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Three types of uncertainties exist in the estimation of the minimum fracture strength of a full-scale component or structure size. The 

first, to be called the “model selection uncertainty,” is in selecting a statistical distribution that best fits the laboratory test data. The 

second, to be called the “laboratory-scale strength uncertainty,” is in estimating model parameters of a specific distribution from 

which the minimum failure strength of a material at a certain confidence level is estimated using the laboratory test data. To 

extrapolate the laboratory-scale strength prediction to that of a full-scale component, a third uncertainty exists that can be called the 

“full-scale strength uncertainty.” In this paper, we develop a three-step approach to estimating the minimum strength of a full-scale 

component using two metrics: One metric is based on six goodness-of-fit and parameter-estimation-method criteria, and the second 

metric is based on the uncertainty quantification of the so-called A-basis design allowable (99 % coverage at 95 % level of 

confidence) of the full-scale component. The three steps of our approach are: (1) Find the “best” model for the sample data from a list 

of five candidates, namely, normal, two-parameter Weibull, three-parameter Weibull, two-parameter lognormal, and three-parameter 

lognormal. (2) For each model, estimate (2a) the parameters of that model with uncertainty using the sample data, and (2b) the 

minimum strength at the laboratory scale at 95 % level of confidence. (3) Introduce the concept of “coverage” and estimate the full-

scale allowable minimum strength of the component at 95 % level of confidence for two types of coverages commonly used in the 

aerospace industry, namely, 99 % (A-basis for critical parts) and 90 % (B-basis for less critical parts). This uncertainty-based approach 

is novel in all three steps: In step-1 we use a composite goodness-of-fit metric to rank and select the “best” distribution, in step-2 we 

introduce uncertainty quantification in estimating the parameters of each distribution, and in step-3 we introduce the concept of an 

uncertainty metric based on the estimates of the upper and lower tolerance limits of the so-called A-basis design allowable minimum 

strength. To illustrate the applicability of this uncertainty-based approach to a diverse group of data, we present results of our analysis 

for six sets of laboratory failure strength data from four engineering materials. A discussion of the significance and limitations of this 

approach and some concluding remarks are included.  
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1. Introduction 

 

One of the most difficult questions in structural engineering design and failure analysis is how to best 

fit a set of fracture, yield, or ultimate strength test data. In the standard practice for advanced ceramic 

materials recommended by ASTM International [1], the two-parameter (2p) Weibull distribution with a 

zero-location parameter was used (see, e.g., Fig. 1). The choice of the 2p Weibull, rather than other models 

such as the three-parameter (3p) Weibull, or 2p or 3p lognormal, etc., may conceivably be attributed to a 

lack of (a) efficient computational codes for parameter estimation for alternative distributions in the 

literature, and (b) easy-to-use criteria for choosing the "best" distribution among competing and equally 

reasonable one.  

While recognizing that the zero-location feature of a 2p Weibull model might be acceptable for 

modeling the life of a product [2, 3, 4], one cannot help but observe that a 2p Weibull is physically 

unrealistic for modeling the minimum strength of an engineering material, because it assumes that among 

all possible samples of an engineering material, one will likely fail a simple tensile strength test near the 

zero load. It is also unduly conservative when recommended as the so-called A-basis (99 % coverage) for 

critical and B-basis (90 % coverage) for less-critical structural design allowable in aerospace industry [5]. 

To illustrate the need for a re-examination of the basis for choosing the “best” model of a set of tensile 

strength data, we applied the ASTM recommended practice C1239-07 [1] to a set of 31 ring-on-ring test 

data for an aircraft window material, borosilicate crown BK-7 glass (see Appendix A, Data Set No. 1, 

which is based on Fuller et al. [6]). In Figs. 1 and 2, we present the 2p Weibull probability plot and the 

histogram and probability density function, respectively, of the 31 data point set according to ASTM 1239-

07. In this exercise, we used the maximum likelihood (ML) method [7, 8] in a statistical analysis code 

(written in DATAPLOT [9]) to estimate the parameters of a 2p Weibull distribution. In Fig. 3, we used the 

same code to make a quantile-quantile (QQ) plot of the same set of data vs. the predicted values based on a 

2p Weibull. In both Figs. 1 and 3, we observe that near the lower values of the 31 data point set, the fit is 

not so good. On the other hand, when we used the same code to estimate the parameters of a 3p Weibull, 

the fit is remarkably good, as shown in Figs. 4 and 5. 

To improve the 2p Weibull methodology recommended in the ASTM standard practice C1239-07 [1] 

for reporting strength data of ceramic materials, we developed a set of new tools not only for a set of five 

distributions (normal, 2p Weibull, 3p Weibull, 2p lognormal, 3p lognormal), but also for a broader class of 

materials that includes ceramics, metal alloys and composites. Our approach consists of three steps (see 

Sec. 2, 3, and 4, respectively): 

Step 1.   Model Selection.   Find the “best” model for the sample data from a list of five candidates, 

namely, normal, 2p Weibull, 3p Weibull, 2p lognormal, and 3p lognormal. Analysis results for glass data 

are given in Sec. 2, Table 1.  

Step 2.   Laboratory-Scale Statistical Analysis.   Estimate with uncertainty quantification for each 

model the parameters of that model using the sample data and the lower and upper bounds of the minimum 

strength at the laboratory scale for a 95 % level of confidence. Analysis results for glass data are given in 

Sec. 3, Table 2. 
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Fig. 1. A two-parameter Weibull plot of a set of 31 biaxial test data for the ultimate tensile strength of a BK-7 glass [6]. 

 

 
 

Fig. 2. Histogram and 2p Weibull probability density function of a set of 31 biaxial test data for the ultimate tensile strength of a BK-7 

glass [6]. Using the maximum likelihood method of parameter estimation, we found the scale parameter is 232.2 MPa, and the shape 

is 4.64 (for n = 31). 
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Fig. 3. BK-7 glass: A 2p Weibull probability plot of the glass strength data vs. predicted values. 

 

 
 

Fig. 4. BK-7 glass: A 3p Weibull probability plot of the glass strength data vs. predicted values. 
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Fig. 5. BK-7 glass: Histogram and 3p Weibull probability density function for the same strength data. Using the ML method of 

parameter estimation, we found the location parameter is 121.7 MPa, the scale is 102.3 MPa, and the shape is 1.91 (for n = 31). 

 

Step 3.   Full-Scale Statistical Analysis.   We introduce in Sec. 4 the concept of “coverage” and the 

classical theory of tolerance limits to estimate the minimum allowable strength, also with uncertainty 

quantification, of a full-scale structure at 95 % confidence level and two specific sizes of coverage, namely 

99 % (also known as the A-basis) and 90 % (known as the B-basis). 

In Sec. 5, we show the results of applying this new approach to six data sets (see Appendix A) from 

four engineering materials. The significance of our approach and some concluding remarks are given in 

Sec. 6 and Sec. 7, respectively. In addition to Sec. 3, Table 2 (results for Data Set No. 1), we attach in 

Appendices C through G the complete numerical results of the application of our approach for Data Set 

Nos. 2 through 6, respectively. 

 

2. Model Selection (Step 1 of 3) 

 

We began the development of our new approach by considering five candidate models and selecting 

the "best" over two parameter-estimation (PE) methods and four goodness-of-fit (GoF) criteria. The five 

candidate models were: 

 (1)   Model 1: normal (N).  

 (2)   Model 2: two-parameter Weibull (2pW).  

 (3)   Model 3: three-para. Weibull (3pW).  

 (4)   Model 4: two-para. lognormal (2pLN).  

 (5)   Model 5: three-para. lognormal (3pLN). 

The two-parameter estimation (PE) methods were: 
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 (1)   PE Method No. 1: Maximum likelihood (ML) method (see, e.g., Bury [10, pp. 161-168], 

               Aldrich [7], and Anderson [8]). 

 (2)   PE Method No. 2: Probability plot correlation coefficients (PPCC) method (see, Filliben [11,  

         12], Looney and Gulledge Jr. [13], and Vogel [14]). 

The four GoF criteria are: 

 (1)   GoF Criterion 1. Anderson Darling (AD) test (see Anderson and Darling [15, 16]).  

 (2)   GoF Criterion 2. Kolmogorov-Smirnov (KS) test (see, e.g., Bury [10, pp. 204-208]). 

 (3)   GoF Criterion 3. Chi square (CS) test (see, e.g., Bury [10, pp. 196-203]). 

 (4)   GoF Criterion 4. Probability plot correlation coefficient (PC) test (see, e.g., Filliben [11, 12],  

               Looney and Gulledge Jr. [13], and Vogel [14]). 

To compute the GoF statistics for each model, we adopted the following six GoF-PE scenarios: 

 (1)   GoF-PE Scenario 1 (CS-1): GoF Criterion 3 (CS) with PE Method No. 1 (ML). 

 (2)   GoF-PE Scenario 2 (AD-1): GoF Criterion 1 (AD) with PE Method No. 1 (ML). 

 (3)   GoF-PE Scenario 3 (KS-1): GoF Criterion 2 (KS) with PE Method No. 1 (ML). 

 (4)   GoF-PE Scenario 4 (AD-2): GoF Criterion 1 (AD) with PE Method No. 2 (PC). 

 (5)   GoF-PE Scenario 5 (KS-2): GoF Criterion 2 (KS) with PE Method No. 2 (PC). 

 (6)   GoF-PE Scenario 6 (PC-2): GoF Criterion 4 (PC) with PE Method No. 2 (PC). 

To test our methodology, we obtained from the literature a total of six data sets (see Appendix A) for 

four materials, namely, BK-7 glass (Data Set No. 1), silicon nitrate (Data Set No. 2 and Data Set No. 3 for 

two different test methods), aluminum oxide (Data Set No. 4), and a high-strength steel (Data Set- No. 5 

and Data Set No. 6 for two different temperature environments). Based on formulas in the statistics 

literature [17–20], we wrote an analysis code in DATAPLOT to capture the GoF statistics for the six GoF-

PE scenarios of all five models for each of the six ultimate strength data sets as listed in Appendix A. 

Results of the analysis for all five models with their raw GoF statistics for each of the six data sets are 

given in Appendix B.  

An examination of the raw GoF statistics for each data set in Appendix B showed a qualitative 

difference between those of the first five GoF-PE scenarios (CS-1, AD-1, KS-1, AD-2 and KS-2) and the 

sixth scenario (PC-2): namely, the former interprets a smaller statistic to be a better fit, whereas the latter 

demands that a larger statistic is better. This requires us to develop two sets of normalization formulas as 

follows: 

(1) For each of the five scenarios, CS-1, AD-1, KS-1, AD-2, and KS-2, let xi, (i = 1, …, 5), be the GoF 

statistics of the five candidate models being considered for selection, and let xmax and xmin be the maximum 

and minimum of the five statistics, xi, (i = 1, …, 5), respectively. The normalized statistic of xi, (i = 1, …, 

5), to be denoted by Nxi, (i = 1, …, 5), is defined as follows: 

 

       Nxi   =   (   xi  -  xmax) / ( xmin  -  xmax ) ,      ( i = 1, …, 5 ).            (1) 

 

(2) For the sixth scenario, PC-2, let yi, (i = 1, …, 5), be the GoF statistics of the five candidate models 

being considered for selection, and let ymax and ymin be the maximum and minimum of the five statistics, yi, 

(i = 1, …, 5), respectively. The normalized statistic of yi, (i = 1, …, 5), to be denoted by 

Nyi, (i = 1, …, 5), is defined as follows: 

 

       Nyi    =   (  yi  -  ymin ) / ( ymax  -  ymin ) ,      ( i = 1, …, 5 ).            (2) 

  

Using the average of the normalized GoF statistics as a metric for ranking (with 1 being good, 0 being 

poor) as shown in the second row from the bottom of Table 1, we observe that the 3pW model (metric 1 = 

1.00) ranks first among all five candidate models for Data Set No. 1 (BK-7 glass). 
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Table 1. Data Set No. 1: BK-7 glass–Goodness-of-fit statistics for five candidate models. 

 

No. 

GoF- 

PE 

Combo 

Goodness-of-Fit (GoF) and 

Parameter Estimation (PE) 

Method Statistical Analysis 

Scenario Description 

Model 1 

 

Normal 

 

Model 2 

Two- 

parameter 

Weibull 

Model 3 

Three- 

parameter 

Weibull 

Model 4 

Two- 

parameter 

lognormal 

Model 5 

Three- 

parameter 

lognormal 

1 CS-1 

Chi square (CS) criterion  

+ ML method (PE-1) 

gives GoF statistics  = 

(Note: Small is good.) 

 

Normalized CS-1 statistics 

between 0 and 1 (best)  = 

 

 

13.72 

 

 

 

0.00 

 

 

13.70 

 

 

 

0.01 

 

 

10.61 

 

 

 

1.00 

 

 

11.65 

 

 

 

0.67 

 

 

11.91 

 

 

 

0.58 

2 AD-1 

Anderson-Darling (AD)   

+ ML method (PE-1) 

gives GoF statistics  = 

(Note: Small is good.) 

 

Normalized AD-1 statistics 

between 0 and 1 (best)   = 

 

 

0.532 

 

 

 

0.25 

 

 

0.597 

 

 

 

0.00 

 

 

0.338 

 

 

 

1.00 

 

 

0.389 

 

 

 

0.80 

 

 

0.398 

 

 

 

0.77 

3 KS-1 

Kolmogorov-Smirnov (KS)  

+ ML method (PE-1) 

 gives GoF statistics  = 

(Note: Small is good.) 

 

Normalized KS-1 statistics 

between 0 and 1 (best)  = 

 

 

0.151 

 

 

 

0.06 

 

 

0.153 

 

 

 

0.00 

 

 

0.117 

 

 

 

1.00 

 

 

0.122 

 

 

 

0.86 

 

 

0.129 

 

 

 

0.67 

4 AD-2 

Anderson-Darling (AD)  +  

probability plot correlation 

coefficient (PC) method 

(PE-2) gives GoF statistics  = 

(Note: Small is good.) 

Normalized AD-2 statistics 

between 0 and 1 (best)  = 

 

 

 

0.513 

 

 

0.00 

 

 

 

 

 

 

 

 

 

 

0.318 

 

 

1.00 

 

 

 

 

 

 

 

 

 

 

0.374 

 

 

0.71 

5 KS-2 

Kolmogorov-Smirnov (KS) + 

probability plot correlation 

coefficient (PC) method 

(PE-2) gives GoF statistics  = 

(Note: Small is good.) 

Normalized KS-2 statistics 

between 0 and 1 (best)  = 

 

 

 

0.149 

 

 

0.00 

 

 

 

 

 

 

 

 

 

 

0.114 

 

 

1.00 

 

 

 

 

 

 

 

 

 

 

0.124 

 

 

0.71 

6 PC-2 

Probability plot correlation 

coefficient (PC) criterion  

+ PC method (PE-2) 

gives GoF statistics  = 

(Note: Large is good.) 

Normalized PC-2 statistics 

between 0 and 1 (best)  = 

 

 

 

0.980 

 

 

0.00 

 

 

 

 

 

 

 

 

 

 

0.988 

 

 

1.00 

 

 

 

 

 

 

 

 

 

 

0.986 

 

 

0.75 

  
Column sum of all 

normalized statistics =  

 

0.31 

 

0.01 

 

6.00 

 

2.33 

 

4.19 

  
Average of normalized GoF 

statistic from 0 to 1  = 
0.05 

0.00 

(worst) 

1.00 

(best) 
0.78 0.60 

  

GoF ranking 

(1 being best, and  

5 being worst) 

4 5 1 2 3 
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3. Parameter Estimation and Minimum Strength at Laboratory Scale (Step 2 of 

3) 
 

In the last section (Step 1: Model Selection), we applied a multiple PE-method-GoF scenario technique 

and an elementary two-step normalization algorithm to develop a composite GoF index as a “metric” for 

ranking the five candidate models according to which one “best” fits a given set of strength data. Having 

chosen the 3pW as the “best- fit” model, we wrote a second analysis code that gave not only the point 

estimates of the location, scale, and shape parameters of the 3pW, but also their standard errors, upper and 

lower limits at various confidence intervals (which are useful in this step, step 2, to estimate the minimum 

strength at laboratory sample-size scale), the one-sided tolerance limits at 95 % confidence level for 12 

coverages varying from 90 % to 99.99999999 % (which are useful in the next step, step 3, that is designed 

to estimate the upper and lower limits of the minimum strength at full-scale component size).  

In order to clarify the difference between the two estimates of the minimum strength, or the location 

parameter (for a 3pW model), one being at the laboratory sample-size scale, and the other being at the full-

scale component size, we will address in this section only the second step (laboratory scale) of our 

methodology by using the first half of the analysis results (without coverages), that is, based on the second 

analysis code, “3pW_0.05x.dp.” Figure 6 shows a plot of the results for Data Set No. 1 using the 3pW 

model to estimate the minimum strength and its uncertainty at laboratory scale. The complete results of our 

three-step analysis for all five models for Data Set No. 1 are tabulated in Table 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. BK-7 glass: Histogram and fitted 3p Weibull probability density function for the same strength data with lower and upper 95 % 

confidence limits for the location parameter at the sample scale. 
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Table 2. Estimates of minimum strength at laboratory-scale and full-scale sizes for five candidate models based on Data Set No. 1 

(BK-7 glass) at 20 °C (biaxial strength test).   

 

 

 

Model 1 

Normal 

Model 2 

2p Weibull 

Model 3 

3p Weibull 

Model 4 

2p lognormal 

Model 5 

3p lognormal 

Laboratory-Scale       

Composite normalized 

GoF statistic (metric 1) 

(Ranges from 0 to 1,  

worst to best.) 

0.05 
0 

(worst) 

1.0 

(best) 
0.78 0.60 

Parameter 1 (Location) 

 

Point estimate of location, 

 

Standard deviation of location 

 

 

212.4 

 

9.0 

 

 

None. 

 

None. 

 

 

121.7 

 

12.1 

 

 

None. 

 

None. 

 

 

41.8 

 

77.3 

 

One-sided 95 % confidence 

minimum strength at sample 

scale  =  ( lower limit , 

                  point estimate , 

upper limit  ) 

 

 

 

( 95.6, 

130.2, 

153.0 ) 

 

 

 

( 96.1, 

122.3, 

148.6 ) 

 

 

 

( 101.8, 

121.7, 

141.5 ) 

 

 

 

( 119.5, 

140.6, 

156.5 ) 

 

 

 

( -85.0, 

41.8, 

169.0 ) 

Parameter 2 (Scale) 

 

Point estimate of scale, 

 

Standard deviation of scale 

 

 

50.0 

 

6.5 

 

 

232.2 

 

9.5 

 

 

102.3 

 

11.8 

 

 

206.9 

 

8.9 

 

 

163.6 

 

81.1 

Parameter 3 (Shape) 

 

Point estimate of shape, 

 

Standard deviation of shape 

 

 

None. 

 

None. 

 

 

4.64 

 

0.65 

 

 

1.91 

 

0.45 

 

 

0.24 

 

0.03 

 

 

0.29 

 

0.15 

Full-Scale Size       

 

95 % confidence, 99 % 

coverage A-basis design 

allowable (AbDA) 

Uncertainty (metric 2) 

(Note: Small is good.) 

 

38 % 

(worst) 
30 % 

11 % 

(best) 
16 % 19 % 

 

95 % confidence, 99 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or A-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 

 

 

( 51.7, 

 

96.1, 

124.1 ) 

 

 

 

( 60.0, 

 

86.1, 

112.5 ) 

 

 

 

( 116.3, 

 

130.9, 

145.5 ) 

 

 

 

(  97.2, 

 

119.8, 

136.6 ) 

 

 

 

( 101.3, 

 

124.8, 

148.4 ) 

 

95 % confidence, 90 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or B-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 

 

 

( 118.6, 

 

148.4, 

168.8 ) 

 

 

 

( 117.8, 

 

142.9, 

168.0 ) 

 

 

 

( 139.5, 

 

153.2, 

166.9 ) 

 

 

 

( 133.1, 

 

153.1, 

168.5 ) 

 

 

 

( 138.7, 

 

154.4, 

170.1 ) 
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4. Minimum Strength with Uncertainty at Full-Scale Component Size (Step 3 of 

3) 
 

In the last section (Step 2: Laboratory-Scale Minimum Strength Estimation), we introduced a 

DATAPLOT code to compute not only parameters with uncertainty quantification, but also one-sided 

tolerance limits for 12 coverages ranging from 90 % to 99.99999999 %. It turns out that the estimates of the 

tolerance limits are exactly what we need for step 3 of our new methodology. Here, we need to introduce a 

new concept, namely, “coverage.” As shown by Nelson, et al. [20, pp. 179–180], when the true mean,  , 

and standard deviation,  , of a normal distribution are not known, the so- called (1- ) 100 % prediction 

interval is given by the following expression: 

 

                                  ȳ ± t (      n - 1 )  s  √ ( 1 + 1/n ) ,                                                   (3) 

 

where ȳ is the estimated mean, s is the estimated standard deviation, n is the sample size, t is the well-

known Student’s distribution function, and   is the quantity associated with the confidence level given by 

(1 - ) 100 %. For example, a 95 % confidence level is specified by  = 0.05. For engineers dealing with 

material testing data, the estimated prediction interval given in Eq. (3) for a normally distributed sample 

data set is valid only at the sample-scale size.  

To extrapolate the sample-scale size estimate to a larger scale, we need the concept of the so-called 

“coverage,” p, or, the proportion of the population that is covered by a new statistical interval known as the 

“tolerance interval,” (see again, e.g., Nelson, et al. [20, pp. 179–180]). The upper limit and lower limit of 

the tolerance interval are known as the upper tolerance limit (UTL) and lower tolerance limit (LTL), 

respectively. It is the one-sided LTL for a given coverage, p , and (1 - ) 100 % confidence level that 

engineers are interested in for finding the design allowable of a minimum strength for a given structural 

material. The theory of tolerance intervals for a normal population is well-known in the literature (see, e.g., 

Prochan [21], Natrella [22], and Nelson, et al. [20]). As shown by Nelson, et al. [20], the tolerance interval 

for a normal population with a given estimated mean, ȳ , and standard deviation, s, is given below: 

 

    ȳ   ±    r   u   s  ,               (4) 

 

where the factor, r (n, p) , depends on the sample size, n, and the coverage, p, and the factor, u (df,  ), 

depends on the degrees of freedom, df , defined by n - 1, and the confidence level,  , defined by 1 -  . 

Both factors for limited ranges of n, p , and  , are given in tables of Natrella [22] for two-sided and one-

sided LTL, and tables of Nelson, et al. [20] for two-sided LTL for a normal population only. 

When the underlying distribution is a 3pW, the tolerance interval for a 3pW population can be 

estimated using formulas given by Rinne [23, pp. 585–600] and implemented in a computer code we wrote 

in DATAPLOT [9]. Plots of the tolerance limits at 99 % coverage using the 2pW and 3pW models are 

given in Figs. 7 and 8, respectively. If we define a new metric, “uncertainty,” as the ratio of the quantity 

(upper limit– lower limit) to two times the mean minimum strength, then the uncertainties of the 2pW and 

3pW minimum strength are given as 30 % and 11 %, respectively. 

For completeness, we list below the formulas we used (based on Rinne [23]) for implementing the 

necessary computation in our DATAPLOT code. Following Rinne [23], we used the ML method to 

estimate the three Weibull parameters, namely, a (location), b (scale), and c (shape). Let P be percentile, 

and let the coverage, p , be given by 1- P. For example, for p = 0.99 or a 99 % coverage, P = 0.01. Instead 

of Eq. (4) that is applicable only for a normal distribution model, the one-sided lower tolerance interval for 

a 3pW population has the following two-term form: 
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Fig. 7. BK-7 glass: Histogram and fitted 2p Weibull probability density function for the same strength data with lower and upper 

tolerance limits at 95 % confidence and 99 % coverage (A-basis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. BK-7 glass: Histogram and fitted 3p Weibull probability density function for the same strength data with lower and upper 

tolerance limits at 95 % confidence and 99 % coverage (A-basis). 
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  �̂�𝑃,𝐿 =  �̂�𝑃 − 𝑢1−𝛼/2 √(𝐴  Var( �̂�𝑃  ) )   ,                                               (5) 

 

where the first term is given by 

 

   �̂�𝑃 = 𝑎 + 𝑏 [ − ln( 1 − 𝑃 )]1/𝑐   ,                                                     (6) 

 

and the second term is the product of two factors, the first of which is available from a normal distribution 

table, and the second of which is given by 

 

𝐴 Var(�̂�𝑃) =
𝑏2

𝑛𝐷
 { 

𝐵

(𝑐−1)2 −
2𝛽1/𝑐

𝑐(𝑐−1)
(𝐻 + 𝐹 ln𝛽) +

𝛽1/𝑐

𝑐2
[𝐴 − 2𝐺 ln𝛽 + (ln𝛽)2] }   ,              (7) 

 

where  =- ln(1- P), and A, B, D, F, G, and H are defined in Eqs. (11.12b-h) of Rinne [23]. 

As a special case when we let the location parameter, a , be zero in Eq. (6), we obtain the one-sided 

lower tolerance interval for a 2pW population using the same set of Eqs. (5), (6), and (7), shown above, and 

Eqs. (11.12b-h) of Rinne [23]. 

In Table 2, we show the values of the so-called A-basis (99 % coverage) design allowable (AbDA) 

uncertainty for all five models and observe that the AbDA metric correlates well with the composite GoF 

metric (metric 1). This completes our three-step approach as an alternative to the ASTM standard C1239-

07 [1].  

 

5. Application of the Three-Step Methodology to Six Sets of Minimum Strength 

Data 

 

To show that our new approach is applicable not only to glass, as we did in the previous three sections, 

but also to other ceramic or metallic materials, we applied the three-step methodology to five more data 

sets (see Data Set Nos. 2 through 6 in Appendix A). Those data sets came from Duffy, et al. [24], Quinn 

[25], and NRIM [26], which provided data sets for two more ceramic materials and a metal alloy (a high-

strength steel used in the World Trade Center Towers). The complete analysis results for all six sets of data 

including Data Set No. 1 (glass) are summarized in Table 3. 

For completeness, we attach the raw GoF statistics for all six data sets in Appendix B, and the results 

of the three-step analysis for the remaining five data sets, Data Set Nos. 2 through 6, in Appendices C 

through G, respectively. 

It is interesting to note that Data Set Nos. 2 and 3 are for the same material, silicon nitride (Si3N4), 

based on two different tests, namely the four-point bend test (Data Set No. 2), and the biaxial pressurized 

disk test (Data Set No. 3). Plots of the normalized GoF statistic vs. the six GoF test scenarios in Figs. 9 and 

10 for the two data sets clearly shows that the selection of the best-fit model for silicon nitride depends on 

the test from which the data were generated. If it is from a four-point bend test, the choice is 3pW. If it is 

from a biaxial test, the choice is normal. The 2pW function is, nevertheless, not a good choice in either 

case. For brevity, similar plots for Data Set Nos. 1, 4, 5, and 6 are not included in this paper. 
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Fig. 9. Silicon nitride (Si3N4) with a four-point bend test: Model selection results (Data Set No. 2). 

 

 
 

Fig. 10. Silicon nitride (Si3N4) with a biaxial test: Model selection results (Data Set No. 3). 
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Table 3. Model selection results for six data sets of fracture strength of four materials. 

 

Data Set No., 

Material, 

Temperature 

Sample Size 

Mean 

Standard- 

Deviation 

Metric 

No. 

Model 1 

 

Normal 

 

Model 2 

Two- 

parameter 

Weibull 

Model 3 

Three- 

parameter 

Weibull 

Model 4 

Two- 

parameter 

lognormal 

Model 5 

Three- 

parameter 

lognormal 

 

1. 

 

BK-7 glass 

 

20 °C  

 

31 

 

212.4 MPa 

 

50.0 MPa 

 

 

Metric 1 

 

Metric 2 

 

Rank based 

on metric 1 

 

 

0.05 

 

38 % 

 

4 

 

 

0 

 

30 % 

 

5  

(worst) 

 

1.0 

 

11 % 

 

1 

(best) 

 

0.78 

 

16 % 

 

2 

 

 

0.60 

 

19 % 

 

3 

 

 

2.  

Silicon 

nitride (four-

point bend) 

 

20 °C 

 

27 

 

733.2 MPa 

 

77.7 MPa 

 

 

Metric 1 

 

Metric 2 

 

Rank based 

on metric 1 

 

0.19 

 

11 % 

 

4 

 

 

0.03 

 

15 % 

 

5  

(worst) 

 

1.0 

 

4 % 

 

1 

(best) 

 

0.58 

 

13 % 

 

3 

 

 

0.73 

 

7 % 

 

2 

 

 

3.  

Silicon 

nitride (bi-

axial test) 

20 °C 

 

32 

 

688.7 MPa 

 

63.1 MPa 

 

 

Metric 1 

 

Metric 2 

 

Rank based 

on metric 1 

 

 

0.97 

 

8 % 

 

1 

(best) 

 

0.54 

 

12 % 

 

4 

 

 

0.16 

 

12 % 

 

5 

(worst) 

 

1.0a 

 

7 %a 

 

2a 

 

 

0.73 

 

10 % 

 

3 

 

 

4. 

 

Al. oxide 

 

20 °C  

 

30 

 

444.0 MPa 

 

52.1 MPa 

 

 

Metric 1 

 

Metric 2 

 

Rank based 

on metric 1 

 

 

1.0 

 

12 % 

 

1 

(best) 

 

0.88 

 

16 % 

 

3 

 

 

0.32 

 

13 % 

 

4 

 

 

0.97 

 

9 % 

 

2 

 

 

0.12 

 

57 % 

 

5 

(worst) 

 

5.  

High- 

 

strength 

 

steel, 20 °C 

 

 

21 

 

638.3 

 

43.3 MPa 

 

 

Metric 1 

 

Metric 2 

 

Rank based 

on metric 1 

 

 

0.28 

 

7 % 

 

4 

 

 

0 

 

12 % 

 

5 

(worst) 

 

1.0 

 

3 % 

 

1 

(best) 

 

0.69 

 

6 % 

 

3 

 

 

0.85 

 

4 % 

 

2 

 

 

6.  

High- 

 

strength 

 

steel, 600 °C 

 

 

21 

 

300.6 MPa 

 

26.2 MPa 

 

 

Metric 1 

 

Metric 2 

 

Rankb based 

on metric 2 

 

 

0.64 

 

10 % 

 

4 

 

 

0.28 

 

15 % 

 

5 

(worst) 

 

0.58 

 

4 % 

 

1 

(best) 

 

0.93b 

 

8 % 

 

3 

 

 

0.49 

 

6 % 

 

2 

 

aThe assumption of a zero-location parameter precludes model 4 from being selected as rank 1. 
bIn this special case when we disqualified model 4 for being selected as rank 1 based on metric 1 and found the metric 1 values of 

model 1 and model 3 too close to call, we switched to the use of metric 2 for ranking the model selection process.  
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6. Significance and Limitations of the Three-Step Minimum Strength Modeling 

Approach 
 

The proposed three-step approach outlined in this paper is novel in each of its three steps. In step 1 

(Model Selection), we developed a composite normalized GoF statistic named metric 1 to rank and select 

the “best” model. In step 2 (Laboratory-Scale Modeling), we introduced a method for quantifying the 

uncertainty of the parameters of each distribution by estimating both their mean value and standard 

deviation. In step 3 (Component or Structural Full-Scale Modeling), we formulated the concept of an 

uncertainty metric named metric 2 based on the estimates of the upper and lower tolerance limits of the so-

called A-basis design allowable minimum strength. In Table 4, we show the significance of our new 

approach by comparing the A-basis design allowable minimum strength for the six data sets using either 

the 2pW (ASTM C1239-07 [1]), or the best-fit choice from our approach. A word of caution needs to be 

said about the limitations of our approach. First of all, we assumed that the test data are unimodal, and we 

chose our candidate distributions also to be unimodal, so it is not clear if our approach will be useful if the 

test data set is not unimodal. Second, we only chose a small set of models, namely five (normal, 2pW, 

3pW, 2pLN, and 3pLN), to work with, and there may be many other distributions that could better fit the 

data. Nevertheless, since the ASTM C1239-07 suffers the same limitations as outlined above, our approach 

provides a new and more rational alternative to the current practice. 

 
Table 4. Comparison of the A-basis design allowable minimum strength (MPa) selected from the 2pW model (ASTM) approach vs. 

our approach by making the best choice among five models according to a goodness-of-fit or tolerance limit uncertainty metric. 

 

 

"A-Basis" Design Allowable  

Minimum Strength (MPa) 

(95 % confidence, 99 % coverage) 

  

Data Set (DS) No., Material Name, Temperature 

(Type of Strength Test) 

2p Weibull 

(ASTM) 

Approach 

Our Approach Difference 

DS-1.   BK-7 glass at 20 °C 

(biaxial test) 
60.0 116.3 + 94 % 

DS-2.   Silicon nitride at 20 °C 

(four-point bend test) 
414.2 590.5 + 43 % 

DS-3.   Silicon nitride at 20 °C 

(biaxial test) 
432.1 487.1 + 13 % 

DS-4.   Aluminum oxide at 20 °C 

(uniaxial test) 
239.2 275.7 + 15 % 

DS-5.   High-strength steel at 20 °C 

(uniaxial test) 
428.5 554.9 + 30 % 

DS-6.   High-strength steel at 600 °C 

(uniaxial test) 
177.4 247.7 + 40 % 

 
It is interesting to note that, for Data Set No. 2, which is shown in bold in Table 6 (Appendix A), 

another comparison can be made between our result and a 3p Weibull fit to the same data by Duffy, et al. 

[24], who used a nonlinear regression technique proposed by Margetson and Cooper [27]. The three 

parameters estimated by Duffy, et al. [24] differ considerably from ours (given in Appendix C) as shown in 

Table 5: 
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Table 5. Comparison of the estimated values of the three parameters of a Weibull distribution chosen to fit a 27 point sample data set 

(our Data Set No. 2) of a four-point bend fracture strength test of silicon nitride at 20 °C using the 1992 approach by Duffy, et al [24] 

and our approach described in this paper. 

 

Modeling Approach Using a 

Three-Parameter Weibull Distribution Model 

Parameter 1 

(Location) 

Parameter 2 

(Scale) 

Parameter 3 

(Shape) 

The 1992 approach by Duffy, et al. [24] using a nonlinear 

regression technique proposed by Margetson and Cooper [27].   
558.1 861.6 1.68 

Our three-step modeling approach using the maximum likelihood 

method of parameter estimation as shown in Appendix C. 
603.2 145.5 1.72 

 
Since ours is based on the maximum likelihood method and four goodness-of-fit statistics criteria that 

include the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic, both of which happened to 

be cited by Duffy, et al. [24] as keys to the next best approach after theirs using the nonlinear regression 

technique, we believe our work provides a direct response to their challenge, and is an improvement over 

their 1992 results [24]. 

 

7. Concluding Remarks and Future Work 
 

A three-step approach to improve the ASTM recommended practice C1239-07 for reporting fracture 

strength data based on the two-parameter Weibull distribution has been formulated and applied not only to 

ceramics but also to a broader class of materials. Using a six-scenario goodness-of-fit test statistics ranking 

methodology and the classical theory of tolerance limits to analyze six sets of laboratory data, we 

succeeded in demonstrating that the two-parameter Weibull distribution is a poor choice to represent 

strength data in all six cases. In four of the six cases, the best choice among a small set of five candidate 

models is the three-parameter Weibull distribution, and in two, the best choice is the normal distribution. 

This leads us to conclude that the two-parameter Weibull, as recommended in ASTM C1239-07, is not a 

sound choice to represent strength data and to derive minimum strength design allowable properties, and 

that a statistically sounder approach such as ours is feasible and applicable to at least a large class of brittle 

materials as represented by the three examples of ceramics and their laboratory test data chosen in this 

paper.  

It is important to note that our approach and the accompanying mathematical rigor were developed 

specifically for very brittle materials tested in laboratory conditions. Even though we did include one 

example of a steel at room temperature and another at 600 °C, and our approach appeared to yield the same 

result as the ceramics, we believe it is premature to conclude its general applicability, since other details 

may be necessary for high rate loading and elevated temperature environments. By adding more material 

examples in our future work, we plan to answer the question whether our approach is applicable to a 

broader class of engineering materials in addition to brittle materials. 
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8. Appendix A: Fracture Failure Test Data of Four Engineering Materials 

 
Table 6. Six sets of failure strength data for four engineering materials. 

 

 

Data Set No. 

[Ref.] 

Material Name 

Temperature 

(Type of Test) 

 

Sample Size 

 

 

DS-1 

[6] 

BK-7 Glass 

20 °C 

(Biaxial Test) 

 

31 

 

 

DS-2a 

[24] 

Silicon 

Nitride, 20 °C 

(Four-Point 

Bend) 

 

27 

 

 

DS-3 

[24] 

Silicon 

Nitride, 20 °C 

(Biaxial Test) 

 

32 

 

 

DS-4 

[25] 

Aluminum 

Oxide, 20 °C 

(Uniaxial 

Test) 

 

30 

 

 

DS-5 

[26] 

High-Strength 

Steel, 20 °C 

(Uniaxial 

Test) 

 

21 

 

 

DS-6 

[26] 

High-Strength 

Steel, 600 C 

(uniaxial test) 

 

21 

 

Test data no.       

1 129.83 613.9 549.7 307 571 258 

2 143.42 623.4 575.5 371 578 269 

3 149.33 639.3 587.4 380 592 270 

4 158.79 642.1 622 393 601 276 

5 160.17 653.8 636.7 393 603 276 

6 165.83 662.4 639.3 402 604 279 

7 167.69 669.5 642.6 407 612 282 

8 175.82 672.8 646.3 409 618 288 

9 175.96 681.3 659.3 411 625 290 

10 177.89 682 659.6 428 629 299 

11 184.03 699 660.4 430 630 300 

1 184.58 714.5 661.4 434 630 310 

13 184.65 717.4 667.8 435 636 311 

14 186.51 725.5 668.9 437 648 312 

15 190.79 741.6 670.8 441 660 313 

16 206.16 744.9 684.8 445 672 313 

17 214.5 751 686.2 445 676 316 

18 228.91 761.7 691.3 449 692 317 

19 232.57 763.9 693.8 455 693 330 

20 232.78 774.2 698.1 462 698 338 

21 233.67 791.6 706.9 465 736 366 

22 239.67 795.2 718.1 466   

23 246.5 829.8 718.8 480   

24 247.6 838.4 726.4 485   

25 254.98 856.4 732.2 486   

26 255.67 868.3 738.1 499   

27 255.74 882.9 748.2 499   

28 272.9  771.5 500   

29 303.69  780.7 543   

30 312.28  786.3 562 30  

31 312.9  796.2    

32 

 
  

811.6 
   

(Note: Unit is MPa.)       

a Data Set No. 2 (DS-2) is displayed in bold to bring attention to its association with a statement we made in Sec. 6 regarding a 

comparison of two approaches to a statistical fit of the data set. 
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9. Appendix B: Raw Goodness-of-Fit Statistics before Normalization for Six Data 

Sets 
 

Table 7. Data Sets DS-1, DS-2, and DS-3: Goodness-of-fit statistics for five candidate models. 

 

Goodness-of-Fit (GoF) Criterion and 

Parameter Estimation (PE) Method 

Combination (Combo) Scenario 

GoF/PE 

Combo 

No. 

Model 1 

 

Normal 

 

Model 2 

Two- 

Parameter 

Weibull 

Model 3 

Three- 

Parameter 

Weibull 

Model 4 

Two- 

Parameter 

Lognormal 

Model 5 

Three- 

Parameter 

Lognormal 

DS-1. BK-7 glass at 20 °C 

(biaxial test) 
      

CS-ML. Chi square (CS)-ML 
method 1 combo 

CS-1 13.72 13.70 10.61 11.65 11.91 

AD-ML. Anderson-Darling (AD)-ML 
method 1 combo 

AD-1 0.532 0.597 0.338 0.389 0.398 

KS-ML. Kolmorogov-Smirnov (KS)- 
ML method-1 combo 

KS-1 0.151 0.153 0.117 0.122 0.129 

AD-PC. Anderson-Darling (AD)- 
PPCC method 2 combo 

AD-2 0.513 N.A.a 0.318 N.A. 0.374 

KS-PC. Kolmorogov-Smirnov (KS)- 
PPCC method 2 combo 

KS-2 0.149 N.A. 0.114 N.A. 0.124 

PC-PC. PPCC (PC) criterion- 
PPCC method 2 combo 

PC-2 0.980 N.A. 0.988 N.A. 0.986 

       

DS-2. Silicon nitride at 20 °C 

(four-point bend test) 
      

CS-ML. Chi square (CS)-ML 
method 1 combo 

CS-1 5.372 7.065 3.692 4.761 4.522 

AD-ML. Anderson-Darling (AD)-ML 
method 1 combo 

AD-1 0.313 0.539 0.197 0.244 0.226 

KS-ML. Kolmorogov-Smirnov (KS)- 
ML method-1 combo 

KS-1 0.115 0.112 0.082 0.109 0.092 

AD-PC. Anderson-Darling (AD)- 
PPCC method 2 combo 

AD-2 0.289 N.A. 0.153 N.A. 0.184 

KS-PC. Kolmorogov-Smirnov (KS)- 
PPCC method 2 combo 

KS-2 0.110 N.A. 0.086 N.A. 0.095 

PC-PC. PPCC (PC) criterion- 
PPCC method 2 combo 

PC-2 0.986 N.A. 0.994 N.A. 0.991 

       

DS-3. Silicon nitride at 20 °C 

(biaxial test) 
      

CS-ML. Chi square (CS)-ML 

method 1 combo 
CS-1 4.477 6.719 5.476 4.078 4.594 

AD-ML. Anderson-Darling (AD)-ML 
method 1 combo 

AD-1 0.232 0.500 1.000 0.232 0.231 

KS-ML. Kolmorogov-Smirnov (KS)- 
ML method-1 combo 

KS-1 0.080 0.110 1.000 0.086 0.079 

AD-PC. Anderson-Darling (AD)- 
PPCC method 2 combo 

AD-2 0.237 N.A. 0.263 N.A. 0.237 

KS-PC. Kolmorogov-Smirnov (KS)- 
PPCC method 2 combo 

KS-2 0.087 N.A. 0.092 N.A. 0.089 

PC-PC. PPCC (PC) criterion- 
PPCC method 2 combo 

PC-2 0.992 N.A. 0.991 N.A. 0.990 

aN.A. is not applicable. 
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9.   Appendix B (Continued) 
 

Table 8. Data Sets DS-4, DS-5, and DS-6: Goodness-of-fit statistics for five candidate models. 

 

Goodness-of-Fit (GoF) Criterion and 

Parameter Estimation (PE) Method 

Combination (Combo) Scenario 

GoF/PE 

Combo 

No. 

Model 1 

 

Normal 

 

Model 2 

Two- 

Parameter 

Weibull 

Model 3 

Three- 

Parameter 

Weibull 

Model 4 

Two- 

Parameter 

Lognormal 

Model 5 

Three- 

Parameter 

Lognormal 

DS-4. Aluminum oxide at 20 °C 

(uniaxial test) 
      

CS-ML. Chi square (CS)-ML 
method 1 combo 

CS-1 0.562 1.591 0.725 0.536 10.00 

AD-ML. Anderson-Darling (AD)-ML 

method 1 combo 
AD-1 0.232 0.472 1.000 0.293 1.000 

KS-ML. Kolmorogov-Smirnov (KS)- 
ML method-1 combo 

KS-1 0.080 0.106 1.000 0.102 1.000 

AD-PC. Anderson-Darling (AD)- 
PPCC method 2 combo 

AD-2 0.255 N.A. 0.309 N.A. 0.271 

KS-PC. Kolmorogov-Smirnov (KS)- 
PPCC method 2 combo 

KS-2 0.082 N.A. 0.083 N.A. 0.097 

PC-PC. PPCC (PC) criterion- 
PPCC method 2 combo 

PC-2 0.985 N.A. 0.983 N.A. 0.983 

       

DS-5. High-strength steel 

at 20 °C (uniaxial test) 
      

CS-ML. Chi square (CS)-ML 
method 1 combo 

CS-1 2.516 3.652 2.099 2.354 2.340 

AD-ML. Anderson-Darling (AD)-ML 

method 1 combo 
AD-1 0.328 0.603 0.187 0.273 0.188 

KS-ML. Kolmorogov-Smirnov (KS)- 
ML method-1 combo 

KS-1 0.147 0.173 0.090 0.136 0.095 

AD-PC. Anderson-Darling (AD)- 
PPCC method 2 combo 

AD-2 0.317 N.A.a 0.166 N.A. 0.190 

KS-PC. Kolmorogov-Smirnov (KS)- 
PPCC method 2 combo 

KS-2 0.145 N.A. 0.100 N.A. 0.112 

PC-PC. PPCC (PC) criterion- 
PPCC method 2 combo 

PC-2 0.983 N.A. 0.995 N.A. 0.992 

       

DS-6. High-strength steel 

at 600 °C (uniaxial test) 
      

CS-ML. Chi square (CS)-ML 
method 1 combo 

CS-1 1.320 2.449 10.00 1.075 10.00 

AD-ML. Anderson-Darling (AD)-ML 

method 1 combo 
AD-1 0.343 0.616 0.304 0.309 0.327 

KS-ML. Kolmorogov-Smirnov (KS)- 
ML method-1 combo 

KS-1 0.123 0.168 0.151 0.131 0.159 

AD-PC. Anderson-Darling (AD)- 
PPCC method 2 combo 

AD-2 0.343 N.A. 0.283 N.A. 0.293 

KS-PC. Kolmorogov-Smirnov (KS)- 
PPCC method 2 combo 

KS-2 0.129 N.A. 0.137 N.A. 0.139 

PC-PC. PPCC (PC) criterion- 
PPCC method 2 combo 

PC-2 0.977 N.A. 0.984 N.A. 0.985 

aN.A. is not applicable. 
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10. Appendix C: Minimum Strengths of Silicon Nitride (20 °C) of Data Set DS-2  

 
Table 9. Estimates of minimum strength at laboratory- and full-scale sizes for five candidate models based on Data Set DS-2 (silicon 

nitride) at 20 °C (four-point bend test). 

 

 

 

Model 1 

Normal 

Model 2 

2p Weibull 

Model 3 

3p Weibull 

Model 4 

2p lognormal 

Model 5 

3p lognormal 

Laboratory-Scale       

Composite normalized 

GoF statistic (metric 1) 

(Ranges from 0 to 1,  

worst to best.) 

0.19 
0.03 

(worst) 

1.0 

(best) 
0.58 0.73 

Parameter 1 (Location) 

 

Point estimate of location, 

 

Standard deviation of location 

 

 

733.2 

 

15.0 

 

 

None. 

 

None. 

 

 

603.2 

 

18.5 

 

 

None. 

 

None. 

 

 

470.9 

 

125.2 

 

One-sided 95 % confidence 

minimum strength at sample 

scale  =  ( lower limit , 

                  point estimate , 

upper limit  ) 

 
 

 
 

( 546.6, 

605.4, 
            643.0) 

 
 

 
 

( 512.6, 

573.0, 
  633.4) 

 
 

 
 

( 572.8, 

603.2, 
633.6) 

 
 

 
 

( 566.7, 

613.6, 
     645.6) 

 
 

 
 

( 264.9, 

470.9, 
     676.9) 

Parameter 2 (Scale) 

 

Point estimate of scale, 

 

Standard deviation of scale 

 

 

77.7 

 

10.8 

 

 

768.5 

 

15.4 

 

 

145.5 

 

29.6 

 

 

729.3 

 

14.9 

 

 

251.3 

 

131.6 

Parameter 3 (Shape) 

 

Point estimate of shape, 

 

Standard deviation of shape 

 

 

None. 

 

None. 

 

 

10.1 

 

1.52 

 

 

1.72 

 

0.415 

 

 

0.105 

 

0.03 

 

 

0.296 

 

0.159 

Full-Scale Size       

 

95 % confidence, 99 % 

coverage A-basis design 

allowable (AbDA) 

Uncertainty (metric 2) 

(Note: Small is good.) 

 

11 % 
15 % 

(worst) 

4 % 

(best) 
13 % 7 % 

 

95 % confidence, 99 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or A-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 

 
 

 

 
( 476.8, 

       

552.4, 
            598.6) 

 
 
 
 
 
( 414.2, 

   
487.7, 

  561.2) 

 
 
 
 
( 590.5, 

   
613.2, 

   635.9) 

 
 
 
 
 
( 515.7, 

    
571.2, 

     667.3) 

 
 
 
 
 
( 558.2, 

    
597.1, 

     636.1) 

 

95 % confidence, 90 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or B-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
( 583.0, 

      
633.6, 

            667.4) 

 
 
 
 
( 562.2, 

   
615.2, 

  668.2) 

 
 
 
 
 
( 621.9, 

   
642.4, 

   662.9) 

 
 
 
 
 
( 595.3, 

    
637.5, 

     667.3) 

 
 
 
 
 
( 616.7, 

   
642.9, 

     669.0) 
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11. Appendix D: Minimum Strengths of Silicon Nitride (20 °C) of Data Set DS-3 

 
Table 10. Estimates of minimum strength at laboratory- and full-scale sizes for five candidate models based on Data Set DS-3 (silicon 

nitride) at 20 °C (biaxial test). 

 

 

 

Model 1 

Normal 

Model 2 

2p Weibull 

Model 3 

3p Weibull 

Model 4 

2p lognormal 

Model 5 

3p lognormal 

Laboratory-Scale.      

Composite normalized 

GoF statistic (metric 1) 

(Ranges from 0 to 1,  

worst to best.) 

0.97 

(best) 
0.54 

0.16 

(worst) 

(Disqualified. 

See Table 3 for 

more details.) 

0.73 

Parameter 1 (Location) 

 

Point estimate of location, 

 

Standard deviation of location 

 

 

688.7 

 

11.2 

 

 

None. 

 

None. 

 

 

402.5 

 

146.9 

 

 

None. 

 

None. 

 

 

-3096. 

 

33279. 

 

One-sided 95 % confidence 

minimum strength at sample 

scale  =  ( lower limit , 

                  point estimate , 

upper limit  ) 

 
 
 
 

( 542.2, 

584.9, 
            613.3) 

 
 
 
 

( 514.4, 

560.1, 
   605.8) 

 
 
 
 

( 160.9, 

402.5, 
 644.1) 

 
 
 
 

( 553.3, 

589.0 
     614.1) 

 
 
 

Negative 

Value 
 

Parameter 2 (Scale) 

 

Point estimate of scale, 

 

Standard deviation of scale 

 

 

63.1 

 

8.0 

 

 

717.1 

 

11.1 

 

 

310.9 

 

150.6 

 

 

685.8 

 

11.3 

 

 

3784. 

 

(Not available.) 

Parameter 3 (Shape) 

 

Point estimate of shape, 

 

Standard deviation of shape 

 

 

None. 

 

None. 

 

 

12.02 

 

1.66 

 

 

5.21 

 

2.65 

 

 

0.092 

 

0.012 

 

 

0.016 

 

(Not available.) 

Full-Scale Size.      

 

95 % confidence, 99 % 

coverage A-basis design 

allowable (AbDA) 

Uncertainty (metric 2) 

(Note: Small is good.) 

 

8 % 

(best) 

12 % 

(worst) 

12 % 

(worst) 

(Disqualified. 

See Table 3 for 

more details.) 

10 % 

95 % confidence, 99 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or A-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
 
( 487.1, 

 
541.9, 

       576.8) 

 
 
 
 
 
( 432.1, 

 
489.1, 

   546.1) 

 
 
 
 
 
( 469.3, 

 
531.2, 

  593.0) 

 
 
 
 
 
( 510.3, 

 
553.0, 

      582.1) 

 
 
 
 
 
( 491.6, 

 
546.4, 

      601.2)  

95 % confidence, 90 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or B-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
( 571.0, 

 
607.8, 

            633.3) 

 
 
 
 
( 555.0, 

 
594.7, 

   634.3) 

 
 
 
 
( 572.2, 

 
604.4, 

   636.6) 

 
 
 
 
( 577.1, 

 
609.1, 

      632.3) 

 
 
 
 
( 580.4, 

 
609.4, 

     638.3) 
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12. Appendix E: Minimum Strengths of Aluminum Oxide (20 °C) of Data Set DS-4  

 
Table 11. Estimates of minimum strength at laboratory- and full-scale sizes for five candidate models based on Data Set DS-4 

(aluminum oxide) at 20 °C (uniaxial test). 

 

 

 

Model 1 

Normal 

Model 2 

2p Weibull 

Model 3 

3p Weibull 

Model 4 

2p lognormal 

Model 5 

3p lognormal 

Laboratory-Scale       

Composite normalized 

GoF statistic (metric 1) 

(Ranges from 0 to 1,  

worst to best.) 

1.0 

(best) 
0.88 0.32 0.97 

0.12 

(worst) 

Parameter 1 (Location) 

 

Point estimate of location, 

 

Standard deviation of location 

 

 

444.0 

 

9.5 

 

 

None. 

 

None. 

 

 

258.3 

 

67.1 

 

 

None. 

 

None. 

 

 

-1331. 

 

(Not available.) 

 

One-sided 95 % confidence 

minimum strength at sample 

scale  =  ( lower limit , 

                  point estimate , 

upper limit  ) 

 
 
 
( 321.6, 

358.3, 
       382.4) 

 
 
 
( 301.3, 

338.3, 
   375.4) 

 
 
 
( 147.9, 

258.3, 
   368.6) 

 
 
 
( 332.2, 

361.7, 
     382.4) 

 
 
 

(Not 
Available.) 

 

Parameter 2 (Scale) 

 

Point estimate of scale, 

 

Standard deviation of scale 

 

 

52.1 

 

6.8 

 

 

466.6 

 

9.7 

 

 

204.9 

 

70.4 

 

 

440.9 

 

9.8 

 

 

1775. 

 

(Not available.) 

Parameter 3 (Shape) 

 

Point estimate of shape, 

 

Standard deviation of shape 

 

 

None. 

 

None. 

 

 

9.24 

 

1.32 

 

 

4.00 

 

1.53 

 

 

0.12 

 

0.016 

 

 

0.29 

 

(Not available.) 

Full-Scale Size.      

95 % confidence, 99 % 

coverage A-basis design 

allowable (AbDA) 

Uncertainty (metric 2) 

(Note: Small is good.) 

 

12 % 16 % 13 % 9 % 57 % 

95 % confidence, 99 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or A-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
( 275.7, 

 
322.9, 

            352.5) 

 
 
 
 
( 239.2,  

 
283.6, 

  328.0) 

 
 
 
 
( 282.1, 

 
323.2, 

  364.3) 

 
 
 
 
( 298.7, 

 
333.1, 

     356.8) 

 
 
 

 

(Not 
Available.) 

 

95 % confidence, 90 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or B-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
( 345.6, 

 
377.3, 

            398.9) 

 
 
 
 
( 333.0, 

 
365.8, 

   398.5) 

 
 
 
 
( 350.2, 

 
375.0, 

   399.8) 

 
 
 
 
( 351.2, 

 
377.8, 

     397.2) 

 
 
 
 

(Not 
available.) 
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13. Appendix F: Minimum Strengths of a High-Strength Steel (20 °C) of Data Set 

DS-5  
 

Table 12. Estimates of minimum strength at laboratory- and full-scale sizes for five candidate models based on Data Set DS-5 (high-

strength steel) at 20 °C (uniaxial test). 

 

 

 

Model 1 

Normal 

Model 2 

2p Weibull 

Model 3 

3p Weibull 

Model 4 

2p lognormal 

Model 5 

3p lognormal 

Laboratory-Scale      

Composite normalized 

GoF statistic (metric 1) 

(Ranges from 0 to 1,  

worst to best.) 

0.28 
0 

(worst) 

1.0 

(best) 
0.69 0.85 

Parameter 1 (Location) 

 

Point estimate of location, 

 

Standard deviation of location 

 

 

538.3 

 

9.5 

 

 

None. 

 

None. 

 

 

563.5 

 

12.4 

 

 

None. 

 

None. 

 

 

494.2 

 

77.8 

 

One-sided 95 % confidence 

minimum strength at sample 

scale  =  ( lower limit , 

                  point estimate , 

upper limit  ) 

 
 
 
( 527.8, 

566.8, 

            590.2) 
 

 
 
 
( 496.6, 

540.2, 

  583.9) 
 

 
 
 
( 543.2, 

563.5, 

   583.9) 
 

 
 
 
( 536.8, 

570.2, 

591.2) 
 

 
 
 
( 366.2, 

494.2, 

     622.3) 
 

Parameter 2 (Scale) 

 

Point estimate of scale, 

 

Standard deviation of scale 

 

 

43.4 

 

6.9 

 

 

658.8 

 

10.1 

 

 

83.9 

 

19.0 

 

 

636.9 

 

9.4 

 

 

137.9 

 

81.8 

Parameter 3 (Shape) 

 

Point estimate of shape, 

 

Standard deviation of shape 

 

 

None. 

 

None. 

 

 

15.0 

 

2.55 

 

 

1.80 

 

0.53 

 

 

0.067 

 

0.011 

 

 

0.296 

 

0.181 

Full-Scale Size      

95 % confidence, 99 % 

coverage A-basis design 

allowable (AbDA) 

Uncertainty (metric 2) 

(Note: Small is good.) 

7 % 
12 % 

(worst) 

3 % 

(best) 
6 % 4 % 

95 % confidence, 99 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or A-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
 
( 486.8, 

 
537.2, 

            565.9) 

 
 
 
 
 
( 428.5, 

 
484.5, 

  540.5) 

 
 
 
 
 
( 554.9, 

 
570.1, 

   585.2) 

 
 
 
 
 
( 503.8, 

 
544.7, 

     569.4) 

 
 
 
 
 
( 539.2, 

 
563.5, 

     587.7) 

95 % confidence, 90 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or B-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
 
( 549.1, 

 
582.6, 

            603.7) 

 
 
 
 
 
( 529.4, 

 
566.9, 

   604.3) 

 
 
 
 
 
( 574.2, 

 
587.6, 

   601.0) 

 
 
 
 
 
( 554.8, 

 
584.3, 

     605.7) 

 
 
 
 
 
( 572.3, 

 
588.6, 

     604.9) 
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14. Appendix G: Minimum Strengths of a High-Strength Steel (600 °C) of Data Set 

DS-6  
 

Table 13. Estimates of minimum strength at laboratory- and full-scale sizes for five candidate models based on Data Set DS-6 (high-

strength steel) at 600 °C (uniaxial test). 

 

 

 

Model 1 

Normal 

Model 2 

2p Weibull 

Model 3 

3p Weibull 

Model 4 

2p lognormal 

Model 5 

3p lognormal 

Laboratory-Scale      

Composite normalized 

GoF statistic (metric 1) 

(Ranges from 0 to 1,  

worst to best.) 

0.64 0.28 0.58 

(Disqualified. 

See Table 3 for 

more details.) 

0.49 

Parameter 1 (Location) 

 

Point estimate of location, 

 

Standard deviation of location 

 

 

300.6 

 

5.7 

 

 

None. 

 

None. 

 

 

252.6 

 

8.4 

 

 

None. 

 

None. 

 

 

197.5 

 

68.6 

 

One-sided 95 % confidence 

minimum strength at sample 

scale  =  ( lower limit , 

                  point estimate , 

upper limit  ) 

 
 
 
 
( 234.0, 

257.5, 
            271.6) 

 
 
 
 
( 215.6, 

241.1, 
   266.7) 

 
 
 
 
( 238.8, 

252.6, 
   266.5) 

 
 
 
 
( 240.7, 

260.1, 
     272.4) 

 
 
 
 
( 84.4, 

197.5, 
     310.6) 

Parameter 2 (Scale) 

 

Point estimate of scale, 

 

Standard deviation of scale 

 

 

26.2 

 

4.1 

 

 

312.7 

 

6.3 

 

 

54.0 

 

12.0 

 

 

299.6 

 

5.7 

 

 

100.0 

 

71.1 

Parameter 3 (Shape) 

 

Point estimate of shape, 

 

Standard deviation of shape 

 

 

None. 

 

None. 

 

 

11.4 

 

1.9 

 

 

1.91 

 

0.56 

 

 

0.086 

 

0.014 

 

 

0.248 

 

0.18 

Full-Scale Size      

95 % confidence, 99 % 

coverage A-basis design 

allowable (AbDA) 

Uncertainty (metric 2) 

(Note: Small is good.) 

10 % 
15 % 

 

4 % 

(best) 
8 % 6 % 

95 % confidence, 99 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or A-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
 
( 209.3, 

 
239.7, 

            256.9) 

 
 
 
 
 
( 177.4, 

 
209.1, 

   240.7 )  

 
 
 
 
 
( 247.7, 

 
257.7, 

   267.7) 

 
 
 
 
 
( 222.0, 

 
245.3, 

      259.6) 

 
 
 
 
 
( 237.3, 

 
253.7, 

     270.1) 

95 % confidence, 90 % 

coverage minimum strength at 

full scale 

(  lower tolerance limit 

   or B-basis of design , 

mean estimate , 

upper tolerance limit  ) 

 
 
 
 
 
( 246.8, 

 
267.0, 

            279.8) 

 
 
 
 
 
( 234.6,  

 
256.8, 

   279.0) 

 
 
 
 
 
( 260.9, 

 
269.6, 

  278.4) 

 
 
 
 
 
( 251.1, 

 
268.3, 

     279.8) 

 
 
 
 
 
( 259.8, 

 
270.3, 

    280.8) 
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