝑒𝑜𝑜𝑜𝑜𝑝𝑝𝑂𝑂𝑝𝑝𝑒𝑒𝑡𝑡𝑂𝑂𝑝𝑝 (%) 
𝑆𝑆𝑝𝑝𝑓𝑓𝑝𝑝 𝑡𝑡𝑆𝑆𝑡𝑡𝑂𝑂𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝 𝑝𝑝𝑡𝑡𝑜𝑜𝑒𝑒𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡  (# #⁄ ) 

𝑝𝑝𝑛𝑛𝑓𝑓−𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚 𝑡𝑡𝑝𝑝 −𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚 𝑝𝑝𝑒𝑒𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 (𝑡𝑡3 𝑡𝑡⁄ ) 
𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚 𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚 𝑂𝑂𝑝𝑝𝑒𝑒𝑜𝑜𝑜𝑜𝑝𝑝𝑂𝑂𝑝𝑝𝑒𝑒𝑡𝑡𝑝𝑝 (𝑡𝑡3 𝑡𝑡2⁄ ) 
𝐶𝐶𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡 𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 ($ 𝑡𝑡⁄ ) 
𝑂𝑂𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠 𝑡𝑡𝑝𝑝𝑒𝑒𝑂𝑂𝑝𝑝𝑜𝑜𝑝𝑝𝑂𝑂 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡 𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝 ($ #⁄ ) 
𝐶𝐶𝑓𝑓𝑒𝑒𝑥𝑥𝑏𝑏𝑑𝑑  𝑜𝑜𝑝𝑝𝑥𝑥𝑒𝑒𝑑𝑑 𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 ($ 𝑡𝑡⁄ ) 
𝑂𝑂𝑓𝑓𝑒𝑒𝑥𝑥𝑏𝑏𝑑𝑑  𝑡𝑡𝑝𝑝𝑒𝑒𝑂𝑂𝑝𝑝𝑜𝑜𝑝𝑝𝑂𝑂 𝑜𝑜𝑝𝑝𝑥𝑥𝑒𝑒𝑑𝑑 𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 ($ 𝑡𝑡3⁄ ) 
𝑄𝑄𝑐𝑐𝑏𝑏𝑝𝑝 𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑜𝑜𝑝𝑝𝑝𝑝𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡3 𝑡𝑡⁄ ) 
𝐶𝐶𝑑𝑑𝑏𝑏𝑟𝑟  𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 ($ 𝑡𝑡⁄ ) 
𝑂𝑂𝑑𝑑𝑏𝑏𝑟𝑟 𝑡𝑡𝑝𝑝𝑒𝑒𝑂𝑂𝑝𝑝𝑜𝑜𝑝𝑝𝑂𝑂 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 ($ 𝑡𝑡3⁄ ) 
𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑 𝑜𝑜𝑝𝑝𝑝𝑝𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑆𝑆𝑡𝑡𝑒𝑒𝑑𝑑 (𝑡𝑡3 𝑡𝑡⁄ ) 
𝐶𝐶𝑡𝑡𝑓𝑓𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 ($ 𝑡𝑡⁄ ) 
𝑄𝑄𝑓𝑓𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑔𝑔 𝑜𝑜𝑝𝑝𝑝𝑝𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 (𝑡𝑡3 𝑡𝑡⁄ ) 

 
𝒏𝒏𝒐𝒐. 𝑬𝑬𝒒𝒒𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒐𝒐𝒏𝒏 
20 𝑃𝑃 =  

𝑇𝑇
𝑡𝑡

= 1 −  𝑒𝑒
−𝐼𝐼𝑒𝑒𝑝𝑝𝑡𝑡
𝑄𝑄  

21 𝐼𝐼 = 𝑡𝑡 ×  𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝 
22 𝑞𝑞 =  𝑞𝑞𝑛𝑛𝑓𝑓−𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚  ×  (1 − 𝜂𝜂𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚)  ×  𝑆𝑆𝑝𝑝𝑓𝑓𝑝𝑝 
23 𝑝𝑝 =  𝑝𝑝𝑛𝑛𝑓𝑓−𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚  ×  (1 − 𝜂𝜂𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚) 
24 

𝑃𝑃 =  
𝑇𝑇
𝑡𝑡

= 1 −  𝑒𝑒
𝑒𝑒𝐼𝐼𝑓𝑓𝐼𝐼 × 𝑆𝑆𝐼𝐼𝑓𝑓𝐼𝐼 × 𝑒𝑒𝑛𝑛𝑓𝑓−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑝𝑝𝑛𝑛𝑓𝑓−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1−𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 × 𝑛𝑛 × 𝑡𝑡

𝑄𝑄  

25 𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚 =  𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝  ×  𝑆𝑆𝑝𝑝𝑓𝑓𝑝𝑝  ×  𝑞𝑞𝑛𝑛𝑓𝑓−𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚  ×  𝑝𝑝𝑛𝑛𝑓𝑓−𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚  ×  (1 − 𝜂𝜂𝑚𝑚𝑏𝑏𝑠𝑠𝑚𝑚)2 
26 𝑃𝑃 =  

𝑇𝑇
𝑡𝑡

= 1 −  𝑒𝑒
𝐷𝐷𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚 × 𝑛𝑛 × 𝑡𝑡

𝑄𝑄  

27 𝑃𝑃 =  
𝑇𝑇
𝑡𝑡

=  
𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚  ×  𝑡𝑡 ×  𝑝𝑝

𝑄𝑄
 

28 𝐶𝐶𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠 =
𝑇𝑇 ×  𝑂𝑂𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠

𝑝𝑝
 

29 𝐶𝐶𝑓𝑓𝑒𝑒𝑥𝑥𝑏𝑏𝑑𝑑 =  𝑂𝑂𝑓𝑓𝑒𝑒𝑥𝑥𝑏𝑏𝑑𝑑  ×  𝑄𝑄𝑐𝑐𝑏𝑏𝑝𝑝 
30 𝐶𝐶𝑑𝑑𝑏𝑏𝑟𝑟 =  𝑂𝑂𝑑𝑑𝑏𝑏𝑟𝑟  ×  𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑 
31 𝐶𝐶𝑡𝑡𝑓𝑓𝑡𝑡 =  𝐶𝐶𝑓𝑓𝑒𝑒𝑥𝑥𝑏𝑏𝑑𝑑 +  𝐶𝐶𝑑𝑑𝑏𝑏𝑟𝑟 =  𝑂𝑂𝑓𝑓𝑒𝑒𝑥𝑥𝑏𝑏𝑑𝑑  ×  𝑄𝑄𝑐𝑐𝑏𝑏𝑝𝑝 +  𝑂𝑂𝑑𝑑𝑏𝑏𝑟𝑟  ×  𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑 
32 

𝑇𝑇 =  
𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚  ×  𝑡𝑡2  ×  𝑝𝑝

𝑄𝑄
 

33 
𝐶𝐶𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠 =

𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚  ×  𝑂𝑂𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠  ×  𝑡𝑡2

𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑
 

34 𝑑𝑑
𝑑𝑑𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑

(𝐶𝐶𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠) =
−𝑑𝑑

𝑑𝑑𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑
(𝐶𝐶𝑡𝑡𝑓𝑓𝑡𝑡) 

35 𝑑𝑑
𝑑𝑑𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑

�
𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚  ×  𝑂𝑂𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠  ×  𝑡𝑡2

𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑
� =

−𝑑𝑑
𝑑𝑑𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑

�𝑂𝑂𝑓𝑓𝑒𝑒𝑥𝑥𝑏𝑏𝑑𝑑  ×  𝑄𝑄𝑐𝑐𝑏𝑏𝑝𝑝 + 𝑂𝑂𝑑𝑑𝑏𝑏𝑟𝑟  ×  𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑� 

36 −𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚  ×  𝑂𝑂𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠  ×  𝑡𝑡2

𝑄𝑄𝑒𝑒𝑠𝑠𝑏𝑏𝑑𝑑2
=  − 𝑂𝑂𝑑𝑑𝑏𝑏𝑟𝑟 

37 
𝑄𝑄𝑓𝑓𝑝𝑝𝑡𝑡𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚 = 𝑡𝑡 ×  �

𝐶𝐶𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚  ×  𝑂𝑂𝑡𝑡𝑟𝑟𝑏𝑏𝑛𝑛𝑠𝑠
𝑂𝑂𝑑𝑑𝑏𝑏𝑟𝑟
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