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1. Introduction

Zeolites are porous aluminosilicate minerals that have various industrial applications, such as catalysis, ion
exchange, and adsorption [1]. Given the many industrial applications of zeolites, the development of readily 
available zeolite standards for research intercomparison has received great interest. With support from the National 
Science Foundation, a 1995 workshop on the need for reference materials in the zeolite community at the California 
Institute of Technology recommended that the National Institute of Standards and Technology (NIST) develop such 
standards [2]. NIST undertook work to develop reference materials for three common zeolites, zeolite Y, zeolite A, 
and ZSM-5 zeolite, which were produced for industrial applications and were donated to NIST. These NIST zeolitic 
reference materials (RMs), designated as RM 8850 (zeolite Y), RM 8851 (zeolite A), and RM 8852 (ammonium 
ZSM-5 zeolite) [3-5], are available from NIST at https://www.nist.gov/srm. They are well characterized, with 
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reference values for chemical composition (major components, trace elements, and elemental ratios), loss on ignition 
(LOI), and loss on fusion (LOF), and informational values for enthalpies of formation, particle size distributions, 
refractive indices, unit cell parameters, and mass variation with change in relative humidity [2]. For the Report of 
Investigation, all physicochemical characterization was performed at a near-constant relative humidity (RH) of (54 ± 
2) %. 

RM 8850, or zeolite Y, is a faujasite (FAU) with molecular formula Na54.0[Al54.1Si137.9O384]⋅245.1H2O [2].1 
Zeolite Y was introduced as an acidic zeolitic catalyst for the cracking of hydrocarbons in the 1960s [6]. Its structure 
is shown in Fig. 1(a). It has a three-dimensional (3D) pore structure in which the pores run in mutually orthogonal 
directions. The typical pore diameter is defined by an ≈0.8 nm twelve-member oxygen ring that leads into a cavity 
≈1.2 nm in diameter. The cavity is surrounded by 10 sodalite cages connected on their hexagonal faces in a 
tetrahedral 3D structure in which every sodalite cage has four uniformly distributed nearest neighbors as binding 
partners [6-8]. 

RM 8851, or zeolite A, is a sodium Linde type A (LTA) zeolite with molecular formula of 
Na97.3[Al96.2Si95.5O384]⋅209.4H2O [2]. Zeolite A is the first commercialized synthetic zeolite [9], and it is used widely 
as a water softener in laundry detergents [10]. The structure of zeolite A is shown in Fig. 1(b); it consists of sodalite 
cages that are connected by bonds between their four-membered rings to form a 3D network with ≈1.14 nm diameter 
supercages interconnected by ≈0.41 nm eight-ring openings [11].  

RM 8852, or ammonium ZSM-5 (Zeolite Socony Mobil-5), is a Mobil-5 (MFI) zeolite, and it has the molecular 
formula of (NH4)3.27[Al3.27Si92.73O192]⋅26.7H2O [2]. It is used in catalytic cracking processes. The structure of ZSM-5 
is shown in Fig. 1(c). The zeolite consists of chains of eight five-member ring (pentasil) subunits linked to form 
sheets, which form a 3D framework. The resulting framework has two perpendicular channel systems, with one 
running straight and the other progressing in a sinusoidal fashion [12]. 

 

 
Fig. 1. Structures of (a) zeolite Y (RM 8850), (b) zeolite A (RM 8851), and (c) ZSM-5 (RM 8852). Black = silicon or aluminum; green = 
aluminum; white/clear = oxygen. 

 
Recently, two of the NIST zeolitic reference materials were used in NIST-led international interlaboratory 

studies (ILSs) to address the issue of irreproducibility in adsorption isotherm measurements at high pressures. One 
study looked at carbon dioxide (CO2) adsorption on ammonium ZSM-5 (RM 8852) at 20 °C, and the other looked at 
methane (CH4) adsorption on zeolite Y (RM 8850) at 25 °C [13, 14]. As reference materials, the NIST zeolitic RMs 
are well characterized and homogenized, making them excellent materials for the interlaboratory studies by 
eliminating differences in isotherms that could arise from using a material with heterogeneity in chemical or 
physical properties. This allowed procedural and measurement-focused recommendations to be made [13], and it 
played a vital part in the resulting high-pressure reference isotherm data from the studies [13, 14]. These studies 
demonstrated that reproducible isotherms could be obtained with careful sample handling and activation, 
measurement, and data analysis, and that reference data with small uncertainties could be extracted. These reference 
adsorption data—available in open-access research articles, at the NIST adsorption database, and as an appendix 

 
1 Turner et al. [2] determined the formulas for the zeolites from the reference values of the mass fraction percentages 
for the major components (Na, Si, Al) and LOI and LOF values.  

https://doi.org/10.6028/jres.126.047
https://doi.org/10.6028/jres.126.047


 Volume 126, Article No. 126047 (2021) https://doi.org/10.6028/jres.126.047   

 Journal of Research of the National Institute of Standards and Technology 
 
 

 3 https://doi.org/10.6028/jres.126.047   

added to the Report of Investigation of the reference zeolites—should prove useful to evaluate the performance of 
instruments and the measurement practices of laboratories.  

While the reference zeolites have been extensively characterized for chemical composition, the complementary 
structure and pore characterization of the reference zeolites have not been investigated and reported. In this study, 
additional types of characterization of these materials were carried out, and the results are reported. The powder X-
ray diffraction patterns (PXRD), the argon isotherms at 87 K, the Brunauer–Emmett–Teller (BET) surface areas, the 
pore size distributions, the pore volume characterizations, the skeletal densities, and the thermal gravimetric 
analyses of RM 8850, RM 8851, and RM 8852 are provided here. These characterization methods represent those 
commonly available and utilized in the materials and adsorption communities. They may also further insights into 
the structure-property relationships of the materials, and they may aid in the development of computational methods 
looking at adsorption or other measurements [15, 16].  

 
2. Experimental Methods and Materials 

 
2.1 Materials 

 
The NIST Office of Reference Materials provided the RM 8850, RM 8851, and RM 8852. All samples were 

used as received without further modifications. Argon (99.999 %), helium (99.999 %), nitrogen (99.999 %), and air 
were purchased from commercial sources.  

 
2.2 Powder X-Ray Diffraction 

 
The PXRD patterns of RM 8850, RM 8851, and RM 8852 were collected on a Bruker D8 Discover X-ray 

diffractometer (Bruker, Billerica, MA)2 equipped with an EIGER2R 500K detector and a Cu Kα radiation X-ray 
source. The sample powder was packed into the sample holder. The X-ray diffraction pattern scans were collected in 
the Bragg-Brentano geometry to cover the range of 5° to 50° 2θ in increments of 0.05°. The peaks were integrated, 
and the diffraction pattern background was subtracted using Bruker DIFFRAC.EVA software (version 5.0).  

 
2.3 Ex Situ Sample Activation 

 
For measurements made in the helium pycnometer, samples were outgassed ex situ in a tube furnace attached to 

a pumping station that was equipped with a turbomolecular pump (vacuum level of 10–7 Pa) backed by a scroll pump 
(vacuum level of 1 Pa). The following activation protocol was used: under high vacuum (0.1 Pa), the temperature 
was ramped up from room temperature to 350 °C at a rate of 1 °C/min, held at 350 °C for 12 h, and then cooled (≈7 
h) to room temperature to a final vacuum level of 10–5 Pa. 

After activation, the sample was transferred under air- and moisture-free conditions from the sealed activator 
tube to an argon glovebox for storage until pycnometry measurements were performed. The mass loss after 
activation was (6 ± 1) % mass for RM 8852, (25 ± 1) % mass for RM 8850, and (21 ± 1) % mass for RM 8851.  

 
2.4 Helium Pycnometer 

 
Skeletal densities were measured using helium as the probe gas in an AccuPyc II 1340 pycnometer 

(Micromeritics, Norcross, GA). For the pycnometry measurements, the activated sample inside the glovebox was 
loaded full in one of the pycnometer sample holders. The sample holder was then capped with a fritted cap and 

 
2 Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment 
identified are necessarily the best available for the purpose. 
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quickly transferred (≈5 s) to the pycnometer sample chamber to avoid uptake of moisture and other atmospheric 
contaminants. Each measurement was made by dosing the sample chamber with helium to ≈134 kPa, which was 
then allowed to expand into the reference chamber. A sensor determined the pressure to within ± 0.1 % uncertainty 
over the pressure range of vacuum to 207 kPa. The sample volume was determined from the change in pressure and 
the known volumes of the reference and sample chambers. With the sample volume and sample mass, the skeletal 
density of the sample could be calculated. The skeletal density of the zeolite presented here is the average value of at 
least three aliquots. Each measurement collected data points from 50 cycles. The skeletal density of each aliquot was 
calculated as the average of the last 40 measurement cycles for RM 8852 and the last 30 cycles for RM 8850 and 
RM 8851, as the equilibrium value was typically reached after 10 to 20 cycles [17]. The expanded uncertainty, Uk=2, 
was taken to be two standard deviations in the skeletal density measurements. The skeletal density of RM 8850 was 
found to be (2.523 ± 0.014) g/cm3, that of RM 8851 was found to be (2.257 ± 0.018) g/cm3, and that of RM 8852 
was found to be (2.355 ± 0.013) g/cm3. The skeletal density value for RM 8852 of (2.349 ± 0.004) g/cm3 was 
previously reported from measurements made at various sample fill volumes [17].  

 
2.5 Argon Isotherms 

 
The argon (Ar) adsorption/desorption isotherms up to a pressure of 100 kPa at 87 K were measured in a low-

pressure manometric instrument (Autosorb iQ MP, Quantachrome Instruments, Boynton Beach, FL, now a 
subsidiary of Anton Paar). The temperature was controlled using a liquid argon bath. The sample (approximately 30 
mg to 100 mg) was placed inside a 6 mm diameter sample holder that was then loaded with a filler rod to minimize 
the dead volume. Before each isotherm measurement, the sample was activated on the activation port of the 
instrument.  

The activation procedure was performed under vacuum, ramping from room temperature to 80 °C at a rate of 1 
°C/min and holding that temperature for 30 min, then ramping at a rate of 1 °C/min to 120 °C and holding that 
temperature for 30 min, and finally ramping at a rate of 1 °C/min to 350 °C, where the sample was held for 12 h, 
before being cooled back down to room temperature.  

The BET specific surface area was calculated using the Rouquerol criteria [18] for microporous adsorbents 
from a BET plot constructed in the appropriate relative pressure (P/P0) range, which in this case was 0.008 ≤ P/P0 ≤ 
0.04. Pore size distribution and pore volume were determined from nonlocal density function theory (NLDFT) on 
the equilibrium branch of the Ar isotherm at 87 K using a kernel for zeolite/silica cylindrical/spherical pores or 
zeolite/silica cylindrical pores. These calculations were performed using software provided by the manufacturer. 

 
 

2.6 Thermogravimetric Analysis 
 
The thermal decomposition behavior of the reference zeolites was measured using a TA Q500 (TA Instruments, 

New Castle, DE) thermogravimetric analyzer (TGA) under dry air or nitrogen flow. The mass of TGA samples, 
placed in 100 μL platinum pans for measurement, ranged from 6 mg to 12 mg. The samples were heated from 30 °C 
to 800 °C at 10 °C/min.  

 
 

3. Results and Discussion 
 
The measured PXRD patterns of RM 8850, RM 8851, and RM 8852 are shown in Fig. 2. The PXRD pattern of 

each zeolite matches well with its respective simulated pattern, indicating all three zeolites are crystalline. The peaks 
in the PXRD pattern for as-is (hydrated) zeolite Y (FAU) are slightly shifted from the simulated pattern, which was 
obtained from the Crystallographic Information File (CIF) of dehydrated zeolite Y by Seo et al. [19]. To the best of 
our knowledge, there is no CIF available for the hydrated form of zeolite Y. The other two simulated patterns were 
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obtained from the CIF files of the hydrated form of LTA [20] and orthorhombic ZSM-5 [21] under MFI zeolite 
found at http://www.iza-structure.org/databases/. The PXRD pattern of RM 8852 (measured on a different powder 
diffractometer) has previously been reported and shown to be unchanged before and after exposure to pressure of 
4.5 MPa, indicating the material is stable to high pressure; this is further corroborated with the highly reproducible 
adsorption isotherms over multiple adsorption cycles [22].  

The skeletal density measured by helium pycnometry of activated RM 8850 was found to be (2.523 ± 0.014) 
g/cm3, that of activated RM 8851 was found to be (2.257 ± 0.018) g/cm3, and that of activated RM 8852 was found 
to be (2.355 ± 0.013) g/cm3. The trend was found to be RM 8850 > RM8852 > RM 8851. All values seem to be 
reasonable compared to the range of densities observed for SiO2 of (2.2 to 2.65) g/cm3. 

 
Fig. 2. Simulated and experimental powder X-ray diffraction patterns of as-is RM 8850 (FAU), RM 8851 (LTA), and RM 8852 (MFI). 

 
The Ar isotherms for RM 8850 were previously reported as supporting information in the CH4/zeolite Y ILS 

[14], but no in-depth discussion was provided. The Ar sorption isotherms at 87 K for RM 8850 are shown in Fig. 
3(a, c). RM 8850 has a type I isotherm, which is typical for rigid microporous materials. The BET surface area 
calculated for 0.008 ≤ P/P0 ≤ 0.04 is (819 ± 13) m2/g. Figure 3(e) shows the pore size distribution of RM 8850 
determined from the NLDFT calculation model on the equilibrium branch of the Ar isotherm at 87 K for zeolites 
using the spherical/cylindrical pores kernel given that a spherical pores kernel is unavailable. Three peaks were seen 
at ≈ 0.8 nm and from ≈1.0 nm to ≈1.15 nm in diameter. As the available spherical/cylindrical kernel does not reflect 
the cage pore structure of zeolite Y, using this kernel gave a NLDFT isotherm with several steps between 1.0 × 10−4 
≤ P/P0 ≤ 1.0 × 10−2, whereas only one step was observed in the experimental isotherm. The two smaller pore size 
peaks are likely artifacts from the extra steps in the NLDFT fit, and the main peak (≈1.15 nm in diameter) differs 
slightly from the expected pore size of ≈1.2 nm for the cages, so it is likely also a result of the imperfect NLDFT fit. 
The total pore volume of RM 8850 is (0.358 ± 0.003) cm3/g, as also determined using the NLDFT calculation model 
on the equilibrium branch of the Ar isotherm at 87 K for zeolites using the spherical/cylindrical pores kernel.  
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Fig. 3. Ar adsorption/desorption isotherms for (a) RM 8850 (FAU) and (b) RM 8852 (MFI); Ar adsorption/desorption isotherms (semilogarithmic 
scale) for (c) RM 8850 (FAU) and (d) RM 8852 (MFI); and pore size distribution (PSD) and pore volume (PV) for (e) RM 8850 (FAU) and (f) 
RM 8852 (MFI). STP is standard temperature and pressure. 

 
The Ar sorption isotherms at 87 K for RM 8851 are not available because measurements could not be made 

after multiple attempts. Given that Ar isotherms at 87 K are preferred over nitrogen (N2) isotherms at 77 K for 
microporous materials, an attempt was not made to measure N2 isotherms. Unlike N2 at 77 K, Ar at 87 K does not 
have a quadruple moment, so it is less sensitive to adsorbent surface groups and, thus, can fill micropores at higher 
relative pressures, leading to accelerated equilibration and permitting the measurement of high-resolution adsorption 
isotherms [23]. There are currently no Ar sorption isotherms reported for sodium zeolite A in the literature to the 
best of our knowledge, although high-resolution Ar sorption isotherms have been reported for the calcium version of 
zeolite A, which is expected to have larger pores [24]. One possible explanation is that the pore windows for sodium 
zeolite A, which are expected to be ≈0.4 nm, are too small and may be difficult to access or reach equilibrium with 
Ar.  
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The Ar sorption isotherms for RM 8852 are shown in Fig. 3(b, d). The Ar sorption isotherms for RM 8852 have 
a type H4 hysteresis loop above P/P0 = 0.4 (Fig. 3[b]) and a kink in the low-pressure region around P/P0 = 1×10−3 
(Fig. 3[d]). Isotherms with a type H4 loop have an adsorption branch that is a composite of types I and II, with the 
pronounced uptake at low P/P0 being attributed to the filling of micropores [23]. High-resolution Ar adsorption 
isotherms of MFI-type zeolite have been reported to exhibit a kink (coupled with hysteresis) in the low-pressure 
region [25-27]. This transition has been proposed to be caused by the adsorbate changing from a disordered liquid-
like phase to an ordered solid phase [28], or by a monoclinic to orthorhombic phase transition in the adsorbent [29]. 
Similar structural transition in the zeolite from monoclinic to orthorhombic has been observed with p-xylene [30] 
and at high temperatures [31, 32]. Garcia-Perez et al. supported this hypothesis using molecular dynamic 
simulations of the Ar isotherm at 77 K, showing that a flexible framework captures the kink/step at the low relative 
pressure better than a rigid monoclinic or rigid orthorhombic framework [33]. The structure change of MFI-type 
zeolites was later experimentally confirmed to undergo a monoclinic to orthorhombic structural transition at low 
relative pressure with Ar at 83 K using in situ synchrotron X-ray diffraction [34].  

RM 8852 has a BET surface area of (443 ± 5) m2/g determined for 0.008 ≤ P/P0 ≤ 0.04. The pore size 
distribution of RM 8852 determined from the NLDFT calculation model on the equilibrium branch of the Ar 
isotherm at 87 K for zeolites using the cylindrical pores kernel is shown in Fig. 3(f). RM 8852 consists of pores 
primarily around ≈0.5 nm in diameter, expected from the channels of ZSM-5, and some mesopores (4.4 nm). The 
small peak at ≈0.9 nm in diameter is an artifact calculated from the phase transition of ZSM-5 around P/P0 = 1×10−3, 
so it should not exist. The primary NLDFT calculated pore size of RM 8852 of (0.50 ± 0.01) nm is slightly smaller 
compared to the pore sizes of 0.51 nm to 0.56 nm determined from crystal structure analysis reported for an 
orthorhombic ZSM-5 (Si/Al = 86) with sodium and tetraalkyl cations [35], and it captures the smaller end of pores 
sizes of 0.50 nm to 0.58 nm from crystal structure for monoclinic H-ZSM-5 (Si/Al = 299) [36]. While RM 8852 is 
orthorhombic at room temperature [2], the difference in pore size may be attributed to RM 8852 being monoclinic 
below P/P0 = 1×10−3 for measurements of the Ar isotherms at 87 K. The phase transition around P/P0 = 1×10−3 
before the micropore filling is completed may also lead to underrepresentation of higher-end pores sizes in the 
calculation of the pore size distribution. Furthermore, NLDFT is a simplified pore model and may not be able to 
capture pore wall heterogeneity (e.g., the presence of Al in RM 8852 [Si/Al = 28]) [37], so it is not surprising the 
NLDFT-predicted pore size distribution does not exactly match that from crystal structure analysis. The total pore 
volume of RM 8852 is (0.272± 0.005) cm3/g as determined by NLDFT calculations. Modeling work relies on pore 
characterization data to perform accurate simulation. Modeling by Fang et al. showed good agreement between the 
simulated isotherm and the reference CO2/ZSM-5 isotherm at 20 °C after taking into account the small amount of 
mesoporosity and deammoniation of the ammonium ions during pretreatment [38].  

The TGA plots of mass (%) as a function of temperature for the three as-is NIST reference zeolites are shown in 
Fig. 4. The TGA profiles show a noticeable mass loss starting around 90 °C to 100 °C for RM 8850 and RM 8851, 
which is attributed to water. A smaller, more gradual mass loss is observed in RM 8852. All three zeolites are 
thermally stable in air and in nitrogen up to 800 °C, the maximum temperature of the reported TGA measurements. 
The mass loss at 800 °C is 24.3 %, 20.9 %, and 5.4 % for RM 8850, RM 8851, and RM 8852, respectively. The 
mass loss values agree well (within the uncertainty) with values typically observed after activating the samples at 
350 °C for 12 h under high vacuum. The mass loss after activation for RM 8850 was (25 ± 1) % mass, that for RM 
8851 was (21 ± 1) % mass, and that for RM 8852 was (6 ± 1) % mass, suggesting the activation condition was 
sufficient to remove all physiosorbed species. These values are also consistent with theoretical values for the mass 
of water calculated from the  
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Fig. 4. Thermal gravimetric analysis of RM 8850, RM 8851, and RM 8852 in air (continuous line) and in nitrogen (dotted line). 

 
molecular formula of the hydrated (at 54 % RH) forms of the zeolites (see Sec. 1): 23.3 %, 19.6 %, and 6.7 % mass 
water for RM 8850, RM 8851, and RM 8852, respectively. In the case of RM 8852, deammoniation may occur 
during activation [39], and the theoretical mass value for water and the ammonium ions is 7.7 %. The measured 
mass loss values are also similar to previously reported LOI values of (25.679 ± 0.095) %, (21.464 ± 0.085) %, and 
(8.50 ± 0.09) %, and LOF values of (25.37 ± 0.67) %, (22.1 ± 1.7) %, and (8.47 ± 0.38) % for RM 8850, RM 8851, 
and RM 8852, respectively [2]. The small observed difference, especially for RM 8852, may be due to samples in 
this work being studied as-is without subjecting them to 54 % RH. While the formulas at 54 % RH for RM 8850 and 
RM 8851 reported by Turner et al. [2] contained approximately similar numbers of water molecules as generic 
formulas for zeolite Y and zeolite A, respectively, there are significantly more water molecules (26.7 vs. 16) 
reported for RM 8852 at 54 % RH compared to the generic formula for ZSM-5. Study of mass change vs. humidity 
for RM 8852 indicated its mass change is more sensitive to % RH (with up to 1.3 % mass change from 32 % to 54 
% RH) than RM 8850 and RM 8851 [3-5]. The theoretical mass value calculated for water is 4.1 % mass, and that 
for water and ammonia is 5.1 % mass using the water content from the generic formula for ZSM-5. Modeling by 
Fang et al. [38] has suggested deammoniation to take place in RM 8852 during activation, showing good agreement 
between the simulated isotherm and the reference CO2/ZSM-5 isotherm at 20 °C after taking into account the small 
amount of mesoporosity and deammoniation of the ammonium ions during pretreatment.  

 
4. Conclusions 

 
This article reports additional characterization of the NIST zeolitic reference materials RM 8850, RM 8851, and 

RM 8852. In particular, the powder X-ray diffraction patterns, Ar isotherms at 87 K, surface areas, pore size 
distributions, pore volumes, skeletal densities, and thermal gravimetric analysis profiles of NIST RM 8850, RM 
8851, and RM 8852 are reported. Along with the Reports of Investigation, and previous reports, these data should be 
helpful to laboratories interested in using the NIST zeolitic reference materials.  
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