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We simulated the effects of gimbal-alignment errors and rotational step-size errors on measurements of the sensitivity matrix and
intrinsic properties of a triaxial accelerometer. We restricted the study to measurements carried out on a two-axis calibration system
using a previously described measurement and analysis protocol. As well as imperfections in the calibration system, we simulated
imperfect orthogonality of the accelerometer axes and non-identical sensitivity of the individual accelerometers in an otherwise perfect
triaxial accelerometer, but we left characterization of other accelerometer imperfections such as non-linearity for future study. Within
this framework, sensitivity-matrix errors are caused by imperfections in the construction and installation of the accelerometer
calibration system, but not by the accelerometer imperfections included in the simulations. We use the results of this study to assign
type B uncertainties to the components of the sensitivity matrix and related intrinsic properties due to imperfections in the measurement
system. For calibrations using a reasonably well manufactured and installed multi-axis rotation stage such as that studied in this paper,
we estimated upper bounds to the standard uncertainties of the order of 1×10−5, 2×10−5, 2×10−4 , and 5×10−5 for the intrinsic
sensitivities, diagonal elements of the sensitivity matrix, off-diagonal elements of the sensitivity matrix, and zero-acceleration offsets,
relative to a sensitivity-matrix element of 1, respectively, and 5×10−3 degrees for the intrinsic angles.
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1. Introduction

Very low cost accelerometers produced with microelectromechanical-systems technology (MEMS) have
expanded the application of these devices for use in electronic games, smart phones, drones, automobiles,
etc. At the same time economies of scale and continued technology improvements are producing ever
increasing performance requirements for more demanding applications. This provides strong motivation for
improving calibration methods for such accelerometers.

There are many measurement and data-analysis protocols for calibrating single-axis, two-axis and
three-axis (triaxial) accelerometers with gravity, so the basic ideas are well known and only a separate
review article could adequately cite all of the relevant work. The rotations required by these protocols range
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from a small number carried out with equipment as simple as a hollow cube that can be supported on any of
its six sides to those available from accurately calibrated three-axis gimbals. The analysis methods range
from sums and differences of measured values to sophisticated vector, matrix, or quaternion mathematics, as
well as combinations thereof.

For maximum accuracy, the result of a measurement/analysis protocol of a single accelerometer is
reported as a sensitivity vector. The sensitivity vector depends upon the orientation of the accelerometer in a
specified coordinate system. The dot product of the sensitivity vector with a vector that quantifies the
acceleration experienced by the accelerometer describes the response of the accelerometer to the
acceleration. In the case of a triaxial accelerometer, the vectors describing the response of each
accelerometer can be measured simultaneously, and these can be combined into an orientation-dependent
sensitivity matrix. It is often desirable to decompose the orientation-dependent sensitivity matrix into an
orientation-independent set of parameters.

Our choice of analysis protocol [1, 2], which we call the ABC sine-fitting protocol,1 was motivated by
two somewhat conflicting desires. First, we want it to be mathematically simple so that it is easily
accessible. However, we also wanted it to be capable of producing mathematical precision limited only by
the lesser of the number of bits in the response data of the accelerometer under test (AUT) or the number of
bits available to the computer arithmetic. Our choice of measurement protocol was dictated by our choice of
analysis protocol, but any other suitable measurement and analysis protocol could have been used.

Our choice of an orientation-independent decomposition for the sensitivity matrix [1, 2], which we call
the intrinsic properties decomposition, was similarly motivated. The intrinsic properties consist of the
sensitivity of each accelerometer along its axis of maximum sensitivity, the angle between each pair of axes
of maximum sensitivity, and the zero-acceleration response of each accelerometer. These properties provide
a complete description of the performance of a linear, drift-free, triaxial accelerometer for a fixed set of
pertinent environmental parameters.

We propose the intrinsic properties as a supplement to the sensitivity matrix in comparisons of
measurements within and between organizations. A calibration laboratory can use the intrinsic properties for
quality control and accelerometer diagnostics. The intrinsic properties can serve as important measurement
metrics in comparisons conducted by multiple calibration laboratories. Use of the intrinsic properties rather
than the sensitivity matrix to characterize a triaxial accelerometer effectively separates the description of the
device from the description of its orientation in a specific application. However, it does not replace the
sensitivity matrix. Instead, the intrinsic properties quantify how well different sensitivity-matrix
measurements characterize an accelerometer independent of how well the specified orientation of the
accelerometer is implemented in each measurement.

Compared to the results of other mathematics-based decompositions, which all have advantages in
certain domains, the intrinsic properties are directly interpretable in terms of the physical properties of the
device. For instance, attaching a surface-mount MEMS device to a substrate or package can strain the
MEMS device. This built-in strain can change over time due to temperature changes or die-attach relaxation
and change the intrinsic properties in various ways. Not only does an intrinsic-properties decomposition
allow alignments errors to be distinguished from sensitivity changes, but it makes it immediately apparent
what is changing and by how much.

The version of the ABC protocol that we studied here was optimized for use with a new two-axis AUT
calibration system (ACS) for which its manufacturer specifies an angle-setting resolution and accuracy of
0.001◦ and 0.008◦, respectively. During implementation of the protocol, the response of each single-axis

1Our measurement protocol rotates the accelerometer under test around a single axis in three separate experiments, which enables each
experiment to be modeled as a linear, single-harmonic function of a single rotation angle with three adjustable parameters (A, B, C)
rather than a nonlinear function of two rotation angles.
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accelerometer within the AUT was measured at N uniformly spaced rotation angles for each of three
different initial configurations of the ACS. At each angle, a fixed number of measurements were carried out
after waiting a sufficient time for the ACS platter to settle. The data obtained at each angle were averaged
and analyzed following the analysis portion of the protocol to produce the DC (zero-frequency) components
of the sensitivity matrix and intrinsic properties of the AUT in its default orientation, which is defined below.
Separate measurements are required to determine the relative frequency dependence of these quantities if
that information is needed [3].

The purpose of this report is to describe the results of simulations of errors in the sensitivity matrix and
intrinsic properties caused by imperfections in the alignment and orientation of the AUT and ACS axes
during rotation measurements and analysis when following the procedures of the ABC protocol, and
ultimately to develop a comprehensive type B uncertainty analysis of the results of the measurements.

2. Definition of Simulation Parameters

2.1 Local Gravitational Coordinate System, Gravitational Unit g233 and Acceleration Vector

Let

x̂ =

1
0
0

 , ŷ =

0
1
0

 , and ẑ =

0
0
1

 , (1)

be the local orthonormal gravitation coordinate system (LGCS). Its z-axis points away from the ground and
is parallel to the local gravitation field at the center of the top surface of the ACS measurement platter
(platform for mounting an AUT). This serves as a reference point.

We define a horizontal surface to be one that is perpendicular to ẑ. Other than orthogonality to ẑ and
each other, the orientations of x̂ and ŷ are not set in advance and can be rotated around ẑ to fit
application-specific constraints.

Our ACS is located on the ground floor of the Sound Building (Building 233) on the National Institute
of Standards and Technology (NIST) Gaithersburg, MD campus, and the magnitude of the acceleration due
to gravity in the vicinity of the ACS is g233 = 9.80101 ±0.00003 m s−2 (k = 2) [4], which provides
traceability to SI units [5] for our measurements. To simplify the equations, we use g233 as the unit of
gravitational acceleration in the following analysis.

Similarly, we use R as a generic unit of accelerometer response because an accelerometer output may be
specified as a voltage, a charge, a current, a unitless number, a resistance, or a capacitance, or it can be
scaled to be read as meters per second squared (m s−2) or gravitational units (g). Thus, for the purposes of
this paper, an accurately calibrated accelerometer reports 1 R when excited by an acceleration of 1 g233

along its axis of maximum sensitivity and the default sensitivity matrix of an ideal AUT perfectly mounted
on an ideal ACS is the unit matrix I multiplied by R/g233.

Next, let

a(n) =

ax(n)
ay(n)
az(n)

 (2)

for n = 1, . . . ,N rotation angles, where the x, y, and z components indicate the acceleration experienced by
an AUT during a series of measurements carried out at different angular orientations of the ACS platter.

We start with n = 1 rather than n = 0 and reserve n = 0 for the default orientation of the ACS axes and
platter when the instrument is first activated or reset. Therefore the reference angle from which rotations
around the two ACS axes are measured are both zero when n = 0. To start a rotation experiment, n is set to 1
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and neither or one of the axes are rotated to a specified initial orientation for the desired experiment and the
data indexed by n = 1 are recorded.

2.2 Accelerometer Calibration System (ACS), Rotation Axes X̂ and Ẑ, and Rotations ΘX (n) and ΘZ(n)

In its most abstract but still complete representation, our ACS comprises

• two approximately orthogonal rotation axes, X̂ and Ẑ, the latter of which is configured to rotate
around X̂ ,

• a means for mounting a device under test in a fixed orientation relative to Ẑ, and

• a means for rotating each axis through a set of user-specified angles.

Prior to a rotation experiment, X̂ or Ẑ is rotated through angle ΘX (1) or angle ΘZ(1), respectively, to
transform the ACS from its default configuration to the initial configuration for the experiment. During the
rotation experiments simulated here, the accelerometer response as a function of rotation angle ΘX (n) or
ΘZ(n) is measured for n = 1, . . . ,N rotation angles while the other angle is held constant.

Rotation-independent errors: Ideally, when the ACS is installed in our laboratory, X̂ is collinear with
x̂ and Ẑ is collinear with ẑ. In practice this is only an approximation that must be modeled in the simulation.

In the default configuration of the ACS as installed in our laboratory, Ẑ is given by

Ẑ =

 Ẑx

Ẑy√
1− (Ẑ2

x + Ẑ2
y )

= RRF(ẑ, Ê,ΘE), (3)

where RRF(d⃗, ê,α) is the Rodrigues rotation formula [6] that rotates a column (row) vector d⃗ around a unit
vector ê by an angle α and returns the result as a column (row) vector.

Euler’s rotation theorem guarantees that the unit vector Ê and the angle ΘE in Eq. (3) both exist, but
they are not unique. A right-hand (left-hand) rotation ΘE around the Ê axis produces the same result as a
right-hand (left-hand) rotation −ΘE around the −Ê axis.

Similar to Ẑ in Eq. (3), X̂ is given in terms of the LGCS as

X̂ =


√

1− (X̂2
y + X̂2

z )

X̂y

X̂z

= RRF(x̂, Ê,ΘE). (4)

It is convenient at this point to use the rotational degree of freedom of the LGCS to rotate the LGCS
around ẑ to set X̂y = 0. With this final constraint on the LGCS, the ACS-parameter set {Ẑx, Ẑy, X̂z} comprises
a maximum-size set of independent scalers that define the default configuration of the ACS in our laboratory
relative to the LGCS.

It might appear that it would be more convenient to use {Ex,Ey,ΘE} as the ACS alignment parameters.
However, the combination of two projections and an angle, and the fact that Ê and ΘE are not unique would
greatly complicate the interpretation of experiments designed to determine their values directly from the
experiments rather than determining them from the values of {Ẑx, Ẑy, X̂z} obtained from the same
experiments.

We separately studied the effect of each of Ẑx, Ẑy, and X̂z on the sensitivity matrix in an attempt to find
interesting or useful properties and the results are reported in Appendix A. Only one useful property was
discovered. The magnitude of the largest error (dominant error) in the sensitivity matrix and other errors of
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approximately the same magnitude scaled with the magnitude of the alignment error being studied over a
range of alignment errors extending from sin(0.0008◦) to sin(0.08◦). Other errors were orders of magnitude
smaller with the details dependent upon the particular alignment error being studied.

From a physical point of view, the ACS has a rod whose axis of rotation coincides with Ẑ and is free to
rotate around Ẑ. A platter is connected to the rod such that the platter’s top surface is nominally
perpendicular to Ẑ. However, from the abstract point of view, it is much more convenient to treat the platter
and its misalignment relative to Ẑ as part of the misalignment associated with mounting the AUT on the
ACS as described later in this report.

Rotation-step errors: Ideally, when the ACS executes a rotation step, the step is exactly the size
desired. In practice this is only an approximation that must be modeled in the simulation. Therefore, we
generalize each rotation angle in each rotation experiment as

ΘJ(n) = Θ
i
J(n) = α(n)+ f i

J(n), (5)

where i ∈ {1,2,3} indexes the rotation experiment number, J ∈ {X ,Z} (not to be confused with
j ∈ {u,v,w}) indexes the rotation axis, n ∈ {1, . . . ,N} indexes the rotation step, α(n) is the desired rotation
angle, and f i

J(n) is the rotation-step error for the nth rotation step. Note that the superscript i of Θi
J(n), which

indexes the rotation experiments, will be suppressed when it is superfluous to the point being made, or is
obvious from context.

2.3 AUT, Sensitivity Matrix, and Intrinsic Property Triple

Assume that the AUT comprises U, V, and W accelerometers each having unique axes of maximum
sensitivity û, v̂, and ŵ that do not need to be perfectly orthogonal to each other. Therefore, at each rotation
measurement step n = 1, . . . ,N with the AUT securely mounted on the ACS platter,

û(n) =
[
ux(n) uy(n) uz(n)

]
=

[√
1−u2

y(n)−u2
z (n) uy(n) uz(n)

]
,

v̂(n) =
[
vx(n) vy(n) vz(n)

]
=

[
vx(n)

√
1− v2

x(n)− v2
z (n) vz(n)

]
,

ŵ(n) =
[
wx(n) wy(n) wz(n)

]
=

[
wx(n) wy(n)

√
1−w2

x(n)−w2
y(n)

]
.

(6)

Note that the constraints explicit in the right-hand sides of these equations assure that û(n), v̂(n), and ŵ(n)
are unit vectors.

Further note that even though û(n), v̂(n), and ŵ(n) vary with n, the dot products û(n) · v̂(n), v̂(n) · ŵ(n),
and ŵ(n) · û(n), as well as the angles they define are independent of the orientation of the AUT and therefore
are independent of n for a rigid AUT. Therefore, the angles, which are explicitly defined below, define three
intrinsic properties of the AUT.

Assume that the response r of each of the triaxial accelerometers in the AUT is a linear function of the
acceleration that they experience. In this case, the response during the nth response measurement in a
measurement series will be given by

r(n) =

ru(n)
rv(n)
rw(n)

= s(n)a(n)+O =

sux(n) suy(n) suz(n)
svx(n) svy(n) svz(n)
swx(n) swy(n) swz(n)

ax(n)
ay(n)
az(n)

+

Ou

Ov

Ow

 , (7)

where s(n) is the sensitivity matrix and O is the zero-excitation offset triple, which describes the response
of the U, V, and W accelerometers when ax = ay = az = 0. As mentioned previously, the default sensitivity
matrix of an ideal AUT perfectly mounted on a perfectly installed ACS would be the unit matrix I
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multiplied by R/g233. Note that O is independent of the orientation of the accelerometers, so it defines three
intrinsic properties, and it is called the intrinsic offset triple or just the offset triple. The sensitivity matrix in
Eq. (7) can be expressed in a number of ways,

s(n) =

 suux(n) suuy(n) suuz(n)
svvx(n) svvy(n) svvz(n)
swwx(n) swwy(n) swwz(n)

=

sux(n) suy(n) suz(n)
svx(n) svy(n) svz(n)
swx(n) swy(n) swz(n)

=

 s⃗u(n)
s⃗v(n)
s⃗w(n)

 , (8)

where the intrinsic sensitivity matrix

s=

su

sv

sw

=

∥⃗su(n)∥
∥⃗sv(n)∥
∥⃗sw(n)∥

 for any n = 1, . . . ,N (9)

gives the response of the U, V, and W accelerometers per unit acceleration applied along the û, v̂, and ŵ axes
after subtraction of Ox,Oy, and Oz, respectively, and ∥...∥ denotes the magnitude of the vector between the
bars. Note that the intrinsic sensitivity is independent of n so its three components are intrinsic properties.

It is important to distinguish between the sensitivity matrix s(n) with its sensitivity-vector components
s⃗u(n), s⃗v(n), and s⃗w(n) on one hand, and the intrinsic sensitivity triple s with its components, su, sv, and sw

on the other hand. This is why we use a different typeface for the latter.
Note also that a= 0 when an accelerometer is accelerating toward the Earth in free fall and that

a= gℓocẑ relative to the LGCS at the location of the accelerometer when it is at rest at some fixed location
on Earth, where gℓoc is the magnitude of the acceleration due to gravity at that location. Though
counterintuitive, this convention is consistent with the general theory of relativity and describes the output of
most accelerometers because they actually respond to deflection of a structural element attached to a rigid
package. However, some accelerometers, such as piezoelectric ones and those with high-pass filters, have no
DC response, so the protocol as described here is not applicable to that type of accelerometer.

The sensitivity matrices depend upon the n-dependence of uy(n),uz(n),vx(n),vz(n),wx(n), and wy(n),
but these dependencies are not errors. Instead they are necessary to describe the orientation of the AUT
accelerometers relative to the LGCS as the AUT is rotated. It is the orientation of these axes relative to the
LGCS when n = 0 that determines the default sensitivity matrix relative to the LGCS.

Besides the intrinsic-offset triple O and the intrinsic-sensitivity triple s, the intrinsic-angle triple
mentioned above [angle between the û(n) and v̂(n), v̂(n) and ŵ(n), and ŵ(n) and û(n)] axes, respectively), is
also an intrinsic property triple given by

ϕ=

φuv

φvw

φwv

=

arccos
(
û(n) · v̂(n)

)
arccos

(
v̂(n) · ŵ(n)

)
arccos

(
ŵ(n) · û(n)

)
=

arccos
(
û(0) · v̂(0)

)
arccos

(
v̂(0) · ŵ(0)

)
arccos

(
ŵ(0) · û(0)

)
 , (10)

independent of n.

2.4 Rotation Experiment Equations

Recall that we defined the default orientation of the AUT as its orientation on the ACS following the
mounting specifications provided by the manufacturer of the AUT after the ACS has been turned on. We
define the default sensitivity matrix of the AUT as the sensitivity matrix that describes the response of the
AUT in its default orientation on the ACS.

Assume that the ACS is in its default configuration in our laboratory and that the AUT device is firmly
affixed to the ACS platter such that û(n = 0) = v̂(n = 0) = ŵ(n = 0) = 0 are approximately parallel to x̂, ŷ,
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and ẑ of the LGCS, respectively. At this point, the ACS can be rotated from the default configuration to the
desired initial configuration for a measurement of the accelerometer response versus rotation angle, and the
measurements series can commence.

The measurement protocol described in [2] requires the response of the AUT to be measured in three
rotation experiments: 1) as a function of rotation-step number n around X̂ , 2) as a function of n around X̂
after the AUT has first been rotated through an angle ΘZ =−90◦ around Ẑ, and 3) as a function of n around
Ẑ after the AUT has first been rotated through an angle ΘX =−90◦ around X̂ .

With a real AUT mounted on a real ACS, our implementation of rotation experiment 1 with the ABC
protocol is given in terms of the Rodrigues rotation formula (RRF) defined following Eq. (3) as

r1(α) =

r1u
(
α(n)

)
r1v

(
α(n)

)
r1w

(
α(n)

)
=

 s⃗u(n) ·g233ẑ+Ou

s⃗v(n) ·g233ẑ+Ou

s⃗w(n) ·g233ẑ+Ou

=

RRF
(⃗
su(0), X̂ ,α(n)

)
·g233ẑ+Ou

RRF
(⃗
sv(0), X̂ ,α(n)

)
·g233ẑ+Ov

RRF
(⃗
sw(0), X̂ ,α(n)

)
·g233ẑ+Ow

 , (11)

where ΘX (1) = ΘZ(1) = 0◦ for both the default configureation and the initial configuration of the ACS in
this experiment, and it is convenient to use α(n) = ΘX (n) for the term called αi in [2], as well as to clearly
distinguish between the initial rotation and the rotations carried out during the measurement process.

For experiment 2, our implementation is given by

r2(α) =

r2u
(
α(n)

)
r2v

(
α(n)

)
r2w

(
α(n)

)
=

RRF
(
RRF (⃗su(0), Ẑ,ΘZ(1)), X̂ ,α(n)

)
·g233ẑ+Ou

RRF
(
RRF (⃗sv(0), Ẑ,ΘZ(1)), X̂ ,α(n)

)
·g233ẑ+Ov

RRF
(
RRF (⃗sw(0), Ẑ,ΘZ(1)), X̂ ,α(n)

)
·g233ẑ+Ov

 . (12)

In this case, α(n) still represents ΘX (n), but ΘZ(1) =−90◦ to transform the default configuration of the
ACS to the initial configuration for experiment 2.

For experiment 3, our implementation is given by,

r3(α) =

r3u
(
α(n)

)
r3v

(
α(n)

)
r3w

(
α(n)

)
=

RRF
(
RRF (⃗su(0), X̂ ,ΘX (1)),RRF(Ẑ, X̂ ,ΘX ),α(n)

)
·g233ẑ+Ou

RRF
(
RRF (⃗sv(0), X̂ ,ΘX (1)),RRF(Ẑ, X̂ ,ΘX ),α(n)

)
·g233ẑ+Ov

RRF
(
RRF (⃗sw(0), X̂ ,ΘX (1)),RRF(Ẑ, X̂ ,ΘX ),α(n)

)
·g233ẑ+Ow

 . (13)

In this case, α(n) = ΘZ(n) and ΘX (1) =−90◦ to transform the default configuration of the ACS to the
initial configuration for experiment 3.

3. Simulation of ABC Rotation Experiments Without Rotation-Angle Errors

Simulation Set 1 simulated use of the ABC analysis protocol to analyze response data from an ideal
triaxial AUT when measured with an ideal ACS following the ABC measurement protocol.

A MATLAB1 [7] simulation script was used to calculate the response versus rotation angle data
ri j
(
α(n)

)
of the AUT accelerometers for rotation experiments i ∈ {1,2,3} and accelerometers j ∈ {u,v,w}

with s= I , where I is the unit matrix, and O = 0, as in Eqs. (11-13).
The ACS properties are summarized in Table 1. More specifically, the desired rotation-step size is

∆ = 5◦,α(n) = (n−1)∆ for n = 1, . . . ,N = 72, Ẑx = Ẑy = X̂z = 0, and the other parameters in Eqs. (11-13)
were calculated with Eqs. (3) and (4). The simulated response data are shown in Fig. 1.

1Certain computer software packages, commercial equipment, instruments, or materials are identified in this paper to foster understand-
ing. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are necessarily the best available for the purpose.
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Table 1. ACS parameters used in Simulation Set 1 which assumed an ideal AUT and a perfectly constructed and
installed ACS.

ACS Parameters
Alignment Rotation

Experiment Ẑx Ẑy X̂z ΘX (n) ΘZ(n)
1 0 0 0 α(n) 0◦

2 0 0 0 α(n) -90◦

3 0 0 0 -90◦ α(n)

Fig. 1. Simulated accelerometer response data versus rotation angle for an ideal AUT measured on an ideal ACS in
rotation experiments 1 (top-right panel), 2 (lower-left panel), and 3 (lower-right panel), where R is the generic response
unit corresponding to an acceleration of 1 g233. (Accelerometer response symbols: U red +, V green x, W blue ·)
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Fig. 2. Difference between the simulated accelerometer response data versus rotation angle shown in Fig. 1 and that
obtained as described in the text from an ABC fit to the simulated data. The results for rotation experiments 1, 2, and 3
are shown in the upper right, lower left, and lower right panels, respectively. (Accelerometer response symbols: U red

+, V green x, W blue ·)

The simulation script then wrote the response versus rotation-angle data ri j
(
α(n)

)
into an Excel[8]

spreadsheet that implemented the ABC analysis protocol of [2]. This spreadsheet then calculated estimates
sFIT and CFIT of s and O, respectively, by fitting Ai

jk sin(Θ)+Bi
jk cos(Θ)+Ci

j to ri j
(
α(n)

)
as described in

[2] with the changes in notation given in Appendix B, and where k ∈ {x̂, ŷ, ẑ}.
When this step was complete, the simulation script read sFIT and CFIT from the spreadsheet, calculated

the intrinsic property triples, s⃗FIT and ϕFIT , and calculated the differences sERR = sFIT −s,
s⃗ERR = s⃗FIT − s⃗, ϕERR = ϕFIT −ϕ, and OERR =CFIT −O, which are the errors introduced by this
implementation of the ABC protocols. The script also calculated a new set of response versus rotation angle
data ri j

(
α(n)

)
Fit from sFIT and CFIT , which is plotted in Fig. 2 for comparison with the original simulated

response data ri j
(
α(n)

)
in Fig. 1.

No values of the components of sERR, s⃗ERR, and OERR fell outside ±10−15, and no values of the
intrinsic-angle error ϕERR fell outside ±10−13degrees. These errors are completely explained by round-off
errors in computer arithmetic and algorithms. This result is important because it shows that the script and
spreadsheet are working properly and sets a lower bound on the uncertainty of the ABC protocol as
implemented in [2].

Simulation Set 2 comprised 30 independent simulations of rotation experiments 1, 2, and 3 using the
same ideal ACS properties that were used for Simulation Set 1 (Table 1) but with randomly generated
non-ideal AUT parameters. The goal was to isolate the effect of non-ideal AUT parameters on the ABC
measurement and analysis protocol. For each of the 30 simulations, the diagonal elements of the default
sensitivity matrix s of the AUT were independently drawn from a normal distribution with a mean of 1 and
standard deviation of 0.1 R/g233. Similarly, uy,uz,vx,vz,wx,wy, and the three values of the offset matrix O

were drawn from a normal distribution with a mean of zero and a standard deviation of 0.1 R. These
unrealistically large deviations from the ideal unit sensitivity matrix and zero offset matrix, were chosen to
stress the ABC protocol.
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The default sensitivity matrix s and AUT offset matrix O for the first simulation in Simulation Set 2 and
the intrinsic properties triples calculated from Eq. (9) are given in Table 2. By chance, this sensitivity matrix
is the least perfect matrix produced by the 30 simulations.

Table 2. One of 30 random sensitivity matrices and the associated intrinsic properties triples. In the array format used
here, the vectors are row arrays and the triples are column arrays displayed in a row format in the table.

Randomly Generated Sensitivity Matrix and Associated Intrinsic Properties Triples
Matrix Vector x Component y Component z Component Unit

s⃗u +1.084557444843417 -0.047097516966133 +0.037216463393415 R/g233
s s⃗v +0.369246379560599 +0.920196068359764 +0.285771705579544 R/g233

s⃗w -0.117336380485872 +0.263805007662141 +0.819879210182046 R/g233

Triple u Component v Component w Component Unit
s +1.086217332036812 +1.031876523985898 +0.869231170369473 R/g233
O +0.053766713954610 +0.183388501459509 -0.225884686100365 R
ϕ +70.845583191199623 +61.081782813884068 +96.639644038935558 Degrees

In each of the 30 simulations, the MATLAB simulation script also calculated the response versus
rotation-angle data ri j

(
α(n)

)
of the AUT accelerometers for rotation experiments i ∈ {1,2,3} and

accelerometers j ∈ {u,v,w}. The response versus rotation-angle data ri j
(
α(n)

)
for the randomly generated,

default sensitivity matrix given in Table 2 are shown in Fig. 3
For each simulation, the simulation script then wrote the response versus rotation-angle data ri j

(
α(n)

)
into the Excel ABC spreadsheet that implemented the ABC analysis protocol of [2]. This spreadsheet then
calculated estimates sFIT and CFIT of s and O, respectively, by fitting Ai

jk sin(Θ)+Bi
jk cos(Θ)+Ci

j to
ri j
(
α(n)

)
as described in [2] (with the changes in notation given in Appendix B), and where k ∈ {x̂, ŷ, ẑ}.

When this step was complete, the simulation script read sFIT and CFIT from the spreadsheet, calculated
the intrinsic property triples, s⃗FIT and ϕFIT , and calculated the differences sERR = sFIT −s,
s⃗ERR = s⃗FIT − s⃗, ϕERR = ϕFIT −ϕ, and OERR =CFIT −O, which are the errors introduced by this
implementation of the ABC protocols. The script also calculated and plotted a new set of response versus
rotation-angle data ri j

(
α(n)

)
Fit from sFIT and CFIT (shown in Fig. 4) for comparison with ri j

(
α(n)

)
Fit in

Fig. 3.
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Fig. 3. Simulated accelerometer response data versus rotation angle for the first simulation of a stable, linear AUT with
random variations from the ideal unit sensitivity matrix when measured on an ideal ACS in rotation experiments 1
(top-right panel), 2 (lower-left panel), and 3 (lower-rights panel), where R is the generic response unit corresponding to
an acceleration of 1 g233. (Accelerometer response symbols: U red +, V green x, W blue ·)

Fig. 4. Difference between the simulated accelerometer response data versus rotation angle shown in Fig. 3 and that
obtained as described in the text from an ABC fit to the simulated data. The results for rotation experiments 1, 2, and 3
are shown in the upper right, lower left, and lower right panels, respectively. (Accelerometer response symbols: U red

+, V green x, W blue ·)
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For all 30 simulations, the maximum errors sERR, s⃗ERR, and OERR never fell outside ±10−15, and the
maximum angular error ϕERR never fell outside ±10−13degrees. While this result was expected based on
Ref. [1] and Ref. [2], it is nevertheless an important affirmation of the conclusions reported in those
references. Differences significantly greater than those observed would show there was a fatal error in the
derivations in Ref. [1], an error in the implementation of the ABC measurement and analysis in Ref. [2], or
an error in the simulation script.

Also, for each simulation in Simulation Set 2, the spread sheet carried out a second sine fit that included
a constant term and the first five harmonics (10 adjustable parameters) of a 360◦ rotation for the three
rotation experiments in the 30th simulation. All of the coefficients for all of the harmonics greater than the
first fell within ±10−15. This is important because it means that the ABC coefficients derived in the ABC
protocol from fits of the constant C and the first harmonics of a 360◦ rotation (A and B or magnitude and
phase) are sufficient to describe any perfectly stable AUT to within ±10−15 over a range of accelerations
where the AUT response is linear within the precision of the computer arithmetic.

Within the framework of these simulations, we demonstrated that the ABC protocol reproduces the
default sensitivity matrix and intrinsic properties triples of triaxial AUTs with non-orthogonal axes and
non-identical gains when the rotation experiments are carried out with a perfect ACS. Now we use the same
framework to simulate the effect of an imperfect ACS.

4. Simulation of Rotation Experiments on an Imperfect AUT with an Imperfect ACS

Ideally, we would have measured values and standard uncertainties for all of the ACS errors identified in
Sec. 2.2. In that case we would use these uncertainties as the basis for estimating type A uncertainties in the
elements of the sensitivity matrix associated with use of the ABC protocol. Unfortunately, that is not the
case as explained at the end of Appendix A. Instead, we randomly varied all of these errors with a standard
deviation equivalent to the ACS manufacturer’s stated uncertainty in a Monte Carlo simulation and used the
standard deviation of the resulting default sensitivity matrices and intrinsic properties to assign type B
uncertainties.

Simulation Set ABC1: For each of 1000 simulations, the simulation procedure described for
Simulation Set 2 was followed with one major exception. The diagonal elements of the default sensitivity
matrix s of the AUT independently were drawn from a normal distribution with a mean of 1 and a standard
deviation 0.1 R/g233, uy,uz,vx,vz,wx,wy, and the off-diagonal elements of the default sensitivity matrix s

independently drawn from a normal distribution with a mean of 0 and the same standard deviation. In
addition, the values of Ẑx, Ẑy, and X̂z were drawn from a normal distribution with a mean of 0 and a standard
deviation of sin(0.008◦) = 1.3963×10−4, and the values of f i

J(n) [defined in Eq. (5)] for each of N = 72
values of n were drawn from a normal distribution with a mean of 0 and standard deviation of 0.008◦, where
0.008◦ is the manufacturer-stated accuracy of our ACS. The resulting sensitivity-matrix errors and the
intrinsic properties errors that were introduced by the simulated ACS imperfections are shown in Tables 3
and 4, respectively.
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Table 3. Mean and standard deviation of simulated sensitivity-matrix error of the randomly generated AUT defined in
Table 2 and measured with the 1000 independent randomly generated ACS parameters described above.

Means of Errors in Sensitivity Matrix
Matrix Vector x Component y Component z Component Unit

s⃗u +2.610e-07 +1.596e-07 +6.213e-07 R/g233
s s⃗v -8.222e-07 +6.825e-08 +8.041e-07 R/g233

s⃗w -1.624e-06 +6.073e-07 -4.201e-07 R/g233

Standard Deviations of Errors in Sensitivity Matrix
Matrix Vector x Component y Component z Component Unit

s⃗u +1.709e-05 +7.289e-05 +1.274e-04 R/g233
s s⃗v +7.403e-05 +1.002e-05 +1.195e-04 R

s⃗w +1.548e-04 +6.821e-05 +1.760e-05 Degrees

Table 4. Means and standard deviations of the intrinsic property errors calculated from the 1000 simulations whose
means and standard deviations are listed in Table 3.

Mean Errors and Standard Deviations of Intrinsic Property Triples
Intrinsic Property Mean Error Std. Dev. Unit

su +7.514e-08 +9.244e-06 R/g233
sv -1.192e-07 +9.609e-06 R/g233
sw +4.152e-07 +1.309e-05 R/g233

Ou -1.677e-07 +4.894e-05 R
Ov -4.273e-07 +4.892e-05 R
Ow +1.272e-07 +4.562e-05 R

ϕuv -4.079e-06 +7.555e-04 Degrees
ϕvw +1.539e-05 +5.447e-03 Degrees
ϕwu +2.324e-05 +5.431e-03 Degrees

We carried out another 500 independent simulations (results not shown) with the rotation-step error
given by

f i
J(n) = F i

Jm +
N/2

∑
m=1

Di
Jm sin(mα(n))+E i

Jm cos(mα(n)), (14)

where Di
Jm and E i

Jm were drawn from a normal distribution with mean 0 and standard deviation 0.008◦.
The results were similar to those shown in Tables 3 and 4 with an important exception. The magnitudes

of most of the means in Tables 4 are greater than the corresponding means in Table 3. This is partly
explained by the use of 500 simulations for the former and 1000 for the latter. However, none of the means
in Table 3 were statistically different from zero at the 95% confidence level when f i

J(n) was drawn from a
random distribution, but three were statistically different from zero at the 95% confidence level when Di

Jm
and E i

Jm were drawn from the same random distribution. This make sense because modeling f i
J(n) with a

low harmonic sine function produces correlations in f i
J(n) for small regions of n. The net effect is to

magnify large errors at the peaks of the sine functions and minimize small errors at the zero crossings of the
sine function, and these effects increases the large contributions to the variance more than they decrease the
small contributions.

Simulation Set ABC2: To stress the ABC protocol for synchronous rotation-step errors in Eq. (14), we
set Ẑx = Ẑy = X̂z = 0, set Di

J1 = E i
J1 = 6∗ sin(0.008◦), which far exceeds the manufacturer’s accuracy

statement, set the remaining Fourier coefficients to zero, and calculated the sensitivity matrix and intrinsic
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properties errors using the procedures described above. The absolute values of the errors in the components
of the sensitivity matrix and intrinsic property triples were never as large as the corresponding
standard-deviation uncertainties in Tables 3 and 4.

To further stress the protocol, we then set −X̂z = Ẑx = Ẑy = Di
J1 = E i

J1 = 6∗ sin(0.008◦). This change
produced errors with magnitudes equal to 2.1×10−4 in suz and swx, which are 1.36 times as large as the
largest off-diagonal standard-deviation uncertainty in Table 3. Therefore, in the following section, we used
this value rather than the largest off-diagonal component of the sensitivity matrix to assign type B
uncertainties to the off-diagonal components of the sensitivity matrix.

The magnitudes of the remaining errors in the sensitivity matrix and intrinsic properties were less than
the corresponding standard-deviation uncertainties in Tables 3 and 4, and the latter values guided the
assignment of uncertainties of these components.

5. Assignment of Uncertainties

The standard uncertainties assigned to the components of the sensitivity matrix and the intrinsic
properties were as follows:

• u(s jk) = 2×10−5|s jk| for j = k,

• u(s jk) = 2×10−4|s jk| for j ̸= k,

• u(s j) = 1×10−5|s j|,

• u(O j) = 5×10−5|O j|,

• u(ϕ j) = 5×10−3|ϕ j|,

where j ∈ {u,v,w}, and k ∈ {x,y,z}.
The values for s j, O j, and ϕ j and the value for s jk are greater than or approximately equal to the

greatest value in each category in Tables 3 and 4. These bounds also apply to the simulations in Appendix
A. The value of s jk for j ̸= k comes from the simulations in simulations set ABC2. The listed values include
uncertainties for Ẑx, Ẑy, X̂z, and f i

J(1), . . . , f i
J(N). (Recall that j indexes different accelerometers within the

AUT and J indexes different axes of the ACS.)

6. Conclusion

We described a simulation methodology designed to estimate errors in the sensitivity matrix of triaxial
accelerometers mounted on a two-axis ACS and measured and analyzed with the ABC sine-fitting protocol.
We illustrated its use to isolate the effect of some individual ACS errors on the sensitivity matrix. We also
used it to estimate type B standard uncertainties to describe the cumulative effect of all ACS errors on the
sensitivity matrix associated with the use of the ABC protocol except nutation and stress-induced distortion
of the instrument during operation. The results demonstrated that the simulated ACS imperfections cause
errors in the sensitivity matrix calculated by the protocol whereas simulated AUT intrinsic-properties errors
do not. Characterization experiments beyond those included in the ABC sinefitting protocol will be needed
to characterize accelerometer non-linearity, temperature sensitivity, etc.

We expect the type B estimates given here to be conservative for three reasons. First, we used the
manufacturer’s 0.008◦ “accuracy” specification rather than its 0.001◦ “resolution” specification in the
simulations. Second, we used this value as the standard deviation of 75 different independent distributions
of ACS-associated errors that we identified. Third, simple experiments referred to in Appendix A showed
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that the only two errors that we have been able to measure so far fall well within one standard deviation of
the mean of distributions we used.

Since no comparisons with independent measurements have been carried out so far, further caution is
justified. Nevertheless, the resulting uncertainty estimate should be more than adequate for measurements
requiring uncertainties no smaller than a few tenths of a percent. Furthermore, as the need for lower, more
robust uncertainties grows with the maturation of MEMS triaxial-accelerometer technology, we expect to be
able to replace these type B uncertainty estimates with lower-uncertainty Type-A estimates as outlined
below.

The first step is to develop a method to accurately measure fJ(n) for J ∈ {X ,Z} and n = 1, ...,N, as well
as Ẑx, Ẑy, and X̂z with Type-A uncertainties. If and when this task is complete, the next step is to use the
entire simulation script as the “function” in a non-linear fitting algorithm in a massive set of Monte Carlo
experiments like those in Simulations Set ABC1 and ABC2 to estimate the mean and standard error of the
sensitivity matrix and zero-excitation offset triple O.

For each Monte Carlo experiment

• The Monte Carlo experiment would start with the initial values for the elements of the sensitivity
matrix and O that had been determined with the conventional ABC protocol.

• The Monte Carlo experiment would draw values of Ẑx, Ẑy, and X̂z, and of each f i
J(n) from normal

random distributions with the corresponding means set to the measured means, and the corresponding
standard deviations set to the standard errors of the means obtained in the measurements of the
different ACS errors.

• The fitting algorithm would minimize the differences between the measured and simulated response
data for each AUT accelerometer in a least-squared sense, with Ẑx, Ẑy, and X̂z, and each f i

J(n) set to the
corresponding measured value. This step, which would be repeated a statistically significant number
of times, would require running a new simulation of each rotation experiment each time the fitting
algorithm tests a new combination of the nine elements of the sensitivity matrix and the three elements
of O in an attempt to decrease the difference between the simulated and measured response data.

• The Monte Carlo experiment would generate new values for the elements of the sensitivity matrix and
O corresponding to the random values of Ẑx, Ẑy, and X̂z, and each f i

J(n) being used at this step.

When all Monte Carlo experiments were complete, the means and standard errors of the means of the
means of the sensitivity matrix and O obtained from each Monte Carlo experiment would be
calculated and reported as the values and type A standard uncertainties derived from the
determination.

7. Appendix A: Properties of Ẑx, Ẑy, and X̂z

Simulation Set 3: This set tested the effect of imperfect orthogonality of the Ẑ and X̂ axes in the ACS
following construction of the ACS when measuring an ideal AUT. The procedure used with Simulation Set 1
was also used here with the single change that X̂z = sin(0.008◦) instead of zero. The simulated errors are
shown in Table 5.
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Table 5. Simulated errors in sensitivity matrix and associated intrinsic property triples of an ideal AUT measured with
an otherwise ideal ACS for which X̂z = 1.3963×10−4 = sin(0.008◦).

Errors in Sensitivity Matrix and Associated Intrinsic Properties Triples
Matrix Vector x Component y Component z Component Unit

s⃗u -9.748e-09 -6.981e-05 -6.981e-05 R/g233
s s⃗v +6.981e-05 -9.748e-09 -6.981e-05 R/g233

s⃗w -9.252e-18 +9.252e-18 -1.950e-08 R/g233

Triple u Component v Component w Component Unit
s -4.874e-09 -4.874e-09 -1.950e-08 R/g233
O +4.654e-05 +4.654e-05 +1.950e-08 R
ϕ -2.793e-07 +4.000e-03 +4.000e-03 Degrees

The range of the ratios of the absolute values of the errors in the default sensitivity matrix in Table 5 is
enormous: There is a gap of almost 13 orders of magnitude between the largest and smallest errors and a gap
of over two orders of magnitude between the largest error and the second largest error. Moreover, four of
nine errors have the same value, which is that of the largest error, and is equal to 1.5 times Ou and Ov.
Finally, each of the components of the sensitivity-matrix error is proportional to X̂z over a range of
simulations from arcsin(X̂z) = 0.0008◦ to 0.08◦ to well within 1 part in 10−3. The errors in the intrinsic
sensitivity triples are all negligible compared to the dominant error in the sensitivity matrix for the three
cases studied.

Simulation Set 4: This set tested the effect of imperfect orthogonality of the Ẑ and X̂ axes in the ACS
following construction of the ACS when measuring the AUT for which the default sensitivity matrices were
randomly generated as described in connection with Simulation Set 2. The procedure used with Simulation
Set 2 was also used here with the single change that X̂z = sin(0.008◦) instead of zero. The simulated errors
are shown in Table 6.

Table 6. Simulated errors in sensitivity matrix and associated intrinsic property triples of the randomly generated AUT
defined in Table 2 measured with an otherwise ideal ACS for which X̂z = 1.3963×10−4 = sin(0.008◦).

Errors in Sensitivity Matrix and Associated Intrinsic Properties Triples
Matrix Vector x Component y Component z Component Unit

s⃗u -3.299e-06 -7.572e-05 -7.243e-05 R/g233
s s⃗v +6.424e-05 -2.579e-05 -9.003e-05 R/g233

s⃗w +1.842e-05 +8.189e-06 -1.024e-05 R/g233

Triple u Component v Component w Component unit
s -2.487e-06 -2.494e-05 -9.661e-06 R/g233
O +4.829e-05 +6.002e-05 +6.833e-06 R
ϕ +7.748e-04 +4.484e-03 +3.740e-03 Degrees

Replacement of the ideal AUT by the randomly generated AUT of Table 2 changed all of the
sensitivity-matrix errors and eliminated all of the regularities evident in the sensitivity matrix in Table 5. On
the other hand, each component of the sensitivity-matrix error was still approximately proportional to X̂z

over a range of simulations from arcsin(X̂z) = 0.0008◦ to 0.08◦, but only to 1 part in 102. This time, one of
the errors in the intrinsic sensitivity triples was approximately 30% of that of the largest component of the
sensitivity triple.

Simulation Set 5: This set tested the effect on the sensitivity matrix of an ideal AUT caused by
imperfect alignment of the Z axis of the ACS with the z axis of the LGCS following installation of the ACS
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in our laboratory. The procedure used with Simulation Set 1 was also used here with the single change that
Ẑx = Ẑy = 1.3963×10−4 = sin(0.008◦) instead of zero. The simulated errors are shown in Table 7.

Table 7. Simulated errors in sensitivity matrix and associated intrinsic property triples of an ideal AUT measured with
an otherwise ideal ACS for which Ẑx = Ẑy = 1.3963×10−4 = sin(0.008◦).

Errors in Sensitivity Matrix and Associated Intrinsic Properties Triples
Matrix Vector x Component y Component z Component Unit

s⃗u +2.220e-16 +7.601e-18 +1.396e-04 R/g233
s s⃗v +1.950e-08 -1.110e-16 -1.485e-17 R/g233

s⃗w -2.094e-04 -6.981e-05 +8.882e-16 R/g233

Triple u Component v Component w Component Unit
s -9.748e-09 -1.110e-16 -1.462e-08 R/g233
O -1.124e-17 +2.030e-17 -4.654e-05 R
ϕ +0.000e+00 +4.000e-03 +4.000e-03 Degrees

Most of the errors in the components of the default sensitivity matrix obtained from the ABC protocols
were negligible relative to 10−15, but three were greater than or equal to the greatest for
X̂z = 1.3963×10−4 = sin(0.008◦). Some regularities remained.

Simulation Set 6: This set tested the effect on the sensitivity matrix of randomly generated AUTs
having imperfect alignment of the Z axis of the ACS with the z axis of the LGCS following installation of
the ACS in our laboratory. The procedure used with Simulation Set 2 was used here with the single change
that Ẑx = Ẑy = 1.3963×10−4 = sin(0.008◦) instead of zero. The simulated errors are shown in Table 8.

Table 8. Simulated errors in sensitivity matrix and associated intrinsic property triples of the randomly generated AUT
defined in Table 2 measured with an otherwise ideal ACS for which Ẑx = Ẑy = 1.3963×10−4 = sin(0.008◦).

Errors in Sensitivity Matrix and Associated Intrinsic Properties Triples
Matrix Vector x Component y Component z Component Unit

s⃗u -1.081e-05 -7.183e-05 +8.521e-05 R/g233
s s⃗v -1.098e-06 -4.353e-05 -3.076e-05 R/g233

s⃗w -1.549e-04 -4.975e-05 -2.576e-05 R/g233

Triple u Component v Component w Component unit
s +4.242e-05 +4.158e-05 -3.190e-05 R/g233
O -4.766e-06 -4.773e-05 -1.850e-05 R
ϕ +1.484e-03 +8.584e-03 +7.161e-03 Degrees

Replacement of the ideal AUT by the randomly generated AUT of Table 2 changed all of the
sensitivity-matrix errors and the largest component of the sensitivity-matrix error. However, s⃗w was equal to
2su, and each component of the sensitivity-matrix error was proportional to Ẑx(= Ẑy) over a range of
simulations from Ẑx = sin(0.0008)◦ to sin(0.08)◦ to with ±1%. The latter result was expected based on the
earlier results reported here.

Consistency with experiments to determine Zx and Zy: We carried out preliminary rotation
experiments around Z with ΘX = ΘZ = 0, which we will describe elsewhere. These provided an estimate of

∆Z =
√

Ẑ2
x + Ẑ2

y that gives ∆Z = 5×10−5 < 1.3963×10−4 = sin(0.008)◦ with a standard-error of 1×10−5.

Since the dominant errors in the sensitivity matrix scaled with Ẑx and Ẑy, our previous simulations based on
the manufacturer’s accuracy statement overestimate the dominant errors in the sensitivity matrix due to these
two ACS errors by a factor of approximately 3.
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We have not yet determined how to accurately measure or otherwise account for rotation-step errors.
Because a rotation experiment to determine X̂Z depends upon knowledge of the rotation-step errors at
integer multiples of 90◦, we have not yet carried out this type of experiment either. Note that it is not
possible to determine rotation step errors from repeated measurements that quantify a systematic component
of the residuals of the ABC fits to the response data because non-linearity of the accelerator sensitivity will
also contribute systematic components to the residuals. Decomposing sensitivity-matrix errors into those
caused by accelerometer non-linearity and those caused by repeatable rotation-step errors is beyond the
scope of this report.

8. Appendix B

Addressing complexities associated with rotation around non-orthogonal axes resulted in notation
changes between this paper and Ref. [2], which are summarized in the Table 9.

Table 9. Major difference in notation between notation in this work and the notation in [2].

Here Ref. [2] Quantity
n i Rotation-step index in rotation experiment

riu
(
α(n)

)
U p(αi) Response of U accelerometer at rotation step n ↔ i in rotation experiment i ↔ p

riv
(
α(n)

)
V p(αi) Response of V accelerometer at rotation step n ↔ i in rotation experiment i ↔ p

riw
(
α(n)

)
W p(αi) Response of W accelerometer at rotation step n ↔ i in rotation experiment i ↔ p

i = 1 p = x Index of first rotation experiment
i = 2 p = y Index of second rotation experiment
i = 3 p = z Index of third rotation experiment
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[2] Gaitan M, López-Bautista IM, Geist, J (2021) Reduction of calibration uncertainty due to mounting of
three-axis accelerometers using the intrinsic properties model. Metrologia 58:035006.
https://doi.org/10.1088/1681-7575/abeccf

[3] Prato A, Mazzoleni F, Schiavi A (2020) Traceability of digital 3-axis MEMS accelerometer:
Simultaneous determination of main and transverse sensitivities in the frequency domain. Metrologia
57:035013. https://doi.org/10.1088/1681-7575/ab79be

[4] NOAA (2021) National Geodetic Survey: GRAV-D Project Home Page. Available at
https://geodesy.noaa.gov/GRAV-D.

18 https://doi.org/10.6028/jres.126.038

https://doi.org/10.6028/jres.126.038
https://doi.org/10.6028/jres.122.032
https://doi.org/10.1088/1681-7575/abeccf
https://doi.org/10.1088/1681-7575/ab79be
https://geodesy.noaa.gov/GRAV-D
https://doi.org/10.6028/jres.126.038


Volume 126, Article No. 126038 (2021) https://doi.org/10.6028/jres.126.038

Journal of Research of National Institute of Standards and Technology

[5] BIPM (2019) Le Système international d’unités / The International System of Units (‘The SI
Brochure’). Bureau International des Poids et Mesures, 9th edition. Available at
https://www.bipm.org/en/publications/si-brochure.
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