Sensitivity of Bacteria, Protozoa, Viruses, and Other Microorganisms to Ultraviolet Radiation

Mahsa Masjoudi¹, Madjid Mohseni¹, and James R. Bolton²

¹Department of Chemical & Biological Engineering University of British Columbia Vancouver, BC, V6T 1Z3 Canada

²Department of Civil and Environmental Engineering University of Alberta Edmonton, AB, T6G 2R3 Canada

masjoudi@mail.ubc.ca madjid.mohseni@ubc.ca jb3@ualberta.ca

Data concerning the sensitivity of various organisms to ultraviolet (UV) radiation exposure are very important in the design of UV disinfection equipment. This review analyzes fluence data from almost 250 studies and organizes the data into a set of recommended fluence values for specific log reductions and an appendix containing all the collected data.

Key words: algae; bacteria; log reduction; protozoa; spores; ultraviolet; ultraviolet radiation; viruses.

Accepted: June 29, 2021

Published: August 20, 2021

This article was sponsored by Dianne L. Poster, Material Measurement Laboratory, and C. Cameron Miller, Physical Measurement Laboratory, National Institute of Standards and Technology (NIST). It is published in collaboration with the International Ultraviolet Association as a complement to the NIST Workshop on Ultraviolet Disinfection Technologies, 14–15 January 2020, Gaithersburg, MD. The views expressed represent those of the authors and not necessarily those of NIST.

https://doi.org/10.6028/jres.126.021

1. Introduction

This paper represents the third revision of a compilation that goes back to 1999. The original compilation was an internal document of Trojan Technologies [1]. The first revision was published in 2006 [2], and the second revision was published in 2016 [3]. Data from the previous reviews have been included here. In addition, data from the past 5 years (up to March 2021) have been added. Two other reviews of the sensitivity of microorganisms to ultraviolet (UV) radiation have been published elsewhere [4, 5].

Tables A1–A5 (in Appendix A) present, to the best of our knowledge, a summary of all peer-reviewed fluence-response data for UV exposure of various microorganisms that are pathogens, indicators, or organisms encountered in the application, testing of performance, and validation of UV disinfection

1 How to cite this article: Masjoudi M, Mohseni M, Bolton JR (2021) Sensitivity of Bacteria, Protozoa, Viruses, and Other Microorganisms to Ultraviolet Radiation. J Res Natl Inst Stan 126:126021. https://doi.org/10.6028/jres.126.021 technologies. The tables reflect the current state of knowledge, but they also include the variation in technique and biological response that currently exists in the absence of standardized protocols (see Refs. 6 and 7). Most of the data are from studies of microorganisms suspended in water; however, there are a few entries for microorganisms on surfaces or in air. Users are encouraged to review the original referenced publication for more details on the experimental protocols before they use the data. The references from which the data were abstracted must be carefully read to understand how the reported fluences were calculated and the assumptions and procedures used in the calculations.

In most cases, the data were generated from low-pressure (LP) monochromatic mercury arc lamp sources for which the lamp fluence rate (irradiance) can be measured empirically and multiplied by exposure time (in seconds) to obtain an incident fluence onto the sample being irradiated. However, earlier data do not always contain the correction factors that are now considered standard practice in order to determine the average fluence delivered to the microorganisms within the irradiated sample [6, 7]. Such uncorrected data are marked and should be considered as upper limits, since the necessary corrections have not been made. Some data are from polychromatic medium-pressure (MP) mercury arc lamps, and in some cases, both lamp types were used. In some cases, filtered polychromatic UV light was used to achieve a narrow band of irradiation around 254 nm. There are also cases where narrow-band light sources, such as UV light-emitting diodes (LEDs) and excilamps (lamps that emit UV radiation when an excited complex, *e.g.*, $KrCl^*$ or Xe_2^* , dissociates), have been used. In those cases where the UV exposure was at wavelengths other than 254 nm, the reported fluences have been multiplied by a germicidal factor (GF), defined as the UV sensitivity of a microorganism at wavelength λ normalized to 1.00 at 254 nm. This allows for the fluences to be compared with those using an LP UV lamp at 254 nm. If an action spectrum is available, the GFs were obtained from published action spectra. If no action spectrum is available, the GFs were taken from the relative absorbance of DNA. All GFs were obtained from the review by Bolton [8], except for a few cases where GF values were based on recent data. Note that the GF correction is limited because light sources such as the 222 nm excilamp and UV-LEDs have a significant bandwidth.

None of the data incorporated any effect of photorepair processes [9]. Only the response to the inactivating fluence is documented.

It is the intention of the authors and sponsors to maintain this table, with periodic updates. Recommendations for inclusion in the tables, along with the reference sources, should be sent to the authors. The recommended selection criteria for inclusion are the same as those used in the collection of the data in these tables. These criteria are:

- 1. Data must already be published in a peer-reviewed journal or other peer-reviewed publication media. Some exceptions have been allowed where data are only available in non-peer-reviewed papers.
- 2. For the publications where an LP or MP UV lamp are used as the UV source, the calculated fluence should usually be determined by using a quasi-collimated beam apparatus; however, for other UV sources, this criterion was not strictly followed, and such cases are noted.
- 3. Ideally, the fluence rate (irradiance) should have been measured with a recently calibrated radiometer, and when this has not been done, a well-characterized organism should be run as a reference to provide a comparison with the literature values to substantiate that the radiometer is within calibration.
- 4. The publication from which the data are abstracted should describe the experimental procedures, including collimated beam procedures, fluence calculation procedures along with any assumptions made, organism culturing procedures, and enumeration and preparation for experiments.
- 5. Ideally, as noted above, the protocol published in Ref. [6] or the recently published International Ultraviolet Association (IUVA) Protocol [7] should be followed. In cases where this protocol has not been followed, notes to that effect have been provided.

- 6. In some cases, data are provided using a pseudo-monochromatic light source (*e.g.*, UV-LED or excilamp) at wavelengths other than 254 nm. These fluence values have been multiplied by the appropriate GF (see above), so that they can be compared with data obtained using an LP lamp. The GF used is listed in the Notes column of the tables (that is, to recover the value reported in the original reference, divide the value in the table by the GF in the Notes column).
- 7. Responses should be determined over a range of fluences, that is, a complete fluence-response curve is preferred to a single fluence-response measurement.

These criteria will be applied strictly for future editions of these tables.

For the users of these tables, the following points can be helpful in understanding the information provided:

- In some papers, the authors used different methods for enumeration of their selected microorganism, and based on that, they reported different fluence responses in their work compared with the work of others. Where this has happened for a specific paper, a brief description of the implemented method is provided within the box containing the name of the tested microorganism.
- For the studies with UV sources other than an LP lamp (*e.g.*, filtered MP lamps, UV-LEDs, excilamps), the full width at half maximum (FWHM) of wavelength distribution around the peak wavelength is usually about 10–12 nm, except for the tunable laser, where the bandwidth is less than 1 nm.
- Where the authors have reported kinetic models based on their experimental data, these models were used in fluence calculations for these tables. Where model fits were not provided, the fluence reported for each specific log reduction number was extracted by graphic linearization (World-Wide-Web plot digitizer software) between two adjacent experimental data points in the fluence range.
- In some cases, fluence-response curves have been determined at several wavelengths, so that an action spectrum can be determined. These cases are noted as "action spectrum"; however, only data for wavelengths near 254 nm are included in the tables. Data for other wavelengths can be obtained from the cited reference.
- The reader should be aware that for a given microorganism, there is a data spread even after the selection criteria have been applied. Some studies have applied a Bayesian statistical analysis (*e.g.*, see Refs. [10, 11]) to obtain an average fluence-response curve and 95 percentile limits. Some of the factors that could affect the reported data are: the medium (*e.g.*, drinking water or wastewater), differences in the nutritional state of the cells being assayed, the presence of particles because of a failure to fully disperse cells following preconcentration for the collimated beam assay, *etc*.
- For a given microorganism, the fluence-response curve can depend markedly on the strain examined. This is why studies of a given strain have been grouped together.
- Note that the data in the tables below originate from highly controlled protocols usually using defined media and culture methods, irradiation methods, *etc*. These data are useful when validating UV technologies and envisioning regulations; however, as water quality, growth-phase state, particle content, and a number of other factors can impact microbe responses to disinfection in real environmental samples or processed water, such real waters should be used for site-specific assessments of UV disinfection, and design specification should benefit from the results of assays using these site-specific waters.
- In some cases, the quality of the data was questionable and did not meet some of the selection criteria listed above. In these cases, the data entries are in italics.
- In some cases, errors are given; these are usually at the 95 % confidence level

These tables can be used as a helpful document for understanding the fluence responses of different microorganisms at various wavelengths, with different UV sources; however, if more details are important for the users of these data, they must read the reference provided for each study.

Throughout this review, fluence rate and irradiance (units mW cm⁻²) are used interchangeably, since they are virtually identical in a quasi-collimated beam apparatus. The term fluence (in units of mJ cm⁻²) is used, which is the proper term [see Ref. [12] for a recommended set of terms and definitions] rather than "UV dose," which was used in earlier revisions of this document; however, it should be noted that the term UV dose is still widely used. Finally, it is noted that in Europe and other parts of the world, the units W m⁻² for irradiance or fluence rate and J m⁻² for fluence (UV dose) are more commonly used; the conversions are 1 mW cm⁻² = 10 W m⁻² and 1 mJ cm⁻² = 10 J m⁻².

The data in the tables are for specific log reductions, where log reduction = 1, 2, 3, 4, and 5 for mean 90 %, 99 %, 99.9 %. 99.99 %, and 99.999 % reduction, respectively. Log reduction is defined as log_{10} (N_0/N), where N_0 is the initial viable microorganism count, and N is the final value after UV exposure.

2. Recommended Tables

In this review, for the first time, we have provided a table of recommended values, with the complete data set in Appendix A. The criteria for selecting recommended values were:

- Among various studies of a given microorganism/strain, a certain publication exhibited a very careful analysis that was deemed reliable.
- In some cases, data are available from a very large data set of fluence-response curves. In these cases, the entry in the recommendation table is highlighted in boldface type. These cases should be considered as *standard* values for that microorganism/strain.

Five tables of recommended values (Tables 1–5) cover spores, bacteria, protozoa, viruses, and algae and other large microorganisms.

		Fluence (U	JV Dose) (mJ ci Pl	on Without				
Spore	Lamp Type	1	2	3	4	5	Notes	Reference
Aspergillus niger	•							
ATCC 16404	LP	122	226	293				[13]
Bacillus anthracis Sterne	LP	23	30					[14]
Bacillus atrophaeus	LP	10	16	26	39			[15]
Bacillus cereus T	LP	23	30	35	40			[14]
Bacillus pumilus								
ATCC 27142	LP	87	189					[16]
Bacillus subtilis								
ATCC 6633 ^a	LP	22 ± 6	36 ± 7	49 ± 9	62 ± 11	75 ± 11		[17]
Encephalitozoon intestinalis	LP	2.8	5.6	8.4				[18]

Table 1. Recommended fluences for multiple log reductions for various spores.

^aData should be considered as *standard* values for the microorganism/strain.

		Fluence	e (UV Dose)	ithout					
Bacterium	Lamp Type	1	2	3	4	5	6	Notes	Reference
Actinobacter baumannii									
NCTC 12156	LP	0.6	1.8	3.3	4.8				[19]
Citrobacter diversus	LP	5	7	9	11	13			[20]
Citrobacter freundii	LP	5	9	13					[20]
Escherichia coli			-						
ATCC 11229	LP	4.1 ± 3.2	5.2 ± 3.3	6.2 ± 3.7	7.6 ± 4.4	8.6 ± 4.8	7.8		[21–24]
ATCC 25922	LP	6	6.5	7	8	9	10		[21]
ATCC 29425	LP	5.4	8.5	20					[25]
B ATCC 13033	LP	1.2	3	4.7	6.5	8.2	10		[15]
CGMCC 1.3373	LP	3.1	5.9	8	13				[26]
IFO 3301	LP	3.7	5.5	6.7	7.3	9.7			[27]
K12 ATCC 29425	LP	4 ± 3	7.3	9.4	14				[16, 28]
K12 IFO 3301	LP	2.0 ± 0.6	4	6	8				[29, 30]
NCTC 12241 – Antibiotic sensitive	LP	0.9	3.3	4.3	5.4	6.4			[31]
NCTC 13400 – Antibiotic resistant	LP	0.4	0.8	1.3	1.9	2.6			[31]
O157: H7 CCUG 29193	LP	3.5	4.7	5.5	7				[23]
O157: H7 CCUG 29197	LP	2.5	3	4.6	5	5.5			[23]
O157: H7 CCUG 29199	LP	0.4	0.7	1	1.1	1.3	1.4		[23]
O25: K98: NM	LP	5	7.5	9	10	12			[23]
O50: H7	LP	2.5	3	3.5	4.5	5	6		[23]
O78: H11	LP	4	5	5.5	6	7			[23]
OP50	LP	2	4.4	6.7	9.1				[32]
wild type	LP	4.4	6.2	7.3	8.1	9.2			[23]
Klebsiella pneumoniae	LP	5	7	10	12				[20]
Legionella longbeachae									
ATCC 33462	LP	1.4	3	4.7	6.3				[33]
Legionella pneumophila									
ATCC 33152	LP	1.7 ± 0.4	3.2 ± 0.5	4.6 ± 0.7	6 ± 1	8			[27, 33, 34]
ATCC 33823	LP	1.7	3.1	4.5	5.8				[33]
Sero group 1	LP	1.7	2.9	4.2	5.4				[33]
Sero group 8	LP	1.8	3.3	4.7	6.1				[33]
Mycobacterium terrae									
ATCC 15755	LP	3.8 ± 1.3	9.3	16					[35, 36]

Table 2. Recommended fluences for multiple log reductions for various bacteria.

		Fluence	e (UV Dose) (ithout					
Bacterium	Lamp Type	1	2	3	4	5	6	Notes	Reference
Pseudomonas aeruginosa	<u>.</u>	<u>.</u>						•	
ATCC 10145	LP	2.8	5.5	7	9.3				[27]
ATCC 15442	LP	1.6	3	4.8	8				[28]
NCTC 13437 – Antibiotic resistant	LP	0.7	1.5	2.3	6				[31]
Pseudomonas luteola									
Trimethoprim resistant HPC	LP	1.2	2.8	4.6	6.7				[31]
Salmonella typhimurium									
LT2 SL3770	LP	4	5.7	7.8				Action spectrum	[37]
LT2	LP	3.4	4.6	5.7	7.3			Action spectrum	[38]
Staphylococcus aureus	LP	2.1	3.2					Action spectrum	[39]
Vibrio harveyi	LP	5.2	6.9	8.9					[38]

Table 3. Recommended fluences for multiple log reductions for various protozoa.

		Fluence (UV Dose) (mJ o I	n Without					
Protozoan	Lamp Type	1	2	3	4	5	Notes	Reference	
Acanthamoeba castellanii									
CCAP 15342 (life stage: trophozoites)	LP	32	52	72				[33]	
CCAP 15342 (life stage: cysts)	LP	45	75	91	125			[33]	
Acanthamoeba spp.									
155 (life stage: trophozoites)	LP	28	31	66	71			[33]	
155 (life stage: cysts)	LP	34	67	99				[33]	
Cryptosporidium hominis [cell culture infectivity assay using HCT-8 cells (CCL-244) & MDBK cells]	LP	3	5.8					[40]	
Cryptosporidium parvum									
HNJ-1 [mouse infectivity assay (SCID mice)]	LP	<0.7	<1.4	2.2				[30]	
	LP	1.2 ± 0.6	2.4 ± 1.4	6.5	7.4	8		[38, 41–46]	

		Fluence (UV Dose) (mJ o H	n Without				
Protozoan	Lamp Type	1	2	3	4	5	Notes	Reference
[mouse infectivity assay (neonatal CD-1 mice)]	LP	2.4	<5	5.2	9.5			[47]
Giardia lamblia								
(gerbil infectivity assay)	LP	0.9	1	1.8	0.8			[48, 49]
Giardia muris								
(mouse infectivity assay)	LP	1.7	2.3	3.3	2.3			[49–51]
Vermamoeba vermiformis								
CCAP 15434 /7A (life stage: trophozoites)	LP	11	19	26	34			[33]
CCAP 15434/7A (life stage: cysts)	LP	17	38	54	78			[33]
195 (life stage: trophozoites)	LP	10	17	24	32			[33]
195 (life stage: cysts)	LP	32	60	76	110			[33]

Table 4. Recommended fluences for multiple log reductions for various viruses.

			Fluer	nce (UV Dose	e) (mJ cm ⁻²) fo Photore	or a Given Log activation	Reduction W	ithout		
Virus	Host	Lamp Type	1	2	3	4	5	6	Notes	Reference
Adenoviru	S									
Type 2		LP	37 ± 12	71 ± 11	108 ± 15	145 ± 24	156	235		[16, 52–65]
Type 4 ATCC VR-1572	PLC/PRF/5 ATCC CRL- 8024	LP	10	34	69	116				[66]
Type 5		LP	53 ± 23	92 ± 35	141 ± 45					[29, 63, 67]
Type 40		LP	57	99	138	130				[68, 69]
Type 41		LP	59 ± 38	116 ± 57	167	222				[63, 70]
B40-8 (phage)	Bacteroides fragilis	LP	12 ± 6	18 ± 6	23	29 ± 6	35	41		[21, 24]
Calcivirus	feline				•		•			•
ATCC VR-782	CRFK cells ^a	LP	5	14	21	28 ± 25	39			[68, 71]
Coronavir	us									
НСоV- 229Е	Human lung fibroblast MRC-5 cell line (ATCC CCL-171)	LP	1.7	3.2						[72]

	-		Fluer	ithout						
Virus	Host	Lamp Type	1	2	3	4	5	6	Notes	Reference
Coxsackie	virus									4
B3	BGM cell line ^b	LP	8	16	25	33				[52]
B4	BGM cell line	LP	7	13	18	24	29			[59]
В5	BGM cell line	LP	8.3	16	24	36				[52, 73]
Echovirus				-	-			-		
Ι	BGM cell line	LP	8	17	25	33				[52]
II	BGM cell line	LP	7	14	21	28				[52]
12	Fetal rhesus monkey kidney cell FRhK-4, ATCC CRL- 1688	LP	8	13	18	28	40			[71]
Hepatitis										
A HM175	FRhK-4 cell	LP	4	8	12	16				[73]
HEV- p6- kernow	HepG2/C3A cells ATCC CRL-10741	LP	6.5	12	18	23	30		(5)	[74]
JC polyom	avirus									
Mad-4	SVG-A cells	LP	123	124	171					[56]
MS2 colip	hage									-
ATCC15 977-B1 ^a	<i>E. coli</i> Hfr (<i>c</i> -3000)	LP	17 ± 2	39 ± 4	65 ± 8	96 ± 12	130 ± 18	17 ± 2		[75]
Murine he	patitis virus (MH	IV)								
A59	DBT cells	LP	1	2.1	3.2					[72]
Murine no	rovirus									
CW3	RAW 264.7 macrophags ATCC TIB- 71	LP	10	15	22	27	30			[71]
Myoviri dae	E. coli C	LP	1.8	3.6	5.1	6.7	8.5			[59]
PHI 6	Pseudomonas syringae	LP	30	71						[72]
PHI X 174										
(phage)		LP	2.7 ± 1.1	5.2 ± 2.1	7.6 ± 3.3	9 ± 2	12	14 ± 13		[20, 21, 24, 73, 76, 77]
Poliovirus	•									
Type 1	BGM cell line	LP	8.4 ± 4.4	17 ± 6	24 ± 13	31				[52, 59]

			Fluer	nce (UV Dose	e) (mJ cm ⁻²) fo Photore	or a Given Log activation	Reduction W	ithout		
Virus	Host	Lamp Type	1	2	3	4	5	6	Notes	Reference
PRD-1 (Te	ctiviridae)		•				•			
ATCC BAA- 769-B1	Salmonella typhimurium Lt2	LP	18	50	81	108	138			[59]
	Salmonella typhimurium Lt2	LP	10	17	24	33				[76, 78]
Qbeta		-	-				-	-		
ATCC 15597- B1	<i>E. coli</i> K12 A/ <i>l</i> (F+) ATCC 10798	LP	11	24					Action spectrum	[27]
ATCC 23631- B1	<i>E. coli</i> ATCC 23631	LP	8	19 ± 13	28	40				[69, 79]
phage	<i>E. coli</i> K12 A/ <i>l</i> (F+)	LP	11 ± 6	25 ± 19	38 ± 32	55				[29, 80]
Rotavirus		-	-		-		-	-	-	
SA-11		LP	7.5 ± 6.4	15	25	38				[21, 73]
Siphoviri dae	E. coli C	LP	1.8	3.6	5.7	7.5	9.3			[59]
T1	E. coli CN13	LP	N/A	N/A	N/A	13				[76]
T1UV	ſ	[1	r	[1	Γ	ſ	
HER 468°	<i>E. coli</i> CN13 ATCC 700609	LP	4.6 ± 0.4	9.5 ± 0.9	15 ±2	20 ± 2	26 ± 3			[75]
T4	E. coli	LP	1.1	2	3	4	6.7			[81]
Τ7										
ATCC BAA- 1025-B2 ^a	E. coli BL21	LP	1.3 ± 0.4	3.4 ± 1.0	6.3 ± 1.7	10 ± 3	14 ± 4			[75]
T7m										
ATCC 11303- B38	<i>E. coli</i> B ATCC 11303	LP	N/A	3.4					Action spectrum	[79]
V ₁ (Podovir idae)	E. coli WG5	LP	3.1	5.9	8.8					[59]

^aCrandell-Rees Feline Kidney Cell

^bBuffalo Green Monkey cells

^cData should be considered as standard values for the microorganism/strain.

		Fluence	e (UV Dose) (m						
Microorganism	Lamp Type	1	2	Notes	Reference				
Ascaris suum				•					
Intact eggs from worms	LP	100			[82]				
Decorticated eggs from worms	LP	30				[82]			
Microcystis aeruginosa									
PCC7806	LP	10	28			[83]			

Table 5. Recommended fluences for multiple log reductions for various algae and other microorganisms.

Appendix A—Summary of Collected Fluence-Response Data

Table A1. Fluences for multiple log reductions for various spo	ores
--	------

		Fluence	(UV Dose) (1 Witho	nJ cm ⁻²) for a put Photoreac	eduction				
Spore	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
Aspergillus brasiliensis	LP	122	226	293			yes		[13]
(previously known as							2		
Aspergillus niger)									
ATCC 16404									
(dark culture)									
Aspergillus fumigatus									
	UV-LED 255	4.7	8.7				yes	GF = 1.017	[84]
	nm								
	UV-LED 265	0.7	1.3	6			yes	GF = 0.941	[84]
	nm								
Aspergillus niger									
ATCC 32625	LP	116	245	370	560		yes		[85]
ATCC 32625	Excilamp 222 nm	62	150	222	294		yes	GF = 0.683	[85]
IFM 63883	Excilamp 222 nm	45	137				no	GF = 0.683	[86]
IFM 63883	LP	47	94				no		[86]
	LP		100				no		[87]
	UV-LED 265 nm	39	57	80			yes	GF = 0.941	[88]
	UV-LED 280 nm	18	29	39			yes		[88]
	LP	65	85				yes		[88]
	UV-LED 265 nm	31	53	70			yes	GF = 0.941	[89]
	UV-LED 280 nm	15	19	31	72		yes	GF = 0.486	[89]
	LP	60	85	167			yes		[89]
Aspergillus terreus			•	•			•	•	•
	UV-LED 255 nm	2	4.3	7	16		yes	GF = 1.017	[84]
	UV-LED 265 nm	0.6	1.0	1.4	4		yes	GF = 0.941	[84]
Bacillus anthracis	1		I	I	1		1	1	1
Sterne	LP	28	37	52			ves		[90]
Sterne	I P	23	30				Ves		[14]
Ames	I D	25	~40	>120 mitt toiling		Ves		[91]	
		23	40	>120 with tailing		yes		[91]	
54F2 (Sterne) method: soil extract– peptone–beef extract agar	LY	23	~40		120 with tailir	ıg	yes		[91]

		Fluence	(UV Dose) (r Witho	nJ cm ⁻²) for a ut Photoreact	Reduction				
Spore	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
34F2 (Sterne)	LP	23	36	80			ves	110000	[91]
method: Schaeffer's	21	20	20				<i>j</i> • 5		[2]
sporulation medium									
Bacillus atrophaeus			•	•	•				•
ATCC 9372	LP	22	38	55	71		yes		[92]
	LP	10	16	26	39		yes		[15]
	UV-LED	6.2	10	14	20	32	yes	GF = 1.026	[15]
	260 nm								
Bacillus cereus						-			
ATCC 11778	Excilamp 222 nm	17	29	47			yes	GF = 0.683	[85]
ATCC 11778	LP	52	93	140			yes		[85]
Endospores	Excilamp 222 nm	7.6	18	35			no	GF = 0.683	[86]
Endospores	LP	30	89				no		[86]
Т	LP	23	30	35	40		yes		[14]
Vegetative cells	Excilamp 222 nm	5.2					no	GF = 0.683	[86]
Vegetative cells	LP	6.9	22				no		[86]
Bacillus megaterium	265 nm	26	40	52			no	GF = 0.941	[93]
(spores) QMB 1551									
Bacillus pumilus									
ASFUVRC	Filtered MP 258 nm	108	161	228			yes	GF = 1.240	[79]
ASFUVRC	LP	173	348				yes	(a)	[94]
ATCC 27142	LP	68	138	204	272		yes	(a)	[94]
ATCC 27142	LP	87	189				yes		[16]
ATCC 27142	MP	34	101	165			yes		[16]
ATCC 27142	UV-LED 260 nm	100	199	315			yes	GF = 1.389	[16]
ATCC 27142	UV-LED 280 nm	61	168				yes	GF = 0.953	[16]
ATCC 27142	LP	5.1	10	14	17	22	no		[95]
Bacillus subtilis			•	•	•			•	•
ATCC 6633	LP	12	18	24	30	36	yes		[96]
ATCC 6633	LP	36	48	59	77		yes		[97]
ATCC 6633	LP	28	40	50			yes		[21]
ATCC 6633	LP	19	40	60	81		yes		[98]
ATCC 6633	LP	31	47	64	80		yes	Action spectrum	[99]
ATCC 6633	LP	25	39	50	60		yes		[90]
ATCC 6633	LP	24	35	47	79		yes		[100]

		Fluence	(UV Dose) (1 Witho	mJ cm ⁻²) for a put Photoreac	a Given Log I tivation	Reduction			
Spore	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
ATCC 6633 (surface cultured)	LP	11	18	24	31		yes	Action spectrum	[101]
ATCC 6633 (liquid cultured)	LP	13	23	33			yes		[102]
ATCC 6633 (surface cultured)	LP	9	15				yes		[102]
ATCC 6633	LP	21	37	54				Medium: air – RH: 50-60%	[103]
ATCC 6633	LP	18	31	44				Medium: air – RH = 70-83%	[103]
ATCC 6633 (surface cultured)	Excilamp 222 nm	18	31	46	59		yes	GF = 2.570	[104]
ATCC 6633 (surface cultured)	LP	19	24	30	35		yes		[104]
ATCC 6633 (surface cultured)	282 nm	14	22	29	37		yes	GF = 0.748	[104]
ATCC 6633	LP	9	17	26	34		yes		[32]
ATCC 6633	LP	21	32	43	55		yes	Action spectrum	[37]
ATCC 6633 (surface cultured)	LP	18	39	61	82		yes		[105]
ATCC 6633	LP	24	37	51	80 +	tailing	yes		[106]
ATCC 6633	LP	26	40	55	69		yes		[107]
ATCC 6633	Excilamp 222 nm	33	54	77	98		yes	GF = 2.570	[107]
ATCC 6633	Excilamp 172 nm	435	869				yes		[107]
ATCC 6633	UV-LED 269 nm	3.2	16	27	39		yes	GF = 1.576	[108]

		Fluence	(UV Dose) (1 Withc	Reduction					
Spore	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
ATCC 6633	UV-LED 282 nm	2.2	8.2	14	19		yes	GF = 0.748	[108]
ATCC 6633	UV-LED 265 nm	54	115	172			yes	GF = 1.409	[109]
ATCC 6633	UV-LED 280 nm	48	107				yes	GF = 0.899	[109]
ATCC 6633	LP	23	33	43	50	68	yes	Action spectrum	[27]
ATCC 6633	UV-LED 265 nm	15	23	30	38	59	yes	GF = 1.409	[27, 110]
ATCC 6633	UV-LED 280 nm	16	25	31	43		yes	GF = 0.899	[27, 110]
ATCC 6633	UV-LED 300 nm	31	41	51	56		yes	GF = 0.047	[27, 110]
ATCC 6633	LP	9					no		[111]
ATCC 6633	LP	22	36	49	62	75	yes		[17]
ATCC 6051	LP	8	13	17	20 +	tailing	yes		[112]
TKJ 6312	LP	0.7	1.5	2.3	3.7		yes		[98]
WN624	LP	25	36	49	60		yes		[90]
Cylindrospermum	LP	14	26	43			no		[113]
spores									
Clostridium pasteurianum									
ATCC 6013	LP	3.4	5.3	6.7	8.4		yes		[85]
ATCC 6013	Excilamp 222 nm	11	16	20	25		yes	GF = 2.570	[85]
Clostridium sporogenes									
JCM 1416 (endospores)	Excilamp 222 nm	2.9	5.9	14	48		no	GF = 0.683	[86]
JCM 1416 (endospores)	LP	5.2	11	63	95		no		[86]
JCM 1416 (vegetative cells)	Excilamp 222 nm	1.8	3.7				no	GF = 0.683	[86]
JCM 1416 (vegetative cells)	LP	4.1	14	28			no		[86]
Encephalitozoon intestinali	is								
	LP	2.8	5.6	8.4			yes		[18]
(microsporidia)	LP & MP	<3	3	<6			yes		[114]
Fischeralla muscicola spores	LP	189					no		[113]
Penicillium expansum	<u>. </u>		•		•				
ATCC 36200	LP	11	38	49	65		yes		[85]
ATCC 36200	Excilamp 222 nm	15	23	29			yes	GF = 0.683	[85]
Streptomyces griseus	1 1		1	L	1	1	1	1	1

		Fluence	(UV Dose) (r Witho	nJ cm ⁻²) for a ut Photoreact					
S	Lamp	1	2	2	4	F	Protocol?	Nata	Deference
Spore	Туре	1	Z	3	4	5		Inotes	Reference
ATCC 10137	LP	8.5	13	15	18		yes		[85]
ATCC 10137	Excilamp 222 nm	8.9	12	14	18		yes	GF = 0.683	[85]
Thermoactinomyces vulgari	5								
ATCC 43649	LP	55	90	115	140		yes		[85]
ATCC 43649	Excilamp 222 nm	17	26	31	38		yes	GF = 0.683	[85]

^aThe water depth was only 2 mm, so the water factor would have been very close to 1.0. Thus, although the protocol corrections were not made, the corrections would have been small

		Fluence	e (UV Dose Wi) (mJ cm ⁻²) thout Photo	for a Give preactivatio					
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Actinobacter baumannii										
NCTC 12156	LP	0.6	1.8	3.3	4.8			yes		[19]
Aeromonas hydrophila										
ATCC7966	LP	1.1	2.5	4.0	5.5	6.9	8.4	yes		[115]
Aeromonas salmonicida										
AL 2017	LP	1.5	2.7	3.1	5.9			yes		[116]
Arthrobacter nicotinovorans										
ATCC 49919	LP	8	10	12	14			yes		[85]
ATCC 49919	Excilamp 222 nm	6.8	10	12	14			yes	GF = 0.683)	[85]
Bacillus cereus (veg. bacteria)										
ATCC 11778	LP	6	7	9	12			yes		[85]
ATCC 11778	Excilamp 222 nm	6.1	7.5	9.6	12			yes	GF = 0.683	[85]
Bacillus megaterium										
(veg. cells) QMB 1551	265 nm	4.3						no	GF = 0.941	[93]
Burkholderia mallei										
M9	LP	1.0	2.4	3.8	5.2			yes		[91]
M13	LP	1.2	2.7	4.1	5.5			yes		[91]
Brucella melitensis										
ATCC 23456	LP	2.8	5.3	7.8	10			yes		[91]
IL195	LP	3.7	5.8	7.8	9.9			yes		[91]
Burkholderia pseudomallei										
ATCC 11688	LP	1.7	3.5	5.5	7.4			yes		[91]
CA650	LP	1.4	2.8	4.3	5.7			yes		[91]

Table A2. Fluences for multiple log reductions for various bacteria.

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) thout Photo						
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Brucella suis										
KS528	LP	2.7	5.3	7.9	11			yes		[91]
MO 562	LP	1.7	3.6	5.6	7.5			yes		[91]
Campylobacter jejuni	1		1	1		1	1	1	1	
ATCC 43429	LP	1.0	2.1	3.4	4.6	5.8		yes		[115]
Biotype 1 strain 709/84	LP	0.8	1.3	1.7	2.1			yes		[117]
Citrobacter diversus	LP	5	7	9	11	13		yes		[20]
Citrobacter freundii	LP	5	9	13				yes		[20]
Clostridioides difficile									•	
JCM 1296 (endospores)	Excilamp 222 nm	3.6	7.9	17				no	GF = 0.683	[86]
JCM 1296 (endospores)	LP	11	23					no		[86]
Corynebacterium diphtheriae	LP	3.4						no		[118]
Deinococcus radiodurans										
ATCC 13939	LP	113	142	170	205			yes		[85]
ATCC 13939	Excilamp 222 nm	30	39	62				yes	GF = 0.683	[85]
Eberthella typhosa	LP	2.1						no		[118]
Enterococcus faecium									•	
Vancomycin-resistant	LP	7	9	11	13	15		yes		[119]
Enterococcus faecalis										
ATCC 27285	LP	3.7	8.0	14 + taili	ng			yes		[120]
ATCC 27285	LP	3.4	9.1	18				yes		[121]
ATCC 27285	LP	3.4	11	15				yes		[122]
DSM 13590	LP		60 mJ	cm^{-2} for 0.	7 log reduc	ction		yes		[123]
DSM 20478	LP	7.1	8.7		13 + 1	ailing		yes		[124]
DSM 20478	MP	5.5	7.6		12 + 1	ailing		yes		[124]
MH773161.1	LP	3.3	6.9	12	16	23		yes		[125]
Escherichia coli										
ATCC 11229	LP	3.0	4.8	6.7	8.4	11		yes		[97]
ATCC 11229	LP	2.5	3.0	3.5	5	10	15	yes		[126]
ATCC 11229	LP	7	8	9	11	12		no		[22]
ATCC 11229	LP	3.4	5.0	6.7	8.3	10		yes		[21]
ATCC 11229	LP	3.5	4.7	5.5	6.5	7.5	9.6	yes		[23]
ATCC 11229	LP	2.5	3.0	3.5	4.5	5.0	6.0	yes		[24]
ATCC 11229	LP	3.9	5.4	6.8	8.2	9.7		yes		[127]
ATCC 11229	LP	3.3	4.9	5.7	6.6			yes		[128]
ATCC 11229	Excilamp 222 nm	3.3	5.3	6.2	7			yes	GF = 0.683	[128]

		Fluence	e (UV Dose Wi	uction						
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
ATCC 11229	LP or MP	1.6	3.0	5	6.5			yes		[81]
ATCC 11229	LP	4.7	6.2	7.2	8.3	9.3		yes		[129]
ATCC 11229	MP	2.5	4	4.7	5.3	6.0	7.3	yes		[129]
ATCC 11229	LP	4.1	5.1	6.2				yes		[130]
ATCC 11229	UV-LED 255 nm	6.3	8.4					yes	GF = 1.063	[130]
ATCC 11229	UV-LED 275 nm	4.5	6.4	8				yes	GF = 1.038	[130]
ATCC 11229	UV-LED 265 nm	3.9	5.6					yes	GF = 1.345	[131]
ATCC 11229	UV-LED 265 nm	4.3	5.8	7.1	8.3	9.4		yes	GF = 1.345	[132]
ATCC 11229	Microplasm a UV 221 nm	2.8	4.3	5.8	7.4			yes	GF = 0.736	[133]
ATCC 11303	LP	4	6	9	10	13	15	yes		[134]
ATCC 11775	LP	1.1	2.0	3.0	3.4	4.0		yes		[129]
ATCC 11775	MP	0.9	1.6	2.4	3.0	3.4		yes		[129]
ATCC 15597	LP	6.4	8.9	11	12	13		yes		[129]
ATCC 15597	MP	5.0	6.8	8.3	9.4	11	12	yes		[129]
ATCC 15597	MP 297 nm	0.5	0.7	0.9	1.1	1.4		yes	GF = 0.019	[135]
ATCC 15597	MP 310 nm	191	320	360	401	442		yes		[135]
ATCC 25922	LP	6.0	6.5	7.0	8.0	9	10	yes		[21]
ATCC 25922 – Antibiotic sensitive	LP	2	4	5.7	7.5	29		yes		[136]
ATCC 25922	LP	2.1	3.9	5.9	8	11		yes		[137]
ATCC 29425	LP	5.4	8.5	20				yes		[25]
ATCC 29425	UV-LED 265 nm	4.8	7.9	23	27			yes	GF = 1.345	[25]
ATCC 700891	LP	7.3	10	12	13	15		yes		[129]
ATCC 700891	MP	4.8	6.8	8.2	9.0	9.8		yes		[129]
ATCC 8739	LP	9.4	12	14	19			yes		[138]
ATCC 8739	UV-LED 275 nm	6.4	11	14	17	20		yes	GF = 1.038	[138]
В	LP	1.0	2.4	4.4	6			yes		[139]
В	MP	0.9	2.1	4.2	6			yes		[139]
B ATCC 13033	LP	1.2	3.0	4.7	6.5	8.2	10	yes		[15]
B ATCC 13033	UV-LED 260 nm	1.5	3.8	5.9	8.2	10	13	yes	GF = 1.259	[15]
С	LP	2	3	4	5.6	6.5	8	yes		[140]

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) thout Photo	uction					
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
C3000	LP or MP	3.0	4.3	5.5	7.0			yes		[141]
CGMCC 1.1595	LP	3.1	17	25	31	36		yes		[142]
CGMCC 1.2154	LP	4	8	12	16	19		yes		[143]
CGMCC 1.2154	MP	2.6	5.1	7.7	11	19		yes		[143]
CGMCC 1.3373	LP	3.1	5.9	8.0	13			yes		[26]
CGMCC 1.3373	MP	3.1	5.9	9.6	13			yes		[26]
CGMCC 1.3373	LP	4.8	6.7	8.7	12	15		yes		[144]
CGMCC 1.3373	UV-LED 265 nm	3.5	6.3	8.3	11	15		yes	GF = 1.345	[144]
CGMCC 1.3373	UV-LED 280 nm	3.9	5.7	7	8.8	13		yes	GF = 0.709	[144]
CGMCC 1.3373	UV-LED 267 nm	5.5	8.3	11	15			yes	GF = 1.337	[145]
CGMCC 1.3373	UV-LED 275 nm	5.6	9.3	13				yes	GF = 1.038	[145]
CN13	XeBr Exci- lamp 282 nm	3.1	4.2	5.4	6.8				GF = 0.564	[146]
DSM 4960	LP		60 mJ	cm^{-2} for 0.	.7 log redu	ction	•	yes		[123]
DSM 787	UV-LED 265 nm	1.5	3.1	3.9	4.7	5.5		no	Droplets – GF = 1.345	[147]
EHEC	Excilamp 222 nm	1.6	3.1	4.8	6.9			no	GF = 0.683	[86]
K12	LP	1.1	1.9	2.6	3.4			no		[148]
K12 ATCC 29425	LP	3.7	8.6	11				yes		[16]
K12 ATCC 29425	MP	5	7.2	11				yes		[16]
K12 ATCC 29425	UV-LED 260 nm	5.5	8.7	13				yes	GF = 1.259	[16]
K12 ATCC 29425	UV-LED 280 nm	3.3	4.8	6.6	9.1			yes	GF = 0.709	[16]
K12 ATCC 29425	LP	4.2	6	7.7	14			yes	Action spectrum	[28]
K12 ATCC 29425	UV-LED 255 nm	3.6	5.3	6.5	9			yes	GF = 1.063	[28]
K12 ATCC 29425	UV-LED 265 nm	3.2	6.1	7.8	9.4	11		yes	GF = 1.345	[28]
K12 ATCC 29425	UV-LED 285 nm	1.9	3.4	4.2	5			yes	GF = 0.355	[28]
K12 ATCC 29425	LP	4.1	8.2	12	16	33		yes		[149]
K12 IFO 3301	LP & MP	2	4	6	7	9		yes		[150]
K12 IFO 3301	LP	1.5	2.0	3.5	4.2	5.5	6.2	yes		[140]

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) thout Photo) for a Give preactivatio	en Log Red on	uction			
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
K12 IFO 3301	LP & MP	2.2	4.4	6.7	8.9	11		yes		[34]
K12 IFO 3301	UV-LED 265 nm	3.5	6.3	8.9	12	16		yes	GF = 1.345	[80]
K12 IFO 3301	UV-LED 280nm	2.4	4.9	7.1	9.9			yes	GF = 0.709	[80]
K12 IFO 3301	LP	1.9	4	6	8			yes		[29]
K12 IFO 3301	UV-LED 285 nm	2.8	4.6	5.7	8.2	12		yes	GF = 0.355	[151]
K12 IFO 3301	LP	2	4	6				yes		[30]
K12 IFO 3301	UV-LED 280 nm	4.5	9.7	10	17	24		yes	GF = 0.709	[151]
IFO 3301	LP	3.7	5.5	6.7	7.3	9.7		yes		[27]
IFO 3301	UV-LED 265 nm	3.5	5.1	6.7	8.2	14		yes	GF = 1.345	[27, 110]
IFO 3301	UV-LED 280 nm	2.6	4	4.9	6.4			yes	GF = 0.709	[27, 110]
IFO 3301	UV-LED 300 nm	1.4	1.9	2.3	2.8			yes	GF = 0.032	[27, 110]
INR6 – Antibiotic resistant	LP	5	6.7	8.6	11	19		yes		[136]
INR8 – Antibiotic resistant	LP	4.3	5.4	6.5	7.7	14		yes		[136]
NBIMB 9481	LP	5.9	8.0	9.3	11	12		yes		[129]
NBIMB 9481	MP	4.3	6.2	7.3	8.6			yes		[129]
NBIMB 10083	LP	2.8	4.4	5.6	6.6	7.6		yes		[129]
NBIMB 10083	MP	2.5	4.3	5.1	6.0	6.8	7.6	yes		[129]
NCTC 12241 – Antibiotic sensitive	LP	0.9	3.3	4.3	5.4	6.4		yes		[31]
NCTC 13400 – Antibiotic resistant	LP	0.4	0.8	1.3	1.9	2.6		yes		[31]
OP50	LP	2.0	4.4	6.7	9.1			yes		[32]
O157: H7	LP	1.5	3.0	4.5	6.0			no		[152]
О157: Н7	LP	<2	<2	2.5	4	8	17	??		[153]
O157: H7 ATCC 43894	LP	1.4	2.8	4.2	5.5	6.9		yes		[115]
O157: H7 ATCC 35150, ATCC 43889, ATCC 43890	KrCl excilamp 222 nm	0.2	0.4	0.7				no	Initial population: 10^{4-5} CFU ^a /mL; GF = 0.683	[154]
O157: H7 ATCC 35150, ATCC 43889, ATCC 43890	KrCl excilamp 222 nm	0.4	0.6	0.8				no	Initial population: 10^{5-6} CFU/mL; GF = 0.683	[154]

		Fluence	e (UV Dose Wi							
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
O157: H7 ATCC 35150, ATCC 43889, ATCC 43890	KrCl excilamp 222 nm	0.5	1					no	Initial population: 10 ⁶⁻⁷ CFU/mL; GF = 0.683	[154]
O157: H7 ATCC 35150, ATCC 43889, ATCC 43890	LP	0.2	0.5	0.7	0.9	1.6		yes	(b)	[155]
O157: H7 ATCC 35150, ATCC 43889, ATCC 43890	KrCl excilamp 222 nm	0.1	0.3	0.5	0.6	1.1		yes	(b) GF = 0.683	[155]
O157: H7 CCUG 29193	LP	3.5	4.7	5.5	7			yes		[23]
O157: H7 CCUG 29197	LP	2.5	3.0	4.6	5.0	5.5		yes		[23]
O157: H7 CCUG 29199	LP	0.4	0.7	1.0	1.1	1.3	1.4	yes		[23]
O25: K98: NM	LP	5.0	7.5	9	10	12		yes		[23]
O26	LP	5.4	8.0	11	13			no		[152]
O50: H7	LP	2.5	3.0	3.5	4.5	5	6	yes		[23]
O78: H11	LP	4	5	5.5	6	7		yes		[23]
145 Ampicillin resistant	LP	0.8	1.9	3.0	4.7			yes		[19]
018 Trimethoprim resistant	LP	1.5	3.0	4.0	4.9			yes		[19]
SER2 – Antibiotic resistant	LP	1.7	3.4	5.5	7.8	28		yes		[136]
SER6-1 – Antibiotic resistant	LP	6	8.8	11	13	18		yes		[136]
SER6-2 – Antibiotic resistant	LP	5.2	6.9	8.8	11	24		yes		[136]
SMS-3-5	LP	3	5.1	6.5	7.6			yes		[119]
Wild type	LP	2.7	4.0	5.3	6.6			yes		[117]
Wild type	LP	4.4	6.2	7.3	8.1	9.2		yes		[23]
	LP	2.0	3.6	5.2	6.8			yes		[156]
	LP		20					no		[87]
	UV-LED 265 nm	5.6	8.7	13				yes	GF = 1.345	[157]
	UV-LED 285 nm	4						yes	GF = 0.355	[157]
Fecal coliforms	LP	6	9	13	22			yes		[158]
Francisella tularensis					•					
LVS	LP	1.3	3.1	4.8	6.6			yes		[91]
NY98	LP	1.4	3.8	6.3	8.7			yes		[91]
Fecal streptococci	LP	9	14	22	30			yes		[158]
Halobacterium elongata	· ·			•	•	•	•	•	•	•
ATCC 33173	LP	0.4	0.7	1.0				no		[159]
Halobacterium salibarum										

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) thout Photo) for a Give preactivatio	uction				
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
ATCC 43214	LP	12	15	18	20			no		[159]
Helicobacter pylori	1		1		1		1	1		1
Texas isolate	LP	2.2	3.0	3.8	4.6	5.7	6.6	yes		[160]
ATCC 43504	LP	4.5	5.7	6.7	7.5	8.0		yes		[160]
ATCC 49503	LP	1.7	3.1	4.0	5.3	7		yes		[160]
Klebsiella pneumoniae	LP	5	7	10	12			yes		[20]
Klebsiella terrigena	1		1		1		1	1		1
ATCC 33257	LP	3.6	6.4	9.3	12	15		yes		[115]
Kocuria rhizophila							-			
DSM 11926	LP	7.1	14	25				yes		[161]
Legionella longbeachae										
ATCC 33462	LP	1.4	3.0	4.7	6.3			yes		[33]
Legionella pneumophila										
Philadelphia 2	LP	0.9	1.8	2.8	3.7			no		[162]
ATCC 33152	LP	1.6	3.2	4.8	6.4	8.0		yes		[34]
ATCC 33152	MP	1.9	3.8	5.8	7.7	9.6		yes		[34]
ATCC 33152	LP	1.7	3.0	4.3	5.7			yes		[33]
ATCC 33152	LP	1.9	3.4	4.8	5.8			yes		[27]
ATCC 33152	UV-LED 265 nm	1.9	3.2	4.7	6.3			yes	GF = 1.474	[27, 110]
ATCC 33152	UV-LED 280 nm	1.7	2.9	4.8	6.4			yes	GF = 0.730	[27, 110]
ATCC 33152	UV-LED 300 nm	2	3.1	4.6	6.5			yes	GF = 0.074	[27, 110]
ATCC 33823	LP	1.7	3.1	4.5	5.8			yes		[33]
ATCC 43660	LP	3.0	5.0	7.2	9.3			yes		[115]
Sero group 1	LP	1.7	2.9	4.2	5.4			yes		[33]
Sero group 8	LP	1.8	3.3	4.7	6.1			yes		[33]
Leptospira										
<i>biflexa</i> serovar patoc Patoc I	LP	2.3	3.8	5.1	6.7			no		[163]
illini 3055	LP	2.8	3.8	4.8				no		[163]
interrogans serovar	LD	0.8	1.2	1.7						[163]
	Lľ	0.8	1.2	1./				no		
Listertu monocytogenes	TD	2.2	2.0	2.7	11	16				[164]
ATCC 19111, ATCC 19115, ATCC 15313	KrCl excilamp 222 nm	0.3	3.0	3.2	4.1	4.0		no	Initial population: 10 ⁴⁻⁵ CFU/mL;	[154]

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) thout Photo) for a Give preactivatio	uction				
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
									GF = 0.683	
ATCC 19111, ATCC 19115, ATCC 15313	KrCl excilamp 222 nm	0.5	0.8	1				no	Initial population: 10^{5-6} CFU/mL; GF = 0.683	[154]
ATCC 19111, ATCC 19115, ATCC 15313	KrCl excilamp 222 nm	0.8						no	Initial population: 10 ⁶⁻⁷ CFU/mL; GF = 0.683	[154]
ATCC 19111, ATCC 19115, ATCC 15313	LP	1.7	2.6	3.4	4.2	5		yes	(b)	[155]
ATCC 19111, ATCC 19115, ATCC 15313	KrCl excilamp 222 nm	0.6	1.2	1.6	2.1	2.6		yes	(b) GF = 0.683	[155]
Morganella morganii										
MH773160.1	LP	3.7	7.4	13	19	25		yes		[125]
Mycobacterium avium										
33B	LP	5.8	8.1	10	13			yes		[165]
W41	LP	5.7	7.9	10	12	15		yes		[165]
D55A01	LP	6.4	9.4	12	15			yes		[165]
Mycobacterium avium homini	ssuis									
HMC02 (white transparent) (WT)	LP	7.7	12	17	22			yes		[139]
HMC02 (white transparent) (WT)	MP	8.1	12	16				yes		[139]
HMC02 (white opaque) (WO)	LP	7.1	11	17				yes		[139]
HMC02 (white opaque) (WO)	MP	6.6	11	15	19			yes		[139]
<i>Mycobacterium bovis</i> BCG	LP	2.2	4.4					no		[164]
Mycobacterium intracellulare					•	•	•			
B12CC2	LP	7.8	11	13	16			yes		[165]
ATCC 13950	LP	7.4	11	15	19			yes		[165]
Mycobacterium phlei	LP	3.6						no		[164]
Mycobacterium terrae										
ATCC 15755	LP	3.9	9.3	16 + taili	ng			yes	(c)	[35]
ATCC 15755	LP	3.7	9.3	16				yes		[36]
ATCC 15755	MP	3.2	11	39				yes		[36]
Mycobacterium tuberculosis	LP	2.2	4.3					no		[164]

		Fluence	e (UV Dose Wi	c) (mJ cm ⁻² thout Photo) for a Give preactivatio	uction				
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Pseudomonas aeruginosa				•	•				•	
ATCC 9027	LP	3.8	6.5	10	17			no		[166]
ATCC 10145	LP	4.6						no		[166]
ATCC 10145	LP	2.8	5.5	7	9.3			yes		[27]
ATCC 10145	UV-LED 265 nm	3.3	5.1	6.8	8.4			yes	GF = 1.338	[27, 110]
ATCC 10145	UV-LED 280 nm	3.7	5	7.5	10			yes	GF = 1.090	[27, 110]
ATCC 10145	UV-LED 300 nm	3.9	5.4	6.9	8.3			yes	GF = 0.095	[27, 110]
ATCC 14207	LP	3.7						no		[166]
ATCC 15442	LP	3.8						no		[166]
ATCC 15442	LP	1.6	3	4.8	8			yes		[28]
ATCC 15442	UV-LED 255 nm	1.7	3.3	4.2	5.3	7.7		yes	GF = 1.320	[28]
ATCC 15442	UV-LED 265 nm	1.4	2.8	4.2	5.5			yes	GF = 1.108	[28]
ATCC 15442	UV-LED 285 nm	2	3.7	5	7			yes	GF = 0.823	[28]
ATCC 27853	LP	4.9						no		[166]
ATCC 27853	LP	0.8	1.6	2.3	3.1			yes		[85]
ATCC 27853	Excilamp 222 nm	2.1	3.3	4	5.1	6.8		yes	GF = 0.683	[85]
01	LP	1.3	2.7	4.3	6.3	10		yes		[119]
B2	LP	5.6						no		[166]
G2	LP	3.0						no		[166]
BS4	LP	3.5						no		[166]
NCTC 13437 – Antibiotic resistant	LP	0.7	1.5	2.3	6			yes		[31]
WB1	LP	5.8						no		[166]
SH-2918	LP	3.5						no		[166]
	Excilamp 222 nm	1.3	2.6	3.9	6.2			no	GF = 0.683	[86]
Pseudomonas litoralis						1				
CECT 7670T	LP	5.3	13					yes		[161]
Pseudomonas luteola	1					1		1		1
Trimethoprim resistant HPC	LP	1.2	2.8	4.6	6.7			yes		[31]
Pseudomonas putida			•	•		•	•			
CP1 planktonic cells	LP	0.7	2.7	3.5	13			no		[167]
CP1 aggregated cells	LP	206	412	618	825	1031		no		[167]
Roseobacter sp.									•	
CECT 7117	LP	4.2	6.4	10	18			yes		[161]

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) ithout Photo) for a Give preactivatio	n Log Redi n	uction			
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Salmonella spp.	LP	<2	2	3.5	7	14	29	??		[153]
Salmonella typhimurium			I.							
ATCC 6539	LP	2.6	4.5	5.8	7	8		yes		[97]
ATCC 19430	LP	2.0	4.1	6.2	8.3			yes		[115]
ATCC 19585, ATCC 43971, DT 104	KrCl excilamp 222 nm	0.5	1.2	1.8				no	Initial population: 10^{4-5} CFU/mL; GF = 1.360	[154]
ATCC 19585, ATCC 43971, DT 104	KrCl excilamp 222 nm	0.8	1.5	2	2.4			no	Initial population: 10^{5-6} CFU/mL; GF = 1.360	[154]
ATCC 19585, ATCC 43971, DT 104	KrCl excilamp 222 nm	1.1	2.3					no	Initial population: 10^{6-7} CFU/mL; GF = 1.360	[154]
ATCC 19585, ATCC 43971, DT 104	LP	0.6	1.5	2.6	3.2	3.7		yes	(b)	[155]
ATCC 19585, ATCC 43971, DT 104	KrCl excilamp 222 nm	0.7	1.4	2.3	3.3	3.9		yes	(b) GF = 1.360	[155]
(in act. sluge)	LP	3	12	22	50			yes		[158]
LT2	LP	3.4	4.6	5.7	7.3			yes	Action spectrum	[38]
LT2	XeBr excilamp 282 nm	2.4	4.1	5.4	6.5			yes	GF = 0.646	[38]
LT2	MP 289 nm	2	5.8	6.7	7.8			yes	GF = 0.386	[38]
LT2	MP 297 nm	3.5	5.8	8.2	11			yes	GF = 0.162	[38]
LT2	MP 310 nm	1.5	4.5	5.7				yes	GF = 0.015	[38]
LT2	MP 320 nm	1.9						yes	GF = 0.018	[38]
LT2	MP 330 nm	1.9	4.2					yes	GF = 0.014	[38]
LT2 SL3770	LP	4	5.7	7.8				yes	Action spectrum	[37]
<i>Salmonella enterica</i> subsp. <i>enterica</i> serovar Typhimurium	Excilamp 222 nm	5	11	17	25			no	GF = 1.360	[86]
<i>Salmonella enterica</i> subsp. <i>enterica</i> serovar Typhimurium	LP	2.3	4.6	8.9				no		[86]
	LP	3.9	5.3	6.7	7.7	13		yes		[156]
Serratia marcescens	LP	2.2						no		[118]
Shewanella algae	LP	0.9	1.7	2.4	3.2			no		[148]

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) thout Photo) for a Give preactivatio	n Log Red n	uction			
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Shewanella oneidensis										
DLM7	LP	0.3	0.5	0.8	1.1			no		[148]
MR4	LP	0.7	1.4	2.1	2.8			no		[148]
MR1	LP	0.2	0.4	0.6	0.9			no		[148]
Shewanella putrefaciens 200	LP	0.5	0.8	1.1	1.4			no		[148]
Shigella dysenteriae										
ATCC 29027	LP	0.1	1.0	1.9	2.8	3.8	4.7	yes		[115]
	LP	0.5	1.1	1.9	2.5	3.1		yes		[156]
Shigella paradysenteriae	LP	1.7						no		[118]
Shigella sonnei										
ATCC 9290	LP	3.2	4.9	6.5	8.2			yes		[97]
Staphylococcus albus	I		1		1	1		1	I	
	LP	1.8						no		[118]
	LP	1.1	3.2	4.0	4.8			no		[164]
Staphylococcus aureus										
									Action	
	LP	2.1	3.2					no	spectrum	[39]
(hem)	LP	2.6						no		[118]
ATCC 25923	LP	3.9	5.4	6.5	10			yes		[97]
ATCC 25923	LP	4.4	5.8	6.4	7.3	9		yes		[85]
ATCC 25923	Excilamp 222 nm	9	12	14	17			yes	GF = 0.9625	[85]
ATCC 27649, ATCC 25923, ATCC 27213	LP	1.7	2.6	3.4	4.2	5.2		yes	(b)	[155]
ATCC 27649, ATCC 25923, ATCC 27213	KrCl excilamp 222 nm	1.3	1.9	2.4	2.8	3.7		yes	(b) GF = 0.9625	[155]
ATCC BAA-1556										[119]
(Methicillin resistant)	LP	4.5	7.2	8.8	10			yes		
CGMCC 1.2465	LP	2.7	5.4	8.2	12	18		yes		[143]
CGMCC 1.2465	MP	3.7	7.3	12	18	34		yes		[143]
MRSA – Meticillin resistant	Excilamp 222 nm	1.3	2.4	3.7	4.9			no	GF = 0.9625	[86]
MRSA – Meticillin resistant	LP	1.2	2.4	3.7	4.8			no		[86]
<i>Streptococcus faecalis</i> ATCC 29212	LP	6.6	8.6	9.8	11			yes		[97]
Streptococcus hemolyticus	LP	2.2						no		[118]
Vibrio anguillarum	LP	0.5	1.2	1.5	2.0			yes		[116]
Vibrio cholerae	•	-		-	•		•	•	•	-
Classical OGAWA 154	LP	0.8	1.4	2.3	3.9	6.8		no		[168]

		Fluence	e (UV Dose Wi	e) (mJ cm ⁻²) thout Photo) for a Give preactivatio	n Log Red n	uction			
Bacterium	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
el tor MAK 154	LP	1.7	4.1	7.1				no		[168]
NAG 1976	LP	2.5	8.9					no		[168]
ATCC 25872	LP	0.7	1.4	2.1	2.8	3.6		yes		[115]
Vibrio harveyi						•		•	•	•
	LP	5.2	6.9	8.9				yes		[38]
	XeBr excilamp 282 nm	4.7	6.8	9.4				yes	GF = 0.786	[38]
	MP 289 nm	3.2	7	9.7				yes	GF = 0.342	[38]
	MP 297 nm	4.6	7.3	9.3				yes	GF = 0.103	[38]
	MP 310 nm	3.7	5.7	9.5				yes	GF = 0.013	[38]
	MP 320 nm	3						yes	GF = 0.025	[38]
	MP 330 nm	3.8	7.1					yes	GF = 0.005	[38]
Vibrio parahaemolyticus										
2977	LP	4.4						no		[168]
NBRC 12711	UV-LED 265 nm	2.8	5.4	8	10.6			yes	GF = 0.941	[110]
NBRC 12711	UV-LED 280 nm	2.3	4	5.7	7.4			yes	GF = 0.486	[110]
NBRC 12711	UV-LED 300 nm	2	4.2	6.4	8.6			yes	GF = 0.037	[110]
Yersinia enterocolitica										
Sero-group 0:3 strain 304/84	LP	1.2	2.2	3.0	3.6			yes		[117]
ATCC 4780	LP	2.1	4.1	5.0	5.8			yes		[128]
ATCC 4780	Excilamp 222 nm	2.1	4.2	5.2	6	6.8	8.2	yes	GF = 0.683	[128]
ATCC 27729	LP	1.6	2.7	4.0	5.1			yes		[115]
Yersinia pestis	1		1	1	1	1	1	1	1	1
A1122	LP	1.4	2.6	3.7	4.9			yes		[91]
Harbin	LP	1.3	2.2	3.2	4.1			yes		[91]
Yersinia ruckeri	LP	1	2	3	4			yes		[116]

^aColony Forming Unit

^bThe water depth was only 2 mm, so the water factor would have been very close to 1.0. Thus, although the protocol corrections were not made, the corrections would have been small

°Spiked into wastewater

		Fluence	(UV Dose) (With	mJ cm ⁻²) for a out Photoreacti	Given Log Ro vation	eduction			
	Lamp		2	2		-	Protocol?		D.C.
Protozoan	Type	1	2	3	4	5		Notes	Reference
Acanthamoeba castellanii									
ATCC 30234	LP	40					yes		[97]
(life stage: trophozoites,									
piaque assay)									
CCAP 15342	LP	32	52	72					[22]
(The stage: trophozones, method: MPN ^a)	Li	52	52	12			yes		[33]
CCAP 15242									
(life stage: cysts	LP	45	75	91	125		Vec		[33]
method: MPN)					125		yes		
Acanthamoeba									
culbertsoni	LP	38	58	125	148		ves		[158]
ATCC 30171				-			5		
(mouse infectivity assay,									
Mus musculus species,									
strain CD-1)									
Acanthamoeba spp.									
isolated strain									
(life stage: trophozoites,	LP	39	75	132	160		yes		[158]
mouse infectivity assay,									
Mus musculus species,									
strain CD-1)									
155	τD	20	21	((71				
(life stage: trophozoites,	LP	28	31	00	/1		yes		[33]
method: MPN)									
155	LP	34	67	99			yes		[33]
(life stage: cysts,									
Cryptosporidium	LP & MP	3.0	5.8						[40]
<i>nominis</i>		5.0	5.0				yes		[10]
assay using HCT-8 cells									
(CCL-244) & MDBK									
cells]									
Cryptosporidium parvum									
[mouse infectivity assay									[169, 170]
(neonatal CD-1 mice)]	MP	<3	<3	<3	19		yes		
[mouse infectivity assay	LP	<3	<3	3-6	>16		yes		[41]
(neonatal CD-1 mice)]									
[mouse infectivity assay	MP	<3	<3	3-9	>11		yes		[41]
(neonatal CD-1 mice)]									
[mouse infectivity assay	LP & MP								

Table A3. Fluences for multiple log reductions for various protozoa.

		Fluence	(UV Dose) (With	(mJ cm ⁻²) for a out Photoreact	Given Log R	eduction			
Protozoan	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
(neonatal CD-1 mice)]	51	2.4	<5	5.2	9.5	-	yes		[47]
[mouse infectivity assay & cell culture infectivity assay using MDCK cells (CCL-34)]	LP	1	2	>5			yes		[42]
[mouse infectivity assay (neonatal CD-1 mice)]	МР	<10	<10	>10			yes		[171]
[mouse infectivity assay (SCID mice)]	LP	0.5	1.0	1.4	2.2		no		[43]
[cell culture infectivity assay using HCT-8 cells (CCL-244)]	LP	2	<3	<3			yes		[44]
[cell culture infectivity assay using HCT-8 cells (CCL-244)]	MP	<1	<1	<1			yes		[44]
[cell culture infectivity assay using HCT-8 cells (ATCC CCL-244)]	LP	1.9	2.6	3.6			yes		[38]
[cell culture infectivity assay using HCT-8 cells (ATCC CCL-244)]	XeBr excilamp 282 nm	1.4	2.2	3			yes	GF = 0.812	[38]
[cell culture infectivity assay using HCT-8 cells (ATCC CCL-244)]	MP 289 nm	2.4	3.4	4.9			yes	GF = 0.532	[38]
[cell culture infectivity assay using HCT-8 cells (ATCC CCL-244)]	MP 297 nm	2.5	4				yes	GF = 0.202	[38]
[cell culture infectivity assay using HCT-8 cells (ATCC CCL-244)]	MP 310 nm	1.5	2.3	3.9			yes	GF = 0.026	[38]
[cell culture infectivity assay using HCT-8 cells (ATCC CCL-244)]	MP 320 nm	1.9	2.6	3.7			yes	GF = 0.052	[38]
[cell culture infectivity assay using HCT-8 cells (ATCC CCL-244)]	MP 330 nm	1.8	2.4	3.5	5		yes	GF = 0.059	[38]
[culture- immunofluorescence (CC–IFA)–based infectivity assay]	MP	1	2	2.9	4		yes		[172]
[mouse infectivity assay (neonatal CD-1 mice)]	LP	<2	<2	<2	<4	<10	yes		[45]
[mouse infectivity assay (neonatal CD-1 mice)]	MP	<5	<5	<5	~6		yes		[50]
[cell culture infectivity assay using HCT-8 cells	LP	1.8	5.6	25			yes		[46]

		Fluence	e (UV Dose) With	(mJ cm ⁻²) for a nout Photoreacti	Given Log Rovation	eduction			
Protozoan	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
(CCL-244)]									
HNJ-1	LP	<0.7	<1.4	2.2			yes		[30]
[mouse infectivity assay (SCID mice)]									
[cell culture infectivity assay using HCT-8 cells (CCL-244)]	Laser 254 nm	1.3	1.9	2.3	2.8		yes	Action spectrum	[79]
Cryptosporidium spp.	LP & MP	0.8	1.5	3.0	6.0		yes	(b)	[10]
Giardia lamblia					1				
(excystation assay)	LP?	40	180				no?		[173]
(gerbil infectivity assay)	LP	<10	~10	20			yes		[174]
(gerbil infectivity assay)	LP	<0.5	<0.5	<0.5	<1		yes		[48]
(gerbil infectivity assay)	LP	<2	<2	<4			yes		[49]
Giardia muris				•	1				
(mouse infectivity assay)	MP	1	4.5	28 + tailing			yes		[175]
(mouse infectivity assay)	MP	<10	<10	<25	~60		yes		[171]
(mouse infectivity assay)	LP	<2	<2	<4			yes		[49]
(mouse infectivity assay)	LP	<2	<2	~2	~2.3		no		[51]
(mouse infectivity assay)	LP	<5	<5	5			yes		[50]
Giardia spp.	LP & MP	0.6	1.1	1.9	3.4		yes	(b)	[10]
Naegleria fowleri					1			. ,	
Cysts (method: MPN)	LP	32	63	104	121		yes		[176]
Trophozoites (method: MPN)	LP	8	13	18	24		yes		[176]
Toxoplasma gondii					1				
Oocysts [immunofluorescence assay (IFA)]	LP	7.2	13	17	19		yes		[177]
[mouse infectivity assay (SCID mice)]	LP	3.4	6.8	10			yes		[178]
Vermamoeba vermiformis					•				
CCAP 15434 /7A (life stage: trophozoites, method: MPN)	LP	11	19	26	34		yes		[33]
CCAP 15434/7A (life stage: cysts, method: MPN)	LP	17	38	54	78		yes		[33]
195									

		Fluence	(UV Dose) (With	mJ cm ⁻²) for a out Photoreactiv	Given Log Rovation	eduction			
Protozoan	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
(life stage: trophozoites, method: MPN)	LP	10	17	24	32		yes		[33]
195 (life stage: cysts, method: MPN)	LP	32	60	76	110		yes		[33]

^aMost Probable Number

^bThese data are medians derived from a Bayesian analysis of many studies

			Fluen	ice (UV Dose Wi) (mJ cm ⁻²) thout Photo	for a Giver	n Log Redi 1	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Adenovirus	•		•		•						
Type 1 method: MPN	PLC/PRF5 and HeLa cell line	LP	35	69	103	138			yes		[179]
Type 2	PLC/PRF5	LP	40	78	119	160	195	235	yes		[52]
Type 2	Human lung cell line	LP	35	55	75	100			yes		[58]
Type 2	A549 cell line	LP	20	45	80	110			yes		[59]
Type 2	A549 cell line	LP	~30	~60					yes		[60]
Type 2	A549 cell line	MP	~10	~20	~30	~40	~50		yes		[60]
Type 2	A549 cell line	MP <240 nm blocked	~15	~30	~45	~60			yes		[60]
Type 2	A549 cell line	LP	8	31	50	80	117		yes		[61]
Type 2 method: TCID50 ^a	A549 cell line	LP	35	78	126	168			yes		[62]
Type 2 method: TCID50	A549 cell line	MP	14	29	44	80	120		yes	(b)	[62]
Type 2 method: cell culture	HEK293 cells human embryonic kidney	LP	37	88	120				yes		[63]
Type 2	A-549										

Table A4. Fluences for multiple log reductions for various viruses

			Fluer	ice (UV Dose Wi) (mJ cm ⁻²) thout Photo) for a Give preactivation	n Log Redu n	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
adenoid 6 (VR-846)	cell line (CCL-185)	LP	42	83	124	166			yes		[64]
Туре 2	A549 cell line	MP	4	7	14	22	40 + tail	ing	yes		[61]
Type 2 method: TCID50	A549 cell line (CCL- 185)	LP	36	82					yes		[65]
Type 2 method: TCID50	A549 cell line (CCL- 185)	MP	15	29	45	59	80		yes		[65]
Type 2 ATCC VR-846, method: TCID50	A549 cell line (CCL- 185)	LP	56	108	159	206			yes		[53]
Type 2 method: plaque assay	A549 cell line (CCL-185)	LP	39	71	98	125			yes		[54]
Type 2 method: plaque assay	A549 cell line (CCL- 185)	MP	7	18	28	47			yes		[54]
Type 2 method: LR-qPCR 6 kb fragment ^c	A549 cell line (CCL- 185)	LP	5	20–50	100				yes		[54]
Type 2 method: LR-qPCR 6 kb fragment	A549 cell line (CCL- 185)	MP	4	15-50	100				yes		[54]
Type 2 method: LR-qPCR 1 kb fragment	A549 cell line (CCL- 185)	LP	18	50	100				yes		[54]
Type 2 method: LR-qPCR 1 kb fragment	A549 cell line (CCL- 185)	MP			5 + tailing				yes		[54]
Type 2 method: LR-qPCR 10 kb fragment	A549 cell line (CCL- 185)	LP	15						yes		[54]
Type 2 method: LR-qPCR 10 kb	A549 cell line (CCL- 185)	MP	39	94					yes		[54]

			Fluen	ice (UV Dose Wi	e) (mJ cm ⁻²) thout Photo) for a Given preactivation	n Log Red 1	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
fragment											
Type 2 ATCC VR-846 method: MPN	A549 cell line (CCL- 185)	LP	43	86	130	174			yes	Action spectrum	[55]
Type 2 ATCC VR-846, method: LR- PCR 1.1 kbp fragment ^d	A549 cell line (CCL- 185)	LP	45	68					yes		[55]
Type 2 ATCC VR-846, method: LR- PCR 1.1 kbp fragment	A549 cell line (CCL- 185)	Laser 254 nm	32		80-	–90 + tailing	5		yes		[55]
Type 2 ATCC VR-846 method: MPN	A549 cell line (CCL- 185)	LP	40	76	120				yes		[55]
Type 2 ATCC VR-846 method: MPN	A549 cell line (CCL- 185)	MP	8	18	34				yes	(b)	[55]
Type 2 ATCC VR-846 method: MPN	A549 cell line (CCL- 185)	MP	32	71	135				yes	(e)	[55]
Type 2, method: cell culture	A549 cell line (CCL- 185)	Laser 254 nm	40	70	101				yes		[55]
Type 2, method: infectivity	A549 cell line	LP	33	118					no		[56]
Type 2, method: qPCR ^f	A549 cell line	LP	140						no		[56]
Type 2, method: MPN	A549 cell line (CCL- 185)	LP	47	86	129	172			yes		[57]

			Fluen	ce (UV Dose Wi) (mJ cm ⁻²) thout Photo) for a Give preactivatio	n Log Red n	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Type 2, ATCC VR-846, method: ICC-qPCR ^g	A549 cell line (CCL- 185)	LP	40	81	121	161			yes		[57]
Type 2 ATCC VR- 846 method: ICC- qPCR	A549 cell line (ATCC CCL-185)	LP	16	37	69	117			yes		[16]
Type 2 ATCC VR- 846 method: ICC- qPCR	A549 cell line (ATCC CCL-185)	MP	8.1	16	27	39	55		yes		[16]
Type 2 ATCC VR- 846 method: ICC- qPCR	A549 cell line (ATCC CCL-185)	UV-LED 260 nm	16	41	79	121			yes	GF = 1.060	[16]
Type 2 ATCC VR- 846 method: ICC- qPCR	A549 cell line (ATCC CCL-185)	UV-LED 280 nm	24	52	76	125	148		yes	GF = 1.270	[16]
Type 2 ATCC VR- 846 method: cell culture (TCVA)	A549 cell line (ATCC CCL-185)	UV-LED 260 nm	44	73	103	118			yes	GF = 1.060	[16]
Type 2 ATCC VR- 846 method: cell culture (TCVA)	A549 cell line (ATCC CCL-185)	UV-LED 280 nm	65	93	114	138			yes	GF = 1.270	[16]
Type 2, method: total culturable virus assay	A549 cell line (CCL- 185)	LP	26	100	135	168	203	234	yes	(h)	[94]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 224 nm	58	104	154	215			yes	GF = 9.584	[180]
Type 2	A549 cell	MP 254 nm	26	59	93	123			yes	Action	[180]

			Fluen	ce (UV Dose Wi) (mJ cm ⁻²) thout Photo	for a Given	n Log Redu 1	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
ATCC VR- 846 method: soft agar overlay plaque assay	line (CCL- 185)									spectrum	
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 280 nm	44	79	108	137			yes	GF = 1.270	[180]
Type 2 ATCC VR- 846 method: Soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 218 nm	46	94	137				yes	GF = 13.183	[180]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 228 nm	61	106	143	204			yes	GF = 7.129	[180]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 232 nm	48	90	126	179			yes	GF = 4.684	[180]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 239 nm	48	81	129				yes	GF = 1.262	[180]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 248 nm	24	44	63	84			yes	GF = 0.546	[180]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 260 nm	28	60	86	115			yes	GF = 1.060	[180]
Type 2 ATCC VR- 846 method: soft	A549 cell line (CCL- 185)	MP 265 nm	30	73	109				yes	GF = 1.330	[180]

			Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation								
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
agar overlay plaque assay											
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 270 nm	22	64	103	146			yes	GF = 1.610	[180]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP 289 nm	42	77	104	131			yes	GF = 0.677	[180]
Type 2 ATCC VR- 846 method: soft agar overlay plaque assay	A549 cell line (CCL- 185)	MP	25	40	64	82			yes		[180]
Type 2 VR- 846 method: plaque assay	A549 cell line (ATCC CCL-185)	Microplasm a UV 222 nm	59	151	243	282			yes	GF = 10.799	[181]
Type 2 VR- 846 method: plaque assay	A549 cell line (ATCC CCL-185)	MP 223 nm	71	110	197				yes	GF = 10.193	[181]
Type 4, ATCC VR-1572, method: ICC qPCR	PLC/PRF5 ATCC CRL-8024	LP	10	34	69	116			yes		[66]
Type 5, method: cell culture	HEK 293 cells human embryonic kidney	LP	45	76	120				yes		[63]
Type 5	HEK293	LP	38	76	114	152			yes		[182]
Type 5	HEK293	MP	23	45	68	90			yes		[182]
Type 5	PLC/PRF5	LP	31	62	93	123			yes		[182]
Type 5	PLC/PRF5	MP	22	43	65	87			yes		[182]
Type 5	XP17BE	LP	13	26	39	52			yes		[182]
Type 5	XP17BE	MP	9	18	27	36			yes		[182]
Type 5	A549 cell line (CCL- 185)	LP	51	101	151				yes		[29]
Type 5	A549 cell line (CCL-	LP	63	100	151				yes		[67]

			Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation								
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
	185)										
Type 5 ATCC VR5	A549 cell line (CCL- 185)	UV-LED 285 nm	47	77	119				yes	GF = 0.942	[151]
Serotype 5 ATCC VR5	A549 cell line (ATCC CCL-185)	UV-LED 280 nm	55	95	156				yes	GF = 1.270	[151]
Type 6, method: MPN	PLC/ PRF5 and HeLa cell line	LP	39	77	115	154			yes		[179]
Type 40, strain: Dugan	PLC/PRF5 cell line	LP	50	109	167				yes		[68]
Type 40, method: MPN	PLC/PRF5 cell line	MP	16	23	~30	~40			yes		[60]
Type 40, method: MPN	PLC/PRF5 cell line	LP	63	88	109	>120			yes		[69]
Type 40	HEK293	LP	35	70	105	139			yes		[182]
Type 40	HEK293	MP	17	33	50	66			yes		[182]
Type 40	PLC/PRF5	LP	34	67	101	134			yes		[182]
Type 40	PLC/PRF5	MP	16	33	49	65			yes		[182]
Type 41, ATCC VR-930, method: ICC-RT-	HEK 293 cells ATCC CRL-1573	LP	56	111	167	222			yes		[70]
PCR ¹											
Type 41, method: cell culture	HEK 293 cells human embryonic kidney & PLC/PRF5 (hepatoma) cells	LP	62	120					yes		[63]
Type 41	HEK293	LP	45	91	136	182			yes		[182]
Type 41	HEK293	MP	20	39	59	78			yes		[182]
Type 41	PLC/PRF5	LP	34	68	103	137			yes		[182]
Type 41	PLC/PRF5	MP	18	36	53	71			yes		[182]
Type 41	XP17BE	LP	14	29	43	57			yes		[182]
Type 41	XP17BE	MP	11	21	32	42			yes		[182]
Atlantic											
	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Red Without Photoreactivation Lamp						uction				
---------------------------------------	---	--	-----	-----	-----	-----	--------	-----	-----------	------------	------------
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
halibut nodavirus (AHNV)	SSN-1 cell line	LP	35	70	104	140	176	211	yes		[183]
B40-8 (phage)									•		•
	<i>B. fragilis</i> HSP-40	LP	12	18	23	28			yes		[21]
	B. fragilis	LP	11	17	23	29	35	41	yes		[24]
Calicivirus feli	ne						1	1			
	CRFK cell line	LP	5	15	23	30	39		yes		[68]
	MDCK cell line ^j	LP	7	15	22	30	36		yes		[184]
	CRFK cell line	LP	7	16	25				yes		[184]
FCV ATCC VR-782	Crandell Reese feline kidney cell CRfk, ATCC CCL-94	LP	5	12	18	26			yes		[71]
ATCC VR- 782	CRFK cells ATCC CCL-94	UV-LED 265 nm	8.3	15	23	31			yes	GF = 0.941	[110, 185]
ATCC VR- 782	CRFK cells ATCC CCL-94	UV-LED 280 nm	4.8	9	14	19			yes	GF = 0.486	[110, 185]
ATCC VR- 782	CRFK cells ATCC CCL-94	UV-LED 300 nm	5.3	11	16	22			yes	GF = 0.037	[110, 185]
FCV strain F4 method: TCID50	CRFK cells	Excilamp 222 nm	2.3	6.2	15				no	GF = 0.683	[86]
FCV strain F4 method: TCID50	CRFK cells	LP	3.5	8.2	27				no		[86]
Coronavirus											
HCoV-229E method: TCID50	Human lung fibroblast MRC-5 cell line (ATCC CCL-171)	Filtered KrCl excilamp 222 nm	0.7	1.4					yes	GF = 0.683	[72]
HcoV-229E method:	Human lung fibroblast	Unfiltered KrCl excilamp	0.7	1.4	1.9				yes		[72]

	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation					uction					
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
TCID50	MRC-5 cell line (ATCC CCL-171)	222/258 nm									
HcoV-229E method: TCID50	Human lung fibroblast MRC-5 cell line (ATCC CCL-171)	LP	1.7	3.2					yes		[72]
HcoV-229E method: TCID50	Human lung fibroblast MRC-5 cell line (ATCC CCL-171)	UV-LED 270 nm	1.9	3.6	5.6				yes	GF = 0.813	[72]
HcoV-229E method: TCID50	Human lung fibroblast MRC-5 cell line (ATCC CCL-171)	UV-LED 282 nm	0.8	2.9	4.9				yes	GF = 0.421	[72]
HcoV-229E VR-740 method: TCID50	MRC-5 cells (CCL- 171)	KrCl excilamp 222 nm	0.6	1.1	1.7					Medium: air	[186]
HcoV-OC43 VR-1558 method: TCID50	WI-36 (CCL-75)	KrCl excilamp 222 nm	0.4	0.8	1.2	1.6				Medium: air	[186]
HcoV-OC43 method: RT- qPCR (ICC- RTqPCR)	MRC-5 cells	UV-LED 267 nm	3	4.5	5.1	6.1			yes	GF = 0.894	[187]
HcoV-OC43 method: RT- qPCR (ICC- RTqPCR)	MRC-5 cells	UV-LED 279 nm	1.8	2.9	3.6	4.5			yes	GF = 0.519	[187]
HcoV-OC43 method: RT- qPCR (ICC- RTqPCR)	MRC-5 cells	UV-LED 286 nm	1.8	2.9	3.9	5			yes	GF = 0.302	[187]
HcoV-OC43 method: RT- qPCR (ICC- RTqPCR)	MRC-5 cells	UV-LED 297 nm	1.2	1.9	2.2	3.3			yes	GF = 0.070	[187]
MERS-CoV method: plaque assay	Vero 81 cells	LP	0.8 min	1.7 min	2.5 min	3.4 min	4.2 min		no	Virus droplets	[188]
MERS-CoV (HcoV-EMC-	VeroE6 cells ATCC	LP	17	35	57				no	Medium: blood	[189]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation Protocol?											
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
2012) method: TCID50	CCL-22									platelet concentrate	
SARS-CoV- P9 method: TCID50	VeroE6 cells	UV 260 nm						325	no	GF = 1.026	[190]
SARS-CoV Urbani strain method: TCID50	VeroE6 cells	LP	187	418	779	1215			no		[191]
SARS-CoV Hanoi strain method: TCID50	VeroE6 cells	UV	12	23	38	69	101		no	Solid surface	[192]
SARS-CoV strain Frankfurt 1 method: TCID50	VeroE6 cells ATCC CCL-22	LP	16	33	49				no	Medium: blood platelet concentrate	[193]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP		Compl	ete remova	l at 3.7 mJ o	cm ⁻²		yes	(h) Initial concentrati on: 0.05 MOI ^k	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	1.1	2.2	3.4				yes	(h) Initial concentrati on: 5 MOI – 24 h postinfectio n – N1	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	0.8	1.6	2.5	3.3	28		yes	(h) Initial concentrati on: 5 MOI - 24 h postinfectio n - N2	[194]
SAKS-COV-	veroE6	LP	0.6	1.3	1.9	2.6	3.2	1	yes	(h)	[194]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation Lamp Protocol ²											
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	cells									Initial concentrati on: 5 MOI – 48 h postinfectio n – N1	
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	0.6	1.2	1.8	2.4	3		yes	(h) Initial concentrati on: 5 MOI – 48 h postinfectio n – N2	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	0.6	1.2	1.8	2.4	3		yes	(h) Initial concentrati on: 5 MOI – 72 h postinfectio n – N1	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	0.6	1.1	1.7	2.3	2.8		yes	(h) Initial concentrati on: 5 MOI – 72 h postinfectio n – N2	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	1.4	2.8	7.9				yes	(h) Initial concentrati on: 1000 MOI – 24 h postinfectio n – N1	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1)	VeroE6 cells	LP	1.1	2.2	3.4	15			yes	(h) Initial concentrati on: 1000	[194]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation											
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
method: real- time PCR using the 2019-nCoV CDC qPCR probe assay										MOI – 24 h postinfectio n – N2	
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	3.7	7.8	12	16			yes	(h) Initial concentrati on: 1000 MOI – 48 h postinfectio n – N1	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	3	6.7	11	15			yes	(h) Initial concentrati on: 1000 MOI – 48 h postinfectio n – N2	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	5.2	8.3	11	14			yes	(h) Initial concentrati on: 1000 MOI – 72 h postinfectio n – N1	[194]
SARS-CoV- 2 (2019-n- CoV/Italy- INMI1) method: real- time PCR using the 2019-nCoV CDC qPCR probe assay	VeroE6 cells	LP	4.8	7.9	11	14	84		yes	(h) Initial concentrati on: 1000 MOI – 72 h postinfectio n – N2	[194]
SARS-CoV- 2 method: end- point dilution assay	VeroE6 cells	UVA 365 nm	292	427					no		[195]
SARS-CoV- 2	VeroE6 cells	LP	62	129	243	400	720		no		[195]

	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reductio Without Photoreactivation							uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
method: end- point dilution assay											
SARS-CoV- 2 (Hu/DP/Kng/ 19-027, LC528233)	Vero cells	Deep UV- LED 280 nm	2.6	10	32				no	GF = 0.486	[196]
SARS-CoV- 2 (isolate SARS-CoV- 2/human/Live rpool/REMR Q0001/2020) method: TCID50	VeroE6 cells C1008	UV 254 nm	35	70	118	181	226		no		[197]
SARS-CoV- 2 (isolate SARS-CoV- 2/human/Live rpool/REMR Q0001/2020) method: plaque assay	VeroE6 cells C1008	UV 254 nm	43	85	135	182	208		no		[197]
SARS-CoV- 2 method: plaque assay	VeroE6 cells	LP	1.3 s	3.4 s					yes	Dried virus droplets	[198]
SARS-CoV- 2 method: plaque assay	VeroE6 cells	LP	1.7 s	3.5 s					yes	Wet virus droplets	[198]
SARS-CoV- 2 Isolate USA- WA1/2020, BEI Resources, Batch #: 70034262 method: plaque assay	Vero cells ATCC clone E6	KrCl excilamp 222 nm (> 240 nm filtered)	0.9	1.6	2.3	3.8			yes	GF = 0.683	[199]

			Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation								
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Coxsackievirus	5										
A10 (CVA10, Kowalik strain) method: ICC- RTqPCR	BGMK cells ⁱ	UV-LED 260 nm	4.6	8.9	13				yes	GF = 1.026	[200]
A10 (CVA10, Kowalik strain) method: ICC- RTqPCR	BGMK cells	UV-LED 280 nm	3.8	6	7.6	9.3			yes	GF = 0.486	[200]
B1 L071615 method: MPN	BGMK cells	LP	7.2	17	23				no		[201]
B3	BGM cell line	LP	8	16	25	33			yes		[52]
B4	BGM cell line	LP	7	13	18	24	29		yes		[59]
B4 M063015 method: MPN	BGMK cells	LP	4.3	10	19	23	30		no		[201]
B4 T051217 method: MPN	BGMK cells	LP	6.5	11	18	25	31		no		[201]
В5	BGM cell line	LP	9.5	18	27	36			yes		[52]
В5	BGM cell line	LP	7	14	21				yes		[73]
B5 (Faulkner) method: MPN	BGMK cells	LP	5.9	12	17	26	32		no		[201]
B5 (L030315) method: MPN	BGMK cells	LP	4.2	9.8	19	27	32		no		[201]
B5 (L060815) method: MPN	BGMK cells	LP	4.1	11	18	25	31		no		[201]
B5 (L061815) method: MPN	BGMK cells	LP	5.1	11	18	27			no		[201]
B5 (L070215) method: MPN	BGMK cells	LP	5.6	12	16	28			no		[201]
B5 (L070915) method: MPN	BGMK cells	LP	3.8	11	17	23	31		no		[201]
B5	BGMK	LP	4.3	10	16	23	32		no		[201]

			Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation					uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
(M063015) method: MPN	cells										
EV70 (J670/71 strain) method: ICC- RTqPCR	BGMK cells	UV-LED 260 nm	3.3	10					yes	GF = 1.026	[200]
EV70 (J670/71 strain) method: ICC- RTqPCR	BGMK cells	UV-LED 280 nm	2	5.8					yes	GF = 0.486	[200]
Crimean-Cong	o hemorrhagic	e fever virus									
CCHFV- strain Afg09- 2990 method: TCID50	Huh7 cells JCRB 0403	LP	20	41					no	Medium: blood platelet concentrate	[193]
Echovirus											
Ι	BGM cell line	LP	8	17	25	33			yes		[52]
Π	BGM cell line	LP	7	14	21	28			yes		[52]
II ATCC VR737 method: MPN	BGMK cells	LP	6.2	13	19	30	40		no		[202]
II Wild type method: MPN	BGMK cells	LP	5.2	11	19	28	40		no		[203]
II ATCC VR41 method: MPN	BGMK cells	LP	5.8	12	20	26	33		no		[201]

			Fluen	ce (UV Dose Wi	e) (mJ cm ⁻²) thout Photo	for a Given	n Log Redi 1	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
12	Fetal rhesus monkey kidney cell FRhK-4, ATCC CRL-1688	LP	8	13	18	28	40		yes		[71]
30 (Bastianni strain) method: ICC- RTqPCR	BGMK cells	UV-LED 260 nm	4.2						yes	GF = 1.026	[200]
30 (Bastianni strain) method: ICC- RTqPCR	BGMK cells	UV-LED 280 nm	3.4	7.3					yes	GF = 0.486	[200]
GA phage	<i>E. coli</i> Hfr K12 ATCC 23631	LP	18	38	58	87	121		yes		[204]
Hepatitis	1		1		1		1			1	
A HM175	FRhK-4 cell	LP	5.4	15	25	35			yes		[115]
A HM175	FRhK-4 cell	LP	4	8	12	16			yes		[73]
А	HAV/HFS/ GBM	LP	6	10	15	21			no		[205]
HEV-p6- kernow method: qRT- PCR	HepG2/C3 A cells ATCC CRL-10741	LP	6.5	12	18	23	30		yes	(h)	[74]
HS2 bacteriop	hage										
method: plaque assay	Pseudoalter omonas 13- 15	LP	4.1	8.2	12	17	21		yes		[206]
Infectious pancreatic necrosis virus (IPNV)	BF-2 cell line	LP	82	165	246	325			yes		[183]
Infectious salmon anemia virus (ISAV)	SHK-1 cell line	LP	2.5	5.0	7.5				yes		[183]
Influenza A vir	rus										
H1N1 (A/PR/8/34) method: fluorescent	MDCK cells	LP	0.7							Medium: air – 25 % relative humidity	[207]

	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation										
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
focus reduction assay										(RH)	
H1N1 (A/PR/8/34) method: fluorescent focus reduction assay	MDCK cells	LP	1							Medium: air – 50 % RH	[207]
H1N1 (A/PR/8/34) method: fluorescent focus reduction assay	MDCK cells	LP	1							Medium: air – 75 % RH	[207]
IAV H1N1 (strain A/Puerto Rico/8/1934) method: plaque assay	MDCK cells	UVA-LED 365 nm	5663	54219					yes		[208]
IAV H1N1 (strain A/Puerto Rico/8/1934) method: plaque assay	MDCK cells	UVB-LED 310 nm	211	466	1081				yes		[208]
IAV H1N1 (strain A/Puerto Rico/8/1934) method: plaque assay	MDCK cells	UVC-LED 280 nm	7.5	15	24	27			yes	GF = 0.486	[208]
JC polyomavir	us										
Mad-4 method: cell culture	SVG-A cells	LP	60	124	171				no		[56]
Mad-4 method: qPCR	SVG-A cells	LP	>	180					no		[56]
MS2 coliphage											
	N/A	UV-LED 255 nm	15	28	40				yes	GF = 1.057	[209]
	<i>E. coli</i> Famp	LP	13	25	44	64			yes		[76]
	<i>E. coli</i> Famp	MP	9	17	31	46	56		yes		[76]

			Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation								
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
	E. coli Cr63	LP	17	34					yes		[210]
	E. coli C3000	LP	35						yes		[73]
	E. coli ATCC1559 7	LP?	19	40	61				no		[77]
	Salmonella typhimuriu m WG49	LP	16	35	57	83	114	152	no		[211]
	E. coli ATCC1559 7	LP	13	29	45	62	80		yes		[78]
	E. coli C3000	LP	13	28					yes		[42]
	<i>E. coli</i> K-12 Hfr	LP	21	36					yes		[21]
	<i>E. coli</i> K- 12	LP	19	36	55				yes		[24]
	E. coli C3000	LP	20	42	68	90			yes		[48]
	<i>E. coli</i> ATCC 15977	LP	20	50	85	120			yes		[68]
	<i>E. coli</i> ATCC 15977	LP	20	42	70	98	133		no		[212]
	E. coli C3000	LP	20	42	69	92			yes		[213]
	<i>E. coli</i> ATCC 15977	LP	29	58	87	116			yes		[179]
	<i>E. coli</i> ATCC 15977	LP	14	33	50	66			yes		[156]
	<i>E. coli</i> K12 A/λ(F+)	LP	22	48					yes		[29]

	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduc Without Photoreactivation				uction						
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
method: plaque assay	<i>E. coli</i> Famp ATCC 700891	LP	14	30	45	60	77		yes		[15]
method: plaque assay	<i>E. coli</i> Famp ATCC 700891	UV-LED 260 nm	16	44	49	65	79		yes	GF = 1.220	[15]
method: cell culture	Salmonella typhimuriu m WG49	LP	20	40	61	91	119	146	no		[56]
method: qPCR	Salmonella typhimuriu m WG49	LP	<	180					no		[56]
method: qRT-PCR	Salmonella WG49	LP	12	23	33	44	104		yes	(h)	[74]
ATCC15977- B1	<i>E. coli</i> ATCC 15977	LP	17	38	59	81	103	123	yes		[115]
ATCC15977- B1	E. coli HS(pFamp) R	LP	16	45	72	100	128	154	yes		[214]
ATCC15977- B1	<i>E. coli</i> ATCC 15977	LP	15	32	51	72	98		yes		[212]
ATCC15977- B1	<i>E. coli</i> ATCC 15977	LP	25	42	66	97			yes		[215]
ATCC15977- B1	<i>E. coli</i> ATCC 15977	LP	20	40	62	92	141	173	yes		[70]
ATCC15977- B1	<i>E. coli</i> ATCC 15977	LP	20	40	62	92	141	173	yes		[70]
ATCC15977- B1	<i>E. coli</i> ATCC 15977	LP	18	38	59	80			yes		[105]
ATCC15977- B1	E. coli NCTC1248 6	LP	20	40	60				yes	Action spectrum	[101]
ATCC15977- B1	<i>E. coli</i> Hfr K12 ATCC 23631	LP	20	40	68	95	125		yes		[204]
ATCC15977- B1	<i>E. coli</i> ATCC 15597	LP	18	40					yes		[216]
	E. coli										

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduct Without Photoreactivation							uction				
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
ATCC15977- B1	ATCC 15597 C3000	LP	14	29	45				yes		[102]
ATCC15977- B1	<i>E. coli</i> Famp	LP	16	>30					yes		[217]
ATCC15977- B1	<i>E. coli</i> ATCC 15597	LP	20	39	61	83			yes		[69]
ATCC15977- B1	<i>E. coli</i> ATCC 15597	LP	18	41					yes		[130]
ATCC15977- B1	<i>E. coli</i> ATCC 15597	UV-LED 255 nm	26	53					yes	GF = 1.057	[130]
ATCC15977- B1	<i>E. coli</i> ATCC 15597	UV-LED 275 nm	24	52					yes	GF = 0.952	[130]
ATCC15977- B1	<i>E. coli</i> Famp ATCC 700891	LP	14	32	51				yes		[71]
ATCC15977- B1	N/A	LP	13	30	53	70			yes		[218]
ATCC15977- B1	<i>E. coli</i> ATCC 15597 Migula	LP	18	52	75	92	106	116	yes		[219]
ATCC15977- B1	<i>E. coli</i> ATCC 15597	LP	20	40	70	95	120	138	no		[220]
ATCC15977- B1	<i>E. coli</i> ATCC 15597 C3000	LP	20	45					yes		[221]
ATCC15977- B1	<i>E. coli</i> ATCC 15597 C3000	UV-LED 260 nm	18	39	59				yes	GF = 1.220	[221]
ATCC15977- B1	<i>E. coli</i> ER2738	UV-LED 255 nm	20	44	76				no	GF = 1.057	[222]
ATCC15977- B1	<i>E. coli</i> Hfr K12 ATCC2363	LP	6	13	21	29	37	46	yes		[223]

			Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation								
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
	1										
ATCC15977- B1	<i>E. coli</i> HS(pFamp) R ATCC 700891	LP	18	33	63				yes	Action spectrum	[79]
ATCC15977- B1 (Action spectrum weighted fluence)	E. coli HS(pFamp) R ATCC 700891	MP	15	32	52				yes	Action spectrum	[79]
ATCC15977- B1	<i>E. coli</i> HS(pFamp) R ATCC 700891	LP	20	40	60				yes	Action spectrum	[224]
ATCC 15597-B1 method: EPA 1601	<i>E. coli</i> (Famp) ATCC 700891	MP	15	32	48				yes		[16]
ATCC 15597-B1 method: EPA 1601	<i>E. coli</i> (Famp) ATCC 700891	UV-LED 260 nm	15	35	55				yes	GF = 1.220	[16]
ATCC 15597-B1 method: EPA 1601	<i>E. coli</i> (Famp) ATCC 700891	UV-LED 280 nm	14	30	46				yes	GF = 0.780	[16]
ATCC15977- B1	<i>E. coli</i> K12 A/λ(F+)	UV-LED 285 nm	19	41	61				yes	GF = 0.579	[151]
ATCC15977- B1	<i>E. coli</i> Famp ATCC 700891	LP	17	35	60	88	116		yes	(h)	[94]
ATCC 15597-B1 method: double agar layer ATCC	E. coli K12 A/λ(F+) E. coli	UV-LED 280 nm	25	55 62 mJ	81 cm ⁻² for 0	109 4 log reduc	tion		yes	GF = 0.780	[151]
	K12	L1		02 IIIJ		. 105 10000			903		[223]

		Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduc Without Photoreactivation					uction				
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
15597-B1 method: RT- aPCR	Α/λ(F+) ΑΤCC 10798										
ATCC 15597-B1 method:	<i>E. coli</i> ATCC 15597	LP	44	75	106				yes		[226]
layer											
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> C3000 ATCC 15597	LP			7.4		75		no		[227]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> C3000 ATCC 15597	UV-LED 266 nm			2		6.1		no	GF = 1.199	[227]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> C3000 ATCC 15597	UV-LED 279 nm			1.3		5.6		no	GF = 0.817	[227]
ATCC 15597-B1 method: single agar layer	<i>E. coli</i> Famp ATCC 700891	LP	17	36	59	90			yes	Action spectrum	[228]
ATCC 15597-B1 method: single agar layer	<i>E. coli</i> Famp ATCC 700891	UV-LED 255 nm	12	28	47				yes	GF = 1.057	[228]
ATCC 15597-B1 method: single agar layer	<i>E. coli</i> Famp ATCC 700891	UV-LED 265 nm	15	37	60				yes	GF = 1.216	[228]
ATCC 15597-B1 method: single agar	<i>E. coli</i> Famp ATCC 700891	UV-LED 285 nm	14	30	52				yes	GF = 0.579	[228]

	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Re Without Photoreactivation							uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
layer											
ATCC 15597-B1 method:	<i>E. coli</i> Famp ATCC 700891	KrCl excilamp 222 nm	15	28	45	62	90		yes	GF = 2.086	[228]
single agar layer											
ATCC 15597-B1	<i>E. coli</i> ATCC 15597	LP	13	35	54				yes	Action spectrum	[135]
method: plaque assay											
ATCC 15597-B1	<i>E. coli</i> ATCC 15597	XeBr excilamp 282 nm	15	47					yes	GF = 0.703	[135]
method: plaque assay											
ATCC 15597-B1	<i>E. coli</i> ATCC 15597	MP 310 nm	20						yes	GF = 0.227	[135]
method: plaque assay											
ATCC 15597-B1	<i>E. coli</i> K12 A/λ(F+)	UV-LED 265 nm	22	59	93	128			yes	GF = 1.216	[110, 185]
method: double agar layer											
ATCC 15597-B1	<i>E. coli</i> K12 A/λ(F+)	UV-LED 280 nm	24	46	73	95			yes	GF = 0.780	[110, 185]
method: double agar layer											
ATCC 15597-B1	<i>E. coli</i> K12 A/λ(F+)	UV-LED 300 nm	1.7	3.8	5.6	7.3			yes	GF = 0.005	[110, 185]
method: double agar layer											
ATCC 15597-B1 method: single agar	<i>E. coli</i> Famp ATCC 700891	LP	14	32					yes	Action spectrum	[28]
ATCC 15597-B1	<i>E. coli</i> Famp ATCC	UV-LED 255 nm	13	26	40				yes	GF = 1.057	[28]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduc Without Photoreactivation						uction					
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
method: single agar layer	700891										
ATCC 15597-B1 method: single agar layer	<i>E. coli</i> Famp ATCC 700891	UV-LED 265 nm	16	35					yes	GF = 1.216	[28]
ATCC 15597-B1 method: single agar layer	<i>E. coli</i> Famp ATCC 700891	UV-LED 285 nm	13						yes	GF = 0.579	[28]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> ATCC 15597	UV-LED 265 nm	16	33	54	73			yes	GF = 1.216	[132]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> ATCC 15597	UV-LED 265 nm	27	55	87	121	154		yes	GF = 1.216	[157]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> ATCC 15597	UV-LED 285 nm	46	86	133	172			yes	GF = 0.579	[157]
F-specific	E. coli WG21	LP	8	17	25	33			yes		[229]
F-specific	E. coli WG21	MP	9	19	28	38			yes		[229]
ATCC15977- B1 F-specific	<i>E. coli</i> C3000	LP	14	29	49				yes		[59]
ATCC15977- B1 F-specific	<i>E. coli</i> ATCC 15597 C3000	LP	19	42	69				yes		[65]
ATCC15977- B1 F-specific	<i>E. coli</i> ATCC 15597 C3000	МР	16	33	53	90			yes		[65]
ATCC 15597-B1 F-specific method:	<i>E. coli</i> ATCC 15597	LP	38	64	90				yes		[230]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Red Without Photoreactivation								uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
double agar layer											
ATCC 15597-B1 F-specific	<i>E. coli</i> ATCC 15597	UV-LED 270 nm	110						yes	GF = 1.100	[230]
method: double agar layer											
ATCC15977- B1	<i>E. coli</i> Hfr (<i>c</i> -3000)	LP	17	39	65	96	130		yes		[75]
ATCC 16696-B1	<i>E. coli</i> Famp ATCC 700891	LP	30	54	87	121			yes		[231]
Coliphage 1 F-specific method: double agar layer	<i>E. coli</i> ATCC 15597	LP	16	28	39	51	62		yes		[230]
Coliphage 1 F-specific method: double agar layer	<i>E. coli</i> ATCC 15597	UV-LED 270 nm	8.8	18	35	72			yes	GF = 1.100	[230]
Coliphage 5 F-specific method: double agar layer	<i>E. coli</i> ATCC 15597	LP	29	47	61	77	94		yes		[230]
Coliphage 5 F-specific method: double agar layer	<i>E. coli</i> ATCC 15597	UV-LED 270 nm	24	44	56	74	122		yes	GF = 1.100	[230]
Coliphage 7 (somatic coliphage) method: double agar layer	<i>E. coli</i> ATCC 13706	LP	4.9	9.8	15	20	31		yes		[230]
Coliphage 7 (somatic coliphage) method: double agar layer	E. coli ATCC 13706	UV-LED 270 nm	8	16	44	57	121		yes	GF = 1.100	[230]
Coliphage	E. coli	LP	12	25	43	62			yes		[230]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation Protocol?											
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
17 (somatic coliphage) method: double agar layer	ATCC 13706										
Coliphage 17 (somatic coliphage) method: double agar layer	<i>E. coli</i> ATCC 13706	UV-LED 270 nm	14	47	57	78			yes	GF = 1.100	[230]
DSM5694	<i>E. coli</i> NCIB 9481	LP?	4	16	38	68	110		no		[205]
DSMZ 13767 method: double agar layer	E. coli DSMZ 5695	LP	4.3	10	16	22	32		no		[201]
Single- stranded RNA (3.6) method: double agar layer	<i>E. coli</i> Famp	LP	19						yes		[232]
Single- stranded RNA (3.6) method: double agar layer	<i>E. coli</i> Famp	MP	8.6	19	31				yes		[232]
Myoviridae	E. coli C	LP	1.8	3.6	5.1	6.7	8.5		yes		[59]
Murine norovi	rus	1	1		1		r	1	1		
NCIMB1010 8	RAW 264.7 cells	LP	10	15	22	27	30		yes		[217]
CW3	RAW 264.7 macrophags ATCC TIB-71	LP	10	15	22	27	30		yes		[71]
method: Plaque assay	RAW 264.7 cells	LP	6	13	19	24			yes		[231]
Murine hepati	tis virus (MHV)									
method: plaque assay	DBT cells	UV 254 nm	5.6 min							$\begin{array}{c} \text{Medium:} \\ \text{air} - 0.6 \text{ mJ} \\ \text{cm}^{-2} \text{ for } 0.9 \\ \text{log} \\ \text{reduction} \end{array}$	[233]
A59 method:	Hela cells	LP	1.9 min	3.7 min	5.4 min	6.9 min	8.3 min		no	Virus droplets	[188]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation Lamp Proto											
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
plaque assay											
A59		LP	0.4	0.9	1.4	1.8	3		yes		[206]
method: plaque assay	DBT cells								-		
A59 method: TCID50	DBT cells	Filtered KrCl excilamp 222 nm	0.6	2	2.3				yes	GF = 0.683	[72]
A59 method: TCID50	DBT cells	Unfiltered KrCl excilamp 222/258 nm	1.1	1.5					yes		[72]
A59 method: TCID50	DBT cells	LP	1	2.1	3.2				yes		[72]
A59 method: TCID50	DBT cells	UV-LED 270 nm	1	1.9					yes	GF = 0.813	[72]
A59 method: TCID50	DBT cells	UV-LED 282 nm	0.8	2					yes	GF = 0.421	[72]
Nipah virus NiV-strain Malaysia method: TCID50	Vero 76 cells ATCC CRL-1587	LP	21	43					no	Medium: blood platelet concentrate	[193]
Phage B124- 54	<i>B. fragilis</i> strain GB- 124	LP	14	21	28				yes		[234]
PHI 6											
method: plaque assay	Pseudomon as syringae	Filtered KrCl excilamp 222 nm	2.2	4	5.4				yes	GF = 0.683	[72]
method: plaque assay	Pseudomon as syringae	Unfiltered KrCl excilamp 222/258 nm	4.9	7.6	10.4				yes		[72]
method: plaque assay	Pseudomon as syringae	LP	30	71					yes		[72]
method: plaque assay	Pseudomon as syringae	UV-LED 270 nm	25	53	77				yes	GF = 0.813	[72]
method: plaque assay	Pseudomon as syringae	UV-LED 282 nm	17	35	49				yes	GF = 0.421	[72]
PHI X 174						-	•			•	
(phage)	<i>E. coli</i> C3000	LP?	2.1	4.2	6.4	8.5	11	13	yes		[73]

			Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation								
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
(phage)	<i>E. coli</i> ATCC 15597	LP?	4	8	12				no		[77]
(phage)	E. coli WG5	LP	2.2	5.3	7.3	11			yes		[21]
(phage)	<i>E. coli</i> ATCC 13706	LP	2.0	3.5	5	7			yes		[20]
(phage)	E. coli WG5	LP	3	5	7.5	10	13	15	yes		[24]
	N/A	UV-LED 255 nm	1.6	3.4	5.3				yes	GF = 1.030	[209]
	N/A	UV-LED 280 nm	2.3	5	8.4				ves	GF = 0.980	[209]
ATCC 13706	N/A	LP	7.1	14	21	28	37	47	yes		[218]
ATCC 13706-B1 method: double agar layer	<i>E. coli</i> CN13 ATCC 700609	LP			3.7		36		no		[227]
ATCC 13706-B1 method: double agar layer	<i>E. coli</i> CN13 ATCC 700609	UV-LED 266 nm			4.1		14		no	GF = 1.238	[227]
ATCC 13706-B1 method: double agar layer	<i>E. coli</i> CN13 ATCC 700609	UV-LED 279 nm			4.4		17		no	GF = 1.013	[227]
DSM 4497 method: qPCR	<i>E. coli</i> DSM 13127	LP	30	57	86	122	148		yes		[235]
Single- stranded DNA (5.3) method: double agar layer	E. coli CN13	LP	2.4	4.7	12	26			yes		[232]
Single- stranded DNA (5.3) method: double agar layer	E. coli CN13	MP	2.1	4.2	14				yes		[232]
	E. coli CN13	LP	N/A	N/A	N/A	8.9			yes		[76]

	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduc Without Photoreactivation Lamp				uction						
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
	E. coli CN13	MP	N/A	N/A	N/A	6.7			yes		[76]
Picornaviridae	aphthovirus (f	foot and mouth	disease viru	1s)	L			L			
O189	Baby hamster kidney (BHK-21) cell line	LP	25	50	75	100			no	(h)	[236]
A132	Baby hamster kidney (BHK-21) cell line	LP	20	39	59	78			no	(h)	[236]
A Sakol	Baby hamster kidney (BHK-21) cell line	LP	22	44	67	89			no	(h)	[236]
AS 1	Baby hamster kidney (BHK-21) cell line	LP	31	63	94	125			no	(h)	[236]
Poliovirus	L	L		L							
Type 1 LSc2ab	MA104 cells	LP	N/A	5.6	11	17	22		yes		[97]
Type 1 ATCC Mahoney	N/A	LP	6	14	23	30			yes		[126]
Type 1 LSc2ab	BGM cell line	LP	2.8	11	20	28	37	46	yes		[115]
Type 1	BGM cell line	LP	8.0	16	23	31			yes		[52]
Type 1 LSc2ab	BGM cell line	LP	7	17	28	37			yes		[214]
Vaccine strain	N/A	LP	6.4	14	22	33			no		[212]
method: plaque assay											
Vaccine strain	N/A	LP	6.4	14	21	31			no		[212]
method: TCID50											
Type 1	BGM cell line	LP	8.7	17	25				yes		[59]

	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduct Without Photoreactivation							uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Type 1	BGM cell line	LP	7	14	21	29	39	50 + tailing	yes		[204]
Type 1 (Mahoney strain) method: ICC-	BGMK cells	UV-LED 260 nm	3.5	7.6	12				yes	GF = 1.026	[200]
Type 1 (Mahoney strain) method: ICC- RTqPCR	BGMK cells	UV-LED 280 nm	3.2	5.4	6.9	9.2			yes	GF = 0.486	[200]
PRD-1 (Tectivi	iridae)										
Phage	Salmonella typhimuriu m Lt2	LP	10	17	24	30			yes		[78]
ATCC BAA- 769-B1	Salmonella typhimuriu m Lt2	LP	18	50	81	108	138		yes		[59]
	Salmonella typhimuriu m Lt2	LP	N/A	N/A	N/A	36			yes		[76]
	Salmonella typhimuriu m Lt2	MP	N/A	N/A	N/A	32			yes		[76]
Double- stranded DNA (14.7) method: double agar layer	Salmonella typhimuriu m Lt2	LP	14	26					yes		[232]
Double- stranded DNA (14.7) method: double agar layer	Salmonella typhimuriu m Lt2	MP	11	23	35				yes		[232]
Q β											
	N/A	UV-LED 255 nm	12	24					yes	GF = 1.063	[209]
	N/A	UV-LED 280 nm	19						yes	GF = 0.720	[209]
	<i>E. coli</i> ATCC 15597 C3000	LP	12	25	40				yes		[221]

Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation Lamp					uction						
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
	<i>E. coli</i> ATCC 15597 C3000	UV-LED 260 nm	11	24	36	51			yes	GF = 1.240	[221]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> K12 A/λ(F+) ATCC 10798	LP	11	24					yes	Action spectrum	[27]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> K12 A/λ(F+) ATCC 10798	UV-LED 265 nm	11	26	38	51			yes	GF = 1.236	[27]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> K12 A/λ(F+) ATCC 10798	UV-LED 280 nm	12	25	38				yes	GF = 0.720	[27]
ATCC 15597-B1 method: double agar layer	<i>E. coli</i> K12 A/λ(F+) ATCC 10798	UV-LED 300 nm	3.7	11	19				yes	GF = 0.040	[27]
ATCC 23631- B1	<i>E. coli</i> ATCC 23631	LP	8	18	28	40			yes		[69]
ATCC 23631- B1	<i>E. coli</i> ATCC 23631	LP	N/A	20					yes	Action spectrum	[79]
ATCC 23631- B1	<i>E. coli</i> ATCC 23631	Laser 254 nm	11	22	34	46			yes	Action spectrum	[79]
ATCC 23631 B1	<i>E. coli</i> K12 A/λ(F+)	UV-LED 285 nm	15	29	44				yes	GF = 0.544	[237]
ATCC 23631-B1 method: double agar layer	<i>E. coli</i> K12 Α/λ(F+)	UV-LED 280 nm	19	40	59				yes	GF = 0.720	[151]
ATCC 23631-B1 method: double agar layer	E. coli K12 A/λ(F+)	UV-LED 265 nm	11	25	38	52			yes	GF = 1.236	[110]
ATCC 23631-B1 method:	<i>E. coli</i> K12 A/λ(F+)	UV-LED 280 nm	12	25	39	53			yes	GF = 0.720	[110]

			Fluen	ice (UV Dose Wi) (mJ cm ⁻²) thout Photo) for a Giver	n Log Redi 1	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
double agar layer											
ATCC 23631-B1 method: double agar layer	<i>E. coli</i> K12 Α/λ(F+)	UV-LED 300 nm	4	12	20	29			yes	GF = 0.040	[110]
ATCC 23631-B1 method: double agar layer	<i>E. coli</i> C3000 ATCC 15597	LP			5.5		25		no		[227]
ATCC 23631-B1 method: double agar layer	<i>E. coli</i> C3000 ATCC 15597	UV-LED 266 nm			1.6		4.9		no	GF = 1.217	[227]
ATCC 23631-B1 method: double agar layer	<i>E. coli</i> C3000 ATCC 15597	UV-LED 279 nm			1.7		5.6		no	GF = 0.758	[227]
Phage	<i>E. coli</i> Hfr K12 ATCC 23631	LP	12	23	36	50	66	83	yes		[204]
Phage	<i>E. coli</i> K12 A/λ(F+)	LP	10	23	35				yes		[29]
Phage	<i>E. coli</i> K12 A/λ(F+)	LP	11	26	40	55			yes		[80]
Reovirus		-		-	-	-	-	-	-	-	
3	Mouse L- 60	LP?	11	22					yes		[210]
Type 1 Lang strain	N/A	LP	16	36					yes		[126]
Rotavirus				-	-	-	-			-	-
SA-11	Monkey kidney cell line MA 104	LP	8	15	27	38			yes		[21]
	MA 104 cell line	LP	20	80	140	200			no		[238]
SA-11	MA 104 cell line	LP	7	15	25				yes		[97]
SA-11	MA 104 cell line	LP	9	19	26	36	48		yes		[115]
SA-11	MA 104 cell line	LP	7	15	23				yes		[73]

			Fluen	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation							
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
SA-11 ATCC VR-1565 method: cell culture, assay based on CPE	MA 104 cells ATCC CRL- 2378.1	LP	7	15	31 + taili	ng			yes		[239]
SA-11 ATCC VR-1565 method: RT-qPCR assay	MA 104 cells ATCC CRL- 2378.1	LP	29	58	88	117 + tail	ing		yes		[239]
Human (HRV-Wa)	N/A	LP	16	24	32	40			yes		[156]
SA-11	MA-104 cell line	LP	10	21	32	43	53		yes		[115]
Siphoviridae	E. coli C	LP	1.8	3.6	5.7	7.5	9.3		yes		[59]
T1	T1										
	E. coli CN13	LP	N/A	N/A	N/A	13			yes		[76]
	E. coli CN13	MP	N/A	N/A	N/A	19			yes		[76]
T1UV											
HER 468	<i>E. coli</i> CN13 ATCC 700609	LP	N/A	8.3					yes	Action spectrum	[79]
HER 468	<i>E. coli</i> CN13 ATCC 700609	Laser 254 nm	4.3	8.5	13	17			yes	Action spectrum	[79]
HER 468	<i>E. coli</i> CN13 ATCC 700609	LP	4.6	9.5	14.7	20	26		yes		[75]
T4											
	E. coli	LP	1.1	2.0	3.0	4.0	6.7		yes		[81]
	E. coli	MP	1.1	1.7	2.6	4.0	7		yes		[81]
	E. coli	LP	3.6	8.0	13				yes		[156]
ATCC 11303	N/A	LP	3.7	7.4	11	17	23	29	yes		[218]
Double- stranded DNA method:	E. coli ATCC 11303	MP 297 nm	4	6.8	12				yes	GF = 0.070	[135]

			Fluen	ice (UV Dose Wi) (mJ cm ⁻²) thout Photo) for a Giver	n Log Red 1	uction			
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
plaque assay											
Double- stranded DNA method: plaque assay	<i>E. coli</i> ATCC 11303	MP 310 nm	22	44	77				yes		[135]
Τ7											
	E. coli	LP	1.7	5.8	11	16	20		yes		[81]
	E. coli	MP	1.3	3.7	8	13	18		yes		[81]
Coliphage	<i>E. coli</i> ATCC 11303	LP	2.7	6.0	11				yes		[130]
Coliphage	<i>E. coli</i> ATCC 11303	LP	2.7	6.0	11				yes		[130]
Coliphage	<i>E. coli</i> ATCC 11303	UV-LED 255 nm	3.1	7.3	15				yes	GF = 1.065	[130]
Coliphage	<i>E. coli</i> ATCC 11303	UV-LED 275 nm	3.4	7.5	15	21			yes	GF = 1.250	[130]
ATCC BAA- 1025-B2	<i>E. coli</i> CN13 ATCC 700609	LP	N/A	3.8					yes	Action spectrum	[79]
ATCC BAA- 1025-B2	<i>E. coli</i> CN13 ATCC 700609	Laser 254 nm	1.6	3.6	6.6				yes	Action spectrum	[79]
ATCC BAA-1025- B2	E. coli BL21	LP	1.3	3.4	6.3	10	14		yes		[75]
T7m											
ATCC 11303- B38	<i>E. coli</i> B ATCC 11303	LP	N/A	3.4					yes	Action spectrum	[79]
ATCC 11303- B38	<i>E. coli</i> B ATCC 11303	Laser 254 nm	1.7	3.8	6.3	11			yes	Action spectrum	[79]
V ₁ (Podoviridae)	E. coli WG5	LP	3.1	5.9	8.8				yes		[59]

			Fluen	Fluence (UV Dose) (mJ cm ⁻²) for a Given Log Reduction Without Photoreactivation							
Virus	Host	Lamp Type	1	2	3	4	5	6	Protocol?	Notes	Reference
Zaire ebolavirus Strain Mayinga-76 method: TCID50	VeroE6 cells ATCC CCL-22	LP	23	46					no	Medium: blood platelet concentrate	[189]

^aMedian Tissue Culture Infectious Dose

^bDNA weighted fluence

^cLong-Range Quantitative Polymerase Chain Reaction using a 6 kilobase fragment of DNA

^dLong-Range PCR using a 1.1 kilobase pairs fragment of DNA

°Action spectrum weighted fluence

fQuantitative PCR

^gIntegrated Cell Culture Quantitative PCR

^hThe water depth was only 2 mm, so the water factor would have been very close to 1.0. Thus, although the protocol corrections were

not made, the corrections would have been small

ⁱIntegrated Cell Culture and Reverse Transcription PCR

^jMadin-Darby Canine Kidney cells

^kMultiplicity of Infection

¹Buffalo Green Monkey Kidney cells

Table A5. Fluences for multiple log reductions for various algae and other microorganisms.

		Fluence	(UV Dose) (With	(mJ cm ⁻²) for out Photoreac	Reduction				
Microorganism	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
Ascaris suum									
Intact eggs from worms	LP	100		328 -	+ tailing		yes		[82]
Decorticated eggs from worms	LP	30					yes		[82]
Candida albicans									
ATCC 10231	LP			31		80	no		[240]
ATCC 18804	LP			27		78	no		[240]
NBRC 1385	Excilamp 222 nm	6.7	13				no	GF = 0.683	[86]
NBRC 1385	LP	14	24				no		[86]
Candida auris									
AR Bank 0381	LP			39		122	no		[240]
AR Bank 0382	LP	21	32	55	90	149	no		[240]
AR Bank 0383	LP			48		132	no		[240]
AR Bank 0384	LP	22	31	57	100	166	no		[240]
AR Bank 0385	LP			59		192	no		[240]
AR Bank 0386	LP			44		111	no		[240]
AR Bank 0387	LP			41		103	no		[240]
AR Bank 0388	LP			43		116	no		[240]

		Fluence	(UV Dose) (Withe	mJ cm ⁻²) for out Photoread	a Given Log l ctivation	Reduction			
Microorganism	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
AR Bank 0389	LP			48		132	no		[240]
AR Bank 0390	LP			43		126	no		[240]
Cryptococcus carnescens yeast PYCC 5988	LP	18	32				yes		[241]
<i>Candida</i> sp. New species similar to <i>C. pomicola</i> yeast PYCC 5991	LP	<10	25				yes		[241]
Metschnikowia viticola/Candia	da kofuensis yea	ıst							
PYCC 5993	LP	10	20				yes		[241]
PYCC 5994	LP	8	17				yes		[241]
<i>Metschnikowia viticola/</i> <i>Candida kofuensis</i> yeast PYCC 5992	LP	10	23				yes		[241]
Microcystis aeruginosa									
PCC7806	LP	10	28	>60			no		[83]
PCC7806	MP	15	130	>200			no		[83]
Microcystis viridis									
	MP	41	95	400			yes		[242]
Penicillium polonicum			•	•				•	
	LP		50				no		[87]
	UV-LED 265 nm	18	33	60	90		yes	GF = 0.941	[88]
	UV-LED 280 nm	9.8	15	22	44		yes	GF = 0.486	[88]
	LP	33	69	95			yes		[88]
	UV-LED 265 nm	19	33	59	94		yes	GF = 0.941	[89]
	UV-LED 280 nm	8.8	15	26	40		yes	GF = 0.486	[89]
	LP	43	80	99			yes		[89]
<i>Rhodosporidium babjevae</i> yeast PYCC 5996	LP	40	90				yes		[241]
Rhodotorula minuta (Saito) yeast PYCC 5990	LP	43	90				yes		[241]
Rhodotorula mucilaginosa yea	ast								
PYCC 5989	LP	44	81				yes		[241]
PYCC 5995	LP	57	113				yes		[241]
Saccharomyces cerevisiae XS800	LP	42	70	100			no		[243]
Tetraselmis suecica									

				2					
		Fluence	(UV Dose) (With	(mJ cm ⁻²) for out Photoreac					
Microorganism	Lamp Type	1	2	3	4	5	Protocol?	Notes	Reference
Algae K0297	LP	370	540	720			no		[244]
	MP	33	87	188	314		yes		[242]
Trichoderma harzianum									
	LP		40				no		[87]
	UV-LED 265 nm	8.6	24	37	94		yes	GF = 0.941	[88]
	UV-LED 280 nm	4.6	12	19	35		yes	GF = 0.486	[88]
	LP	25	40	81			yes		[88]
	UV-LED 265 nm	7.6	24	37	91		yes	GF = 0.941	[89]
	UV-LED 280 nm	4	12	26	46		yes	GF = 0.486	[89]
	LP	21	40	81	145		yes		[89]
Trichophyton rubrum									
IFM 64661	Excilamp 222 nm	6.6	20				no	GF = 0.683	[86]
IFM 64661	LP	7.2	16				no		[86]

Acknowledgments

We wish to thank all those who contributed to previous versions of this compilation. They are: Adel Hajimalayeri (University of British Columbia), Gabriel Chevrefils (Polytechnique Montreal), Bill Cairns (Trojan Technologies Inc.), Éric Caron (Polytechnique Montreal), Benoit Barbeau (Polytechnique Montreal), Harold Wright (Carollo Engineers), and Karl G. Linden (University of Colorado at Boulder).

3. References

- [1] Wright H, Sakamoto G (1999) UV Dose Required to Achieve Incremental Log Lnactivation of Bacteria, Virus, and Protozoa (Trojan Technologies Inc., London, ON, Canada).
- [2] Chevrefils G, Caron É (2006) UV dose required to achieve incremental log inactivation of bacteria, protozoa and viruses. *IUVA News* 8(1):38–45. Available at: https://www.uvclight.co.uk/media/dosage_for_uvc.pdf
- [3] Malayeri AH, Mohseni M, Cairns B, Bolton JR (2016) Fluence (UV dose) required to achieve incremental log inactivation of bacteria, protozoa, viruses and algae. *IUVA News* 18(3):4–6. Available at: https://uv4sanitisation.com/wpcontent/uploads/2020/06/UV-dose-requirements-for-inactivation-viruses.pdf
- [4] Hijnen WAM, Beerendonk EF, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review. *Water Research* 40(1):3–22. https://doi.org/10.1016/j.watres.2005.10.030
- [5] Coohill TP, Sagripanti J (2008) Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. *Photochemistry and Photobiology* 84(5):1084–1090. https://doi.org/10.1111/j.1751-1097.2008.00387.x
- [6] Bolton JR, Linden KG (2003) Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. *Journal of Environmental Engineering* 129(3):209–215. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
- [7] Bolton JR, Beck SE, Linden KG (2015) Protocol for the determination of fluence (UV dose) using a low-pressure or lowpressure high-output UV lamp in bench-scale collimated beam ultraviolet experiments. *IUVA News* 17(1):11–16. Available at: https://safetyspace.de/wp-content/uploads/2020/10/Bolton-Protocol-for-the-Determination-of-Fluence.pdf

- [8] Bolton JR (2017) Action spectra: A review. *IUVA News* 19(2):10–12. Available at:
- https://uvsolutionsmag.com/stories/pdf/archives/190201-IUVA_News_Summer2017_final_ActionSpectra_combo.pdf
 [9] Bolton JR, Cotton CA (2011) *The Ultraviolet Disinfection Handbook* (American Water Works Association, Denver CO), 1st Ed.
- [10] Qian SS, Donnelly M, Schmelling DC, Messner M, Linden KG, Cotton C (2004) Ultraviolet light inactivation of protozoa in drinking water: A Bayesian meta-analysis. *Water Research* 38(2):317–326. https://doi.org/10.1016/j.watres.2003.10.007
- [11] Qian SS, Linden K, Donnelly M (2005) A Bayesian analysis of mouse infectivity data to evaluate the effectiveness of using ultraviolet light as a drinking water disinfectant. *Water Research* 39(17):4229–4239. https://doi.org/10.1016/j.watres.2005.08.017
- [12] Bolton JR, Mayor-Smith I, Linden KG (2015) Rethinking the concepts of fluence (UV dose) and fluence rate: The importance of photon-based units—A systemic review. *Photochemistry and Photobiology* 91(6):1252–1262. https://doi.org/10.1111/php.12512
- [13] Taylor-Edmonds L, Lichi T, Rotstein-Mayer A, Mamane H (2015) The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation. Journal of Environmental Science and Health, Part A 50(4):341–347. https://doi.org/10.1080/10934529.2015.987519
- [14] Blatchley ER III, Meeusen A, Aronson AI, Brewster L (2005) Inactivation of *Bacillus* spores by ultraviolet or gamma radiation. *Journal of Environmental Engineering* 131(9):1245–1252. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1245)
- [15] Sholtes KA, Lowe K, Walters GW, Sobsey MD, Linden KG, Casanova LM (2016) Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water. *Environmental Technology* 37(17):2183–2188. https://doi.org/10.1080/09593330.2016.1144798
- [16] Beck SE, Ryu H, Boczek LA, Cashdollar JL, Jeanis KM, Rosenblum JS, Lawal OR, Linden KG (2017) Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. *Water Research* 109:207–216. https://doi.org/10.1016/j.watres.2016.11.024
- [17] International Austrian Standards (2020) Geräte zur Desinfektion von Wasser mittels Ultraviolettstrahlung (Austrian Standards International, Vienna, Austria), ÖNORM M 5873-1. Available at: https://shop.austrianstandards.at/action/de/public/details/667583/OENORM_M_5873-1_2020_01_01;jsessionid=5F1639F651EC89FE96A4E59C6138939D#
- [18] John DE, Nwachuku N, Pepper IL, Gerba CP (2003) Development and optimization of a quantitative cell culture infectivity assay for the microsporidium *Encephalitozoon intestinalis* and application to ultraviolet light inactivation. *Journal of Microbiological Methods* 52(2):183–196. https://doi.org/10.1016/S0167-7012(02)00159-8
- [19] Templeton MR, Antonakaki M, Rogers M (2009) UV dose-response of Acinetobacter baumannii in water. Environmental Engineering Science 26(3):697–701. https://doi.org/10.1089/ees.2008.0048
- [20] Giese N, Darby J (2000) Sensitivity of microorganisms to different wavelengths of UV light: Implications on modeling of medium pressure UV systems. *Water Research* 34(16):4007–4013. https://doi.org/10.1016/S0043-1354(00)00172-X
- [21] Sommer R, Haider T, Cabaj A, Pribil W, Lhotsky M (1998) Time dose reciprocity in UV disinfection of water. Water Science and Technology 38(12):145–150. https://doi.org/10.1016/S0273-1223(98)00816-6
- [22] Hoyer O (1998) Testing performance and monitoring of UV systems for drinking water disinfection. *Water Supply* 16(1):424–429.
- [23] Sommer R, Lhotsky M, Haider T, Cabaj A (2000) UV inactivation, liquid-holding recovery, and photoreactivation of Escherichia coli O157 and other pathogenic Escherichia coli strains in water. Journal of Food Protection 63(8):1015–1020. https://doi.org/10.4315/0362-028X-63.8.1015
- [24] Sommer R, Pribil W, Appelt S, Gehringer P, Eschweiler H, Leth H, Cabaj A, Haider T (2001) Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing (gamma) radiation: A comparative approach. *Water Research* 35(13):3109–3116. https://doi.org/10.1016/S0043-1354(01)00030-6
- [25] Chatterley C. Linden K (2010) Demonstration and evaluation of germicidal UV-LEDs for point-of-use water disinfection. Journal of Water and Health 8(3):479–486. https://doi.org/10.2166/wh.2010.124
- [26] Guo M, Hu H, Bolton JR, El-Din MG (2009) Comparison of low- and medium-pressure ultraviolet lamps: Photoreactivation of *Escherichia coli* and total coliforms in secondary effluents of municipal wastewater treatment plants. *Water Research* 43(3):815–821. https://doi.org/10.1016/j.watres.2008.11.028
- [27] Rattanakul S, Oguma K (2018) Inactivation kinetics and efficiencies of UV-LEDs against *Pseudomonas aeruginosa*, Legionella pneumophila, and surrogate microorganisms. *Water Research* 130:31–37. https://doi.org/10.1016/j.watres.2017.11.047
- [28] Sholtes K, Linden KG (2019) Pulsed and continuous light UV LED: Microbial inactivation, electrical, and time efficiency. Water Research 165:114965. https://doi.org/10.1016/j.watres.2019.114965
- [29] Rattanakul S, Oguma K, Sakai H, Takizawa S (2014) Inactivation of viruses by combination processes of UV and chlorine. Journal of Water and Environment Technology 12(6):511–523. https://doi.org/10.2965/jwet.2014.511
- [30] Oguma K, Katayama H, Mitani H, Morita S, Hirata T, Ohgaki S (2001) Determination of pyrimidine dimers in *Escherichia coli* and *Cryptosporidium parvum* during UV light inactivation, photoreactivation, and dark repair. *Applied and Environmental Microbiology* 67(10):4630–4637. https://doi.org/10.1128/AEM.67.10.4630-4637.2001
- [31] Destiani R, Templeton MR (2019) Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. AIMS Environmental Science 6(3):222–241. https://doi.org/10.3934/environsci.2019.3.222

[32]	Bichai F. Barbeau B. Payment P (2000) Protection against LIV disinfection of F. coli bacteria and R. subtilis spores ingested
[32]	by C elegans nematodes. Water Research 43(14):3397–3406. https://doi.org/10.1016/j.watres.2009.05.009
[33]	Cervero-Aragó S, Sommer R, Araujo RM (2014) Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts. <i>Water Research</i> 67:299–309. https://doi.org/10.1016/j.watres.2014.09.023
[34]	Oguma K, Katayama H, Ohgaki S (2004) Photoreactivation of <i>Legionella pneumophila</i> after inactivation by low- or medium-pressure ultraviolet lamp. <i>Water Research</i> 38(11):2757–2763. https://doi.org/10.1016/j.watres.2004.03.024
[35]	Bohrerova Z, Linden KG (2006) Ultraviolet and chlorine disinfection of <i>Mycobacterium</i> in wastewater: Effect of aggregation. <i>Water Environment Research</i> 78(6):565–571. https://doi.org/10.2175/106143006X99795
[36]	Bohrerova Z, Linden KG (2006) Assessment of DNA damage and repair in <i>Mycobacterium</i> terrae after exposure to UV irradiation. <i>Journal of Applied Microbiology</i> 101(5):995–1001. https://doi.org/10.1111/j.1365-2672.2006.03023.x
[37]	Chen RZ, Craik SA, Bolton JR (2009) Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: Information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water. <i>Water Research</i> 43(20):5087–5096. https://doi.org/10.1016/j.watres.2009.08.032
[38]	Busse MM, Becker M, Applegate BM, Camp JW, Blatchley ER (2019) Responses of <i>Salmonella typhimurium</i> LT2, <i>Vibrio harveyi</i> , and <i>Cryptosporidium parvum</i> to UVB and UVA radiation. <i>Chemical Engineering Journal</i> 371(November 2018):647–656. https://doi.org/10.1016/j.cej.2019.04.105
[39]	Gates FL (1929) A study of the bactericidal action of ultra violet light: I. The reaction to monochromatic radiations. The
5403	Journal of General Physiology 13(2):231–248. https://doi.org/10.1085/jgp.13.2.231
[40]	Johnson AM, Linden K, Ciociola KM, De Leon R, Widmer G, Rochelle PA (2005) UV inactivation of <i>Cryptosporidium</i> hominis as measured in cell culture. <i>Applied and Environmental Microbiology</i> 71(5):2800–2802. https://doi.org/10.1128/AEM.71.5.2800-2802.2005
[41]	Clancy JL, Bukhari Z, Hargy TM, Bolton JR, Dussert BW, Marshall MM (2000) Using UV to inactivate <i>Cryptosporidium</i> . <i>Journal of the American Water Works Association</i> 92(9):97–104. https://doi.org/10.1002/j.1551-8833.2000.tb09008.x
[42]	Shin GA, Linden KG, Arrowood MJ, Sobsey MD (2001) Low-pressure UV inactivation and DNA repair potential of <i>Cryptosporidium parvum</i> oocysts. <i>Applied and Environmental Microbiology</i> 67(7):3029–3032. https://doi.org/10.1128/AEM.67.7.3029-3032.2001
[43]	Morita S, Namikoshi A, Hirata T, Oguma K, Katayama H, Ohgaki S, Motoyama N, Fujiwara M (2002) Efficacy of UV irradiation in inactivating <i>Cryptosporidium parvum</i> oocysts. <i>Applied and Environmental Microbiology</i> 68(11):5387–5393. https://doi.org/10.1128/AEM.68.11.5387-5393.2002
[44]	Zimmer JL, Slawson RM, Huck PM (2003) Inactivation and potential repair of <i>Cryptosporidium parvum</i> following low-and medium pressure ultraviolet irradiation. <i>Water Research</i> 37(14):3517, 3523. https://doi.org/10.1016/S0043.1354(03)0238.0
[45]	Clancy JL, Marshall MM, Hargy TM, Korich DG (2004) Susceptibility of five strains of <i>Cryptosporidium parvum</i> oocysts to UV light. <i>Journal of the American Water Works Association</i> 96(3):84–93. https://doi.org/10.1002/j.1551- 8833.2004.tb10576.x
[46]	Ryu H, Gerrity D, Crittenden JC, Abbaszadegan M (2008) Photocatalytic inactivation of <i>Cryptosporidium parvum</i> with TiO ₂ and low-pressure ultraviolet irradiation. <i>Water Research</i> 42(6–7):1523–1530. https://doi.org/10.1016/j.watres.2007.10.037
[47]	Craik SA, Weldon D, Finch GR, Bolton JR, Belosevic M (2001) Inactivation of <i>Cryptosporidium parvum</i> oocysts using medium- and low-pressure ultraviolet radiation. <i>Water Research</i> 35(6):1387–1398. https://doi.org/10.1016/S0043-1354(00)00399-7
[48]	Linden KG, Shin GA, Faubert G, Cairns W, Sobsey MD (2002) UV disinfection of <i>Giardia lamblia</i> cysts in water. Environmental Science & Technology 36(11):2519–2522. https://doi.org/10.1021/es0113403
[49]	Mofidi AA, Meyer EA, Wallis PM, Chou CI, Meyer BP, Ramalingam S, Coffey BM (2002) The effect of UV light on the
	inactivation of <i>Giardia lamblia</i> and <i>Giardia muris</i> cysts as determined by animal infectivity assay (P-2951-01). <i>Water</i>
[50]	Research 36(8):2098–2108. https://doi.org/10.1016/S0043-1334(01)00412-2
[50]	ultraviolet light in the presence of natural particulate matter. <i>Journal of Water Supply: Research and Technology</i> —AQUA 54(3):165–178. https://doi.org/10.2166/aqua.2005.0016
[51]	Hayes SL, Rice EW, Ware MW, Schaefer FW (2003) Low pressure ultraviolet studies for inactivation of <i>Giardia muris</i>
[52]	cysts. Journal of Applied Microbiology 94(1):54–59. https://doi.org/10.1046/j.1365-2672.2003.01805.x Gerba CP, Gramos DM, Nwachuku N (2002) Comparative inactivation of enteroviruses and adenovirus 2 by UV light.
[53]	Applied and Environmental Microbiology 68(10):5167–5169. https://doi.org/10.1128/AEM.68.10.5167-5169.2002 Bounty S, Rodriguez RA, Linden KG (2012) Inactivation of adenovirus using low-dose UV/H ₂ O ₂ advanced oxidation.
[54]	Rodríguez RA, Bourral of Amplied Mianchilden: 114(6):1854–1865. http://doi.org/10.1111/jam.12160
[55]	Beck SE, Rodriguez RA, Linden KG, Hargy TM, Larason TC, Wright HB (2014) Wavelength dependent UV inactivation
	and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR. <i>Environmental Science & Technology</i> 48(1):591–598. https://doi.org/10.1021/es403850b
[56]	Calgua B, Carratala A, Guerrero-Latorre L, de Abreu Corrêa A, Kohn T, Sommer R, Girones R (2014) UVC inactivation of dsDNA and ssRNA viruses in water: UV fluences and a qPCR-based approach to evaluate decay on viral infectivity. <i>Food and Environmental Virology</i> 6(4):260–268. https://doi.org/10.1007/s12560-014-9157-1

- [57] Ryu H, Cashdollar JL, Fout GS, Schrantz KA, Hayes S (2015) Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies. *Journal of Environmental Science* and Health, Part A 50(8):777–787. https://doi.org/10.1080/10934529.2015.1019795
- [58] Ballester NA, Malley JP Jr (2004) Sequential disinfection of adenovirus type 2 with UV-chlorine-chloramine. *Journal of the American Water Works Association* 96(10):97–103. https://doi.org/10.1002/j.1551-8833.2004.tb10726.x
- [59] Shin GA, Linden KG, Sobsey MD (2005) Low pressure ultraviolet inactivation of pathogenic enteric viruses and bacteriophages. *Journal of Environmental Engineering and Science* 4(S1):S7–S11. https://doi.org/10.1139/s04-036
- [60] Linden KG, Thurston J, Schaefer R, Malley JP (2007) Enhanced UV inactivation of adenoviruses under polychromatic UV lamps. Applied and Environmental Microbiology 73(23):7571–7574. https://doi.org/10.1128/AEM.01587-07
- [61] Eischeid AC, Meyer JN, Linden KG (2009) UV disinfection of adenoviruses: Molecular indications of DNA damage efficiency. Applied and Environmental Microbiology 75(1):23–28. https://doi.org/10.1128/AEM.02199-08
- [62] Linden KG, Shin G, Lee J, Scheible K, Shen C, Posy P (2009) Demonstrating 4-log adenovirus inactivation in a mediumpressure UV disinfection reactor. *Journal of the American Water Works Association* 101(4):90–99. https://doi.org/10.1002/j.1551-8833.2009.tb09876.x
- [63] Baxter CS, Hofmann R, Templeton MR, Brown M, Andrews RC (2007) Inactivation of adenovirus types 2, 5, and 41 in drinking water by UV light, free chlorine, and monochloramine. *Journal of Environmental Engineering* 133(1):95–103. https://doi.org/10.1061/(asce)0733-9372(2007)133:1(95)
- [64] Sirikanchana K, Shisler JL, Mariñas BJ (2008) Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication. *Applied and Environmental Microbiology* 74(12):3774–3782. https://doi.org/10.1128/AEM.02049-07
- [65] Shin GA, Lee JK, Linden KG (2009) Enhanced effectiveness of medium-pressure ultraviolet lamps on human adenovirus 2 and its possible mechanism. *Water Science and Technology* 60(4):851–857. https://doi.org/10.2166/wst.2009.414
- [66] Gerrity D, Ryu H, Crittenden J, Abbaszadegan M (2008) UV inactivation of adenovirus type 4 measured by integrated cell culture qPCR. Journal of Environmental Science and Health Part A 43(14):1628–1638. https://doi.org/10.1080/10934520802329919
- [67] Rattanakul S, Oguma K, Takizawa S (2015) Sequential and simultaneous applications of UV and chlorine for adenovirus inactivation. Food and Environmental Virology 7(3):295–304. https://doi.org/10.1007/s12560-015-9202-8
- [68] Thurston-Enriquez JA, Haas CN, Jacangelo J, Riley K, Gerba CP (2003) Inactivation of feline calicivirus and adenovirus type 40 by UV radiation. *Applied and Environmental Microbiology* 69(1):577–582. https://doi.org/10.1128/AEM.69.1.577-582.2003
- [69] Blatchley ER III, Shen C, Scheible OK, Robinson JP, Ragheb K, Bergstrom DE, Rokjer D (2008) Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres. *Water Research* 42(3):677–688. https://doi.org/10.1016/j.watres.2007.08.019
- [70] Ko G, Cromeans TL, Sobsey MD (2005) UV inactivation of adenovirus type 41 measured by cell culture mRNA RT-PCR. Water Research 39(15):3643–3649. https://doi.org/10.1016/j.watres.2005.06.013
- [71] Park GW, Linden KG, Sobsey MD (2011) Inactivation of murine norovirus, feline calicivirus and echovirus 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation. *Letters in Applied Microbiology* 52(2):162–167. https://doi.org/10.1111/j.1472-765X.2010.02982.x
- [72] Ma B, Linden YS, Gundy PM, Gerba CP, Sobsey MD, Linden KG (2021) Inactivation of coronaviruses and phage Phi6 from irradiation across UVC wavelengths. *Environmental Science and Technology Letters* 8:425–430. https://doi.org/10.1021/acs.estlett.1c00178
- [73] Battigelli DA, Sobsey MD, Lobe DC (1993) The inactivation of hepatitis A virus and other model viruses by UV irradiation. Water Science and Technology 27(3-4):339–342. https://doi.org/10.2166/wst.1993.0371
- [74] Guerrero-Latorre L, Gonzales-Gustavson E, Hundesa A, Sommer R, Rosina G (2016) UV disinfection and flocculationchlorination sachets to reduce hepatitis E virus in drinking water. *International Journal of Hygiene and Environmental Health* 219(4–5):405–411. https://doi.org/10.1016/j.ijheh.2016.04.002
- [75] Wright H, Heath M, Brooks T, Adams J (2020) Innovative Approaches for Validation of Ultraviolet Disinfection Reactors for Drinking Water Systems (U.S. Environmental Protection Agency, Washington, DC), EPA/600/R-20/094. Available at: https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=541258&Lab=CESER
- [76] Rodriguez RA, Bounty S, Beck S, Chan C, McGuire C, Linden KG (2014) Photoreactivation of bacteriophages after UV disinfection: Role of genome structure and impacts of UV source. *Water Research* 55:143–149. https://doi.org/10.1016/j.watres.2014.01.065
- [77] Oppenheimer JA, Hoagland JE, Laine JM, Jacangelo JG, Bhamrah A (1993) Microbial inactivation and characterization of toxicity and by-products occurring in reclaimed wastewater disinfected with UV radiation. *Water Environment Federation Plan, Description and Operations of Effluent Disinfection Systems* (Water Environment Federation, Alexandria, VA).
- [78] Meng QS, Gerba CP (1996) Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation. *Water Research* 30(11):2665–2668. https://doi.org/10.1016/S0043-1354(96)00179-0
- [79] Beck SE, Wright HB, Hargy TM, Larason TC, Linden KG (2015) Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems. *Water Research* 70:27–37. https://doi.org/10.1016/j.watres.2014.11.028
- [80] Oguma K, Kita R, Sakai H, Murakami M, Takizawa S (2013) Application of UV light emitting diodes to batch and flowthrough water disinfection systems. *Desalination* 328:24–30. https://doi.org/10.1016/j.desal.2013.08.014
- [81] Bohrerova Z, Shemer H, Lantis R, Impellitteri CA, Linden KG (2008) Comparative disinfection efficiency of pulsed and

	continuous-wave UV irradiation technologies. Water Research 42(12):2975–2982. https://doi.org/10.1016/j.watres.2008.04.001
[82]	Brownell SA, Nelson KL (2006) Inactivation of single-celled <i>Ascaris suum</i> eggs by low-pressure UV radiation. <i>Applied and Environmental Microbiology</i> 72(3):2178–2184. https://doi.org/10.1128/AEM.72.3.2178-2184.2006
[83]	Sakai H, Katayama H, Oguma K, Ohgaki S (2011) Effect of photoreactivation on ultraviolet inactivation of <i>Microcystis</i> aeruginosa. <i>Water Science and Technology</i> 63(6):1224–1229. https://doi.org/10.2166/wst.2011.362
[84]	Oliveira BR, Barreto Crespo MT, Pereira VJ (2020) Small but powerful: Light-emitting diodes for inactivation of
[85]	Clauß M (2006) Higher effectiveness of photoinactivation of bacterial spores. UV resistant vegetative bacteria and mold
[00]	spores with 222 nm compared to 254 nm wavelength. <i>Acta Hydrochimica et Hydrobiologica</i> 34(6):525–532.
[86]	Narita K. Asano K. Naito K. Ohashi H. Sasaki M. Morimoto Y. Igarashi T. Nakane A (2020) Ultraviolet C light with
[00]	wavelength of 222 nm inactivates a wide spectrum of microbial pathogens. <i>Journal of Hospital Infection</i> 105(3):459–467. https://doi.org/10.1016/j.jhin.2020.03.030
[87]	Wen G, Wan Q, Deng X, Cao R, Xu X, Chen Z, Wang J, Huang T (2019) Reactivation of fungal spores in water following
	UV disinfection: Effect of temperature, dark delay, and real water matrices. <i>Chemosphere</i> 237:124490. https://doi.org/10.1016/j.chemosphere.2019.124490
[88]	Wan Q, Wen G, Cao R, Zhao H, Xu X, Xia Y, Wu G, Lin W, Wang J, Huang T (2020) Simultaneously enhance the
	inactivation and inhibit the photoreactivation of fungal spores by the combination of UV-LEDs and chlorine: Kinetics and mechanisms. <i>Water Research</i> 184:116143. https://doi.org/10.1016/j.watres.2020.116143
[89]	Wan Q, Wen G, Cao R, Xu X, Zhao H, Li K, Wang J, Huang T (2020) Comparison of UV-LEDs and LPUV on inactivation
	and subsequent reactivation of waterborne fungal spores. <i>Water Research</i> 173:115553.
[00]	https://doi.org/10.1010/J.waires.2020.115555 Nicholson WI Galeano B (2003) UV resistance of <i>Bacillus anthracis</i> spores revisited: Validation of <i>Bacillus subtilis</i> spores
[70]	as UV surrogates for spores of <i>B. anthracis</i> Sterne. <i>Applied and Environmental Microbiology</i> 69(2):1327–1330. https://doi.org/10.1128/AEM.69.2.1327-1330.2003
[91]	Rose LJ, O'Connell H (2009) UV light inactivation of bacterial biothreat agents. Applied and Environmental Microbiology
	75(9):2987-2990. https://doi.org/10.1128/AEM.02180-08
[92]	Zhang Y, Zhang Y, Zhou L, Tan C (2014) Factors affecting UV/H ₂ O ₂ inactivation of <i>Bacillus atrophaeus</i> spores in dividing water Lewing of <i>Photochemiatus</i> and <i>Photochemiatu</i>
	drinking water. Journal of Photochemistry and Photobiology B: Biology 134:9–15. https://doi.org/10.1016/i.iphotobiol.2014.03.022
[93]	Donnellan JE Jr, Stafford RS (1968) The ultraviolet photochemistry and photobiology of vegetative cells and spores of
	Bacillus megaterium. Biophysical Journal 8(1):17-28. https://doi.org/10.1016/S0006-3495(68)86471-9
[94]	Boczek LA, Rhodes ER, Cashdollar JL, Ryu J, Popovici J, Hoelle JM, Sivaganesan M, Hayes SL, Rodgers MR, Ryu H
	(2016) Applicability of UV resistant <i>Bacillus pumilus</i> endospores as a human adenovirus surrogate for evaluating the
	https://doi.org/10.1016/j.mimet.2016.01.012
[95]	Fitzhenry K, Rowan N, Val del Rio A, Cremillieux A, Clifford E (2019) Inactivation efficiency of Bacillus endospores via
	modified flow-through PUV treatment with comparison to conventional LPUV treatment. Journal of Water Process
[06]	Engineering 2/(November 2018):6/-/6. https://doi.org/10.1016/j.jwpe.2018.11.009
[90]	Microbiology 45(3):872–877. Available at: https://aem.asm.org/content/45/3/872.short
[97]	Chang JC, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, Johnson JD (1985) UV inactivation of pathogenic
	and indicator microorganisms. Applied and Environmental Microbiology 49(6):1361-1365. Available at:
[00]	https://aem.asm.org/content/49/6/1361.short
[98]	Sommer R, Cabaj A, Sandu I, Lhotsky M (1999) Measurement of UV radiation using suspensions of microorganisms.
[99]	Cabai A. Sommer R. Pribil W. Haider T (2002) The spectral UV sensitivity of microorganisms used in biodosimetry. <i>Water</i>
[22]	Science and Technology: Water Supply 2(3):175–181. https://doi.org/10.2166/ws.2002.0100
[100]	Mamane-Gravetz H, Linden KG (2004) UV disinfection of indigenous aerobic spores: Implications for UV reactor
	validation in unfiltered waters. Water Research 38(12):2898–2906. https://doi.org/10.1016/j.watres.2004.03.035
[101]	Mamane-Gravetz H, Linden KG, Cabaj A, Sommer R (2005) Spectral sensitivity of <i>Bacillus subtilis</i> spores and MS2
	39(20):7845–7852 https://doi.org/10.1021/es048446t
[102]	Bohrerova Z, Mamane H, Ducoste JJ, Linden KG (2006) Comparative inactivation of <i>Bacillus subtilis</i> spores and MS-2
	coliphage in a UV reactor: Implications for validation. <i>Journal of Environmental Engineering</i> 132(12):1554–1561. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:12(1554)
[103]	Ke QS, Craik SA, El-Din MG, Bolton JR (2009) Development of a protocol for the determination of the ultraviolet
	sensitivity of microorganisms suspended in air. Aerosol Science and Technology 43(4):284-289.
	https://doi.org/10.1080/02786820802616893
[104]	Pennell KG, Naunovic Z, Blatchley ER III (2008) Sequential inactivation of <i>Bacillus subtilis</i> spores with ultraviolet
	radiation and iodine. Journal of Environmental Engineering 134(7):513–520. https://doi.org/10.1061/(ASCE)0733- 9372(2008)134.7(513)

- [105] Wenjun S, Wenjun L (2009) A pilot-scale study on ultraviolet disinfection system for drinking water. Journal of Water Supply: Research and Technology—AQUA 58(5):346–353. https://doi.org/10.2166/aqua.2009.086
- [106] Mamane H, Bohrerova Z, Linden KG (2009) Evaluation of *Bacillus* spore survival and surface morphology following chlorine and ultraviolet disinfection in water. *Journal of Environmental Engineering* 135(8):692–699. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000025
- [107] Wang D, Oppenländer T, El-Din MG, Bolton JR (2010) Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on *Bacillus subtilis* spores in aqueous suspensions at 172, 222 and 254 nm. *Photochemistry and Photobiology* 86(1):176–181. https://doi.org/10.1111/j.1751-1097.2009.00640.x
- [108] Würtele MA, Kolbe T, Lipsz M, Külberg A, Weyers M, Kneissl M, Jekel M (2011) Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. *Water Research* 45(3):1481–1489. https://doi.org/10.1016/j.watres.2010.11.015
- [109] Li GQ, Huo ZY, Wu QY, Lu Y, Hu HY (2018) Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Science of the Total Environment 639:1233–1240. https://doi.org/10.1016/j.scitotenv.2018.05.240
- [110] Oguma K, Rattanakul S, Masaike M (2019) Inactivation of health-related microorganisms in water using UV light-emitting diodes. *Water Science and Technology: Water Supply* 19(5):1507–1514. https://doi.org/10.2166/ws.2019.022
- [111] Ekowati Y, Ferrero G, Farré MJ, Kennedy MD, Buttiglieri G (2019) Application of UVOX Redox® for swimming pool water treatment: Microbial inactivation, disinfection byproduct formation and micropollutant removal. *Chemosphere* 220:176–184. https://doi.org/10.1016/j.chemosphere.2018.12.126
- [112] Jin S, Mofidi AA, Linden KG (2006) Polychromatic UV fluence measurement using chemical actinometry, biodosimetry, and mathematical techniques. *Journal of Environmental Engineering* 132(8):831–841. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:8(831)
- [113] Singh PK (1975) Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1. Archives of Microbiology 103(1):297–302. https://doi.org/10.1007/BF00436364
- [114] Huffman DE, Gennaccaro A, Rose JB, Dussert BW (2002) Low- and medium-pressure UV inactivation of microsporidia Encephalitozoon intestinalis. Water Research 36(12):3161–3164. https://doi.org/10.1016/S0043-1354(01)00528-0
- [115] Wilson B (1992) Coliphage MS-2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens. Proceedings of the AWWA Water Quality Technology Conference (American Water Works Association, Toronto, Ontario, Canada), 10013116305.
- [116] Liltved H, Landfald B (1996) Influence of liquid holding recovery and photoreactivation on survival of ultraviolet-irradiated fish pathogenic bacteria. *Water Research* 30(5):1109–1114. https://doi.org/10.1016/0043-1354(95)00276-6
- [117] Butler RC, Lund V, Carlson DA (1987) Susceptibility of *Campylobacter jejuni* and *Yersinia enterocolitica* to UV radiation. *Applied and Environmental Microbiology* 53(2):375–378. Available at: https://aem.asm.org/content/53/2/375.short
- [118] Sharp DG (1939) The lethal action of short ultraviolet rays on several common pathogenic bacteria. *Journal of Bacteriology* 37(4):447. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC374478/
- [119] McKinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. *Environmental Science & Technology* 46(24):13393–13400. https://doi.org/10.1021/es303652q
- [120] Moreno-Andrés J, Romero-Martínez L, Acevedo-Merino A, Nebot E (2016) Determining disinfection efficiency on E. faecalis in saltwater by photolysis of H₂O₂: Implications for ballast water treatment. Chemical Engineering Journal 283:1339–1348. https://doi.org/10.1016/j.cej.2015.08.079
- [121] Moreno-Andrés J, Romero-Martínez L, Acevedo-Merino A, Nebot E (2017) UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes? Science of the Total Environment 581–582:144–152. https://doi.org/10.1016/j.scitotenv.2016.12.077
- [122] Moreno-Andrés J, Rios Quintero R, Acevedo-Merino A, Nebot E (2019) Disinfection performance using a UV/persulfate system: Effects derived from different aqueous matrices. *Photochemical and Photobiological Sciences* 18(4):878–883. https://doi.org/10.1039/c8pp00304a
- [123] Stange C, Sidhu JPS, Toze S, Tiehm A (2019) Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. *International Journal of Hygiene and Environmental Health* 222(3):541–548. https://doi.org/10.1016/j.ijheh.2019.02.002
- [124] Chen P, Chu X, Liu L, Hu J (2016) Effects of salinity and temperature on inactivation and repair potential of *Enterococcus faecalis* following medium- and low-pressure ultraviolet irradiation. *Journal of Applied Microbiology* 120(3):816–825. https://doi.org/10.1111/jam.13026
- [125] Wang H, Wang J, Li S, Ding G, Wang K, Zhuang T, Huang X, Wang X (2020) Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking. *Water Research* 185:116290. https://doi.org/10.1016/j.watres.2020.116290
- [126] Harris GD, Adams VD, Sorensen DL, Curtis MS (1987) Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. *Water Research* 21(6):687–692. https://doi.org/10.1016/0043-1354(87)90080-7
- [127] Zimmer JL, Slawson RM (2002) Potential repair of *Escherichia coli* DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment. *Applied and Environmental Microbiology* 68(7):3293–3299. https://doi.org/10.1128/AEM.68.7.3293-3299.2002
- [128] Clauß M, Mannesmann R, Kolch A (2005) Photoreactivation of *Escherichia coli* and *Yersinia enterolytica* after irradiation with a 222 nm excimer lamp compared to a 254 nm low-pressure mercury lamp. *Acta Hydrochimica et Hydrobiologica* 33(6):579–584. https://doi.org/10.1002/aheh.200400600

- [129] Quek PH, Hu J (2008) Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. *Journal of Industrial Microbiology and Biotechnology* 35(6):533–541. https://doi.org/10.1007/s10295-008-0314-0
- [130] Bowker C, Sain A, Shatalov M, Ducoste J (2011) Microbial UV fluence-response assessment using a novel UV-LED collimated beam system. *Water Research* 45(5):2011–2019. https://doi.org/10.1016/j.watres.2010.12.005
- [131] Song K, Taghipour F, Mohseni M (2018) Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs). *Chemical Engineering Journal* 343(June 2017):362–370. https://doi.org/10.1016/j.cej.2018.03.020
- [132] Song K, Mohseni M, Taghipour F (2019) Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths. *Water Research* 163:114875. https://doi.org/10.1016/j.watres.2019.114875
- [133] Raeiszadeh M, Taghipour F (2019) Microplasma UV lamp as a new source for UV-induced water treatment: Protocols for characterization and kinetic study. *Water Research* 164:114959. https://doi.org/10.1016/j.watres.2019.114959
- [134] Wu Y, Clevenger T, Deng B (2005) Impacts of goethite particles on UV disinfection of drinking water. *Applied and Environmental Microbiology* 71(7):4140–4143. https://doi.org/10.1128/AEM.71.7.4140-4143.2005
- [135] Mbonimpa EG, Blatchley ER, Applegate B, Harper WF (2018) Ultraviolet A and B wavelength-dependent inactivation of viruses and bacteria in the water. *Journal of Water and Health* 16(5):796–806. https://doi.org/10.2166/wh.2018.071
- [136] Zhang CM, Xu LM, Wang XC, Zhuang K, Liu QQ (2017) Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: Inactivation, antibiotic resistance profiles and antibiotic resistance genes. Journal of Applied Microbiology 123(1):295–306. https://doi.org/10.1111/jam.13480
- [137] Xu L, Zhang C, Xu P, Wang XC (2018) Mechanisms of ultraviolet disinfection and chlorination of *Escherichia coli*: Culturability, membrane permeability, metabolism, and genetic damage. *Journal of Environmental Sciences (China)* 65:356–366. https://doi.org/10.1016/j.jes.2017.07.006
- [138] Green A, Popović V, Pierscianowski J, Biancaniello M, Warriner K, Koutchma T (2018) Inactivation of Escherichia coli, Listeria and Salmonella by single and multiple wavelength ultraviolet-light emitting diodes. Innovative Food Science and Emerging Technologies 47(November 2017):353–361. https://doi.org/10.1016/j.ifset.2018.03.019
- [139] Shin GA, Lee JK, Freeman R, Cangelosi GA (2008) Inactivation of *Mycobacterium avium* complex by UV irradiation. *Applied and Environmental Microbiology* 74(22):7067–7069. https://doi.org/10.1128/AEM.00457-08
- [140] Otaki M, Okuda A, Tajima K, Iwasaki T, Kinoshita S, Ohgaki S (2003) Inactivation differences of microorganisms by low pressure UV and pulsed xenon lamps. *Water Science and Technology* 47(3):185–190. https://doi.org/10.2166/wst.2003.0193
- [141] Eischeid AC, Linden KG (2007) Efficiency of pyrimidine dimer formation in *Escherichia coli* across UV wavelengths. *Journal of Applied Microbiology* 103(5):1650–1656. https://doi.org/10.1111/j.1365-2672.2007.03424.x
- [142] Pang Y, Huang J, Xi J, Hu H, Zhu Y (2016) Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene. Frontiers of Environmental Science and Engineering 10(3):522–530. https://doi.org/10.1007/s11783-015-0779-9
- [143] Yang C, Sun W, Ao X (2020) Bacterial inactivation, DNA damage, and faster ATP degradation induced by ultraviolet disinfection. Frontiers of Environmental Science and Engineering 14(1):1–10. https://doi.org/10.1007/s11783-019-1192-6
- [144] Li GQ, Wang WL, Huo ZY, Lu Y, Hu HY (2017) Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of *Escherichia coli*. *Water Research* 126:134–143. https://doi.org/10.1016/j.watres.2017.09.030
- [145] Nyangaresi PO, Qin Y, Chen G, Zhang B, Lu Y, Shen L (2018) Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of *E. coli* in water disinfection. *Water Research* 147:331–341. https://doi.org/10.1016/j.watres.2018.10.014
- [146] Matafonova GG, Batoev VB, Linden KG (2012) Impact of scattering of UV radiation from an exciplex lamp on the efficacy of photocatalytic inactivation of *Escherichia coli* cells in water. *Journal of Applied Spectroscopy* 79(2):296–301. https://doi.org/10.1007%2Fs10812-012-9597-z
- [147] Nocker A, Shah M, Dannenmann B, Schulze-Osthoff K, Wingender J, Probst AJ (2018) Assessment of UV-C-induced water disinfection by differential PCR-based quantification of bacterial DNA damage. *Journal of Microbiological Methods* 149(February):89–95. https://doi.org/10.1016/j.mimet.2018.03.007
- [148] Qiu X, Sundin GW, Chai B, Tiedje JM (2004) Survival of *Shewanella oneidensis* MR-1 after UV radiation exposure. Applied and Environmental Microbiology 70(11):6435–6443. https://doi.org/10.1128/AEM.70.11.6435-6443.2004
- [149] Yang C, Sun W, Ao X (2019) Using mRNA to investigate the effect of low-pressure ultraviolet disinfection on the viability of *E. coli. Frontiers of Environmental Science and Engineering* 13(2):26. https://doi.org/10.1007/s11783-019-1111-x
- [150] Oguma K, Katayama H, Ohgaki S (2002) Photoreactivation of *Escherichia coli* after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. *Applied and Environmental Microbiology* 68(12):6029–6035. https://doi.org/10.1128/AEM.68.12.6029-6035.2002
- [151] Oguma K, Rattanakul S, Bolton JR (2016) Application of UV light-emitting diodes to adenovirus in water. Journal of Environmental Engineering 142(3):4015082. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001061
- [152] Tosa K, Hirata T (1999) Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection. Water Research 33(2):361–366. https://doi.org/10.1016/S0043-1354(98)00226-7
- [153] Yaun BR, Sumner SS, Eifert JD, Marcy JE (2003) Response of Salmonella and Escherichia coli O157: H7 to UV energy. Journal of Food Protection 66(6):1071–1073. https://doi.org/10.4315/0362-028X-66.6.1071
- [154] Ha JW, Kang DH (2018) Effect of intermittent 222 nm krypton-chlorine excilamp irradiation on microbial inactivation in water. Food Control 90:146–151. https://doi.org/10.1016/j.foodcont.2018.02.025
- [155] Kang JW, Kim SS, Kang DH (2018) Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Grampositive and Gram-negative foodborne pathogenic bacteria. *Food Research International* 109(April):325–333. https://doi.org/10.1016/j.foodres.2018.04.018
- [156] Hu X, Geng S, Wang X, Hu C (2012) Inactivation and photorepair of enteric pathogenic microorganisms with ultraviolet irradiation. *Environmental Engineering Science* 29(6):549–553. https://doi.org/10.1089/ees.2010.0379
- [157] Betzalel Y, Gerchman Y, Cohen-Yaniv V, Mamane H (2020) Multiwell plates for obtaining a rapid microbial dose-response curve in UV-LED systems. *Journal of Photochemistry and Photobiology B: Biology* 207(March):111865. https://doi.org/10.1016/j.jphotobiol.2020.111865
- [158] Maya C, Beltrán N, Jiménez B, Bonilla P (2003) Evaluation of the UV disinfection process in bacteria and amphizoic amoebae inactivation. *Water Science and Technology: Water Supply* 3(4):285–291. https://doi.org/10.2166/ws.2003.0074
- [159] Martin EL, Reinhardt RL, Baum LL, Becker MR, Shaffer JJ, Kokjohn TA (2000) The effects of ultraviolet radiation on the moderate halophile *Halomonas elongata* and the extreme halophile *Halobacterium salinarum*. Canadian Journal of Microbiology 46(2):180–187. https://doi.org/10.1139/w99-122
- [160] Hayes SL, White KM, Rodgers MR (2006) Assessment of the effectiveness of low-pressure UV light for inactivation of Helicobacter pylori. Applied and Environmental Microbiology 72(5):3763–3765. https://doi.org/10.1128/AEM.72.5.3763-3765.2006
- [161] Moreno-Andrés J, Acevedo-Merino A, Nebot E (2018) Study of marine bacteria inactivation by photochemical processes: Disinfection kinetics and growth modeling after treatment. *Environmental Science and Pollution Research* 25(28):27693– 27703. https://doi.org/10.1007/s11356-017-1185-6
- [162] Antopol SC, Ellner PD (1979) Susceptibility of Legionella pneumophila to ultraviolet radiation. Applied and Environmental Microbiology 38(2):347. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC243491/
- [163] Stamm LV, Charon NW (1988) Sensitivity of pathogenic and free-living *Leptospira* spp. to UV radiation and mitomycin C. *Applied and Environmental Mmicrobiology* 54(3):728–733. Available at: https://aem.asm.org/content/54/3/728.short
- [164] Collins FM (1971) Relative susceptibility of acid-fast and non-acid-fast bacteria to ultraviolet light. Applied Microbiology 21(3):411–413. Available at: https://aem.asm.org/content/21/3/411.short
- [165] Hayes SL, Sivaganesan M, White KM, Pfaller SL (2008) Assessing the effectiveness of low-pressure ultraviolet light for inactivating *Mycobacterium avium* complex (MAC) micro-organisms. *Letters in Applied Microbiology* 47(5):386–392. https://doi.org/10.1111/j.1472-765X.2008.02442.x
- [166] Abshire RL, Dunton H (1981) Resistance of selected strains of *Pseudomonas aeruginosa* to low-intensity ultraviolet radiation. *Applied and Environmental Microbiology* 41(6):1419–1423. Available at: https://aem.asm.org/content/41/6/1419.short
- [167] Maganha de Almeida AC, Quilty B (2016) The response of aggregated *Pseudomonas putida* CP1 cells to UV-C and UV-A/B disinfection. *World Journal of Microbiology and Biotechnology* 32(11):185. https://doi.org/10.1007/s11274-016-2138-9
- [168] Banerjee SK, Chatterjee SN (1977) Sensitivity of the vibrios to ultraviolet-radiation. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 32(2):127–133. https://doi.org/10.1080/09553007714550801
- [169] Bolton JR, Dussert B, Bukhari Z, Hargy T, Clancy JL (1998) Inactivation of *Cryptosporidium parvum* by medium-pressure ultraviolet light in finished drinking water. *Proceedings AWWA 1998 Annual Conference* (American Water Works Association, Dallas, TX), ser. A, pp 389–403. Available at: https://d3pcsg2wjq9izr.cloudfront.net/files/3463/articles/4295/4295.pdf
- [170] Bukhari Z, Hargy TM, Bolton JR, Dussert B, Clancy JL (1999) Medium-pressure UV for oocyst inactivation. *Journal of the American Water Works Association* 91(3):86–94. https://doi.org/10.1002/j.1551-8833.1999.tb08602.x
- [171] Belosevic M, Craik SA, Stafford JL, Neumann NF, Kruithof J, Smith DW (2001) Studies on the resistance/reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts exposed to medium-pressure ultraviolet radiation. FEMS Microbiology Letters 204(1):197–203. https://doi.org/10.1111/j.1574-6968.2001.tb10885.x
- [172] Bukhari Z, Abrams F, LeChevallier M (2004) Using ultraviolet light for disinfection of finished water. *Water Science and Technology* 50(1):173–178. https://doi.org/10.2166/wst.2004.0050
- [173] Karanis P (1992) UV sensitivity of protozoan parasites. *Journal of Water Supply: Research and Technology—Aqua* 41(2):294–298.
- [174] Campbell AT, Wallis P (2002) The effect of UV irradiation on human-derived Giardia lamblia cysts. Water Research 36(4):963–969. https://doi.org/10.1016/S0043-1354(01)00309-8
- [175] Craik SA, Finch GR, Bolton JR, Belosevic M (2000) Inactivation of *Giardia muris* cysts using medium-pressure ultraviolet radiation in filtered drinking water. *Water Research* 34(18):4325–4332. https://doi.org/10.1016/S0043-1354(00)00207-4
- [176] Sarkar P, Gerba CP (2012) Inactivation of Naegleria fowleri by chlorine and ultraviolet light. Journal of the American Water Works Association 104(3):E173–E180. https://doi.org/10.5942/jawwa.2012.104.0041
- [177] Dumètre A, Le Bras C, Baffet M, Meneceur P, Dubey JP, Derouin F, Duguet JP, Joyeux M, Moulin L (2008) Effects of ozone and ultraviolet radiation treatments on the infectivity of *Toxoplasma gondii* oocysts. *Veterinary Parasitology* 153(3– 4):209–213. https://doi.org/10.1016/j.vetpar.2008.02.004
- [178] Ware MW, Augustine SAJ, Erisman DO, See MJ, Wymer L, Hayes SL, Dubey JP, Villegas EN (2010) Determining UV inactivation of *Toxoplasma gondii* oocysts by using cell culture and a mouse bioassay. *Applied and Environmental Microbiology* 76(15):5140–5147. https://doi.org/10.1128/AEM.00153-10
- [179] Nwachuku N, Gerba CP, Oswald A, Mashadi FD (2005) Comparative inactivation of adenovirus serotypes by UV light disinfection. Applied and Environmental Microbiology 71(9):5633–5636. https://doi.org/10.1128/AEM.71.9.5633-

5636.2005

- [180] Vazquez-Bravo B, Gonçalves K, Shisler JL, Mariñas BJ (2018) Adenovirus replication cycle disruption from exposure to polychromatic ultraviolet irradiation. *Environmental Science and Technology* 52(6):3652–3659. https://doi.org/10.1021/acs.est.7b06082
- [181] Oh C, Sun PP, Araud E, Nguyen TH (2020) Mechanism and efficacy of virus inactivation by a microplasma UV lamp generating monochromatic UV irradiation at 222 nm. *Water Research* 186:116386. https://doi.org/10.1016/j.watres.2020.116386
- [182] Guo H, Chu X, Hu J (2010) Effect of host cells on low- and medium-pressure UV inactivation of adenoviruses. Applied and Environmental Microbiology 76(21):7068–7075. https://doi.org/10.1128/AEM.00185-10
- [183] Liltved H, Vogelsang C, Modahl I, Dannevig BH (2006) High resistance of fish pathogenic viruses to UV irradiation and ozonated seawater. *Aquacultural Engineering* 34(2):72–82. https://doi.org/10.1016/j.aquaeng.2005.05.002
- [184] de Roda Husman AM, Bijkerk P, Lodder W, Van Den Berg H, Pribil W, Cabaj A, Gehringer P, Sommer R, Duizer E (2004) Calicivirus inactivation by nonionizing (253.7-nanometer-wavelength [UV]) and ionizing (gamma) radiation. *Applied and Environmental Microbiology* 70(9):5089–5093. https://doi.org/10.1128/AEM.70.9.5089-5093.2004
- [185] Oguma K (2018) Inactivation of feline calicivirus using ultraviolet light-emitting diodes. FEMS Microbiology Letters 365(18):1–4. https://doi.org/10.1093/femsle/fny194
- [186] Buonanno M, Welch D, Shuryak I, Brenner DJ (2020) Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. *Scientific Reports* 10(1):10285. https://doi.org/10.1038/s41598-020-67211-2
- [187] Gerchman Y, Mamane H, Friedman N, Mandelboim M (2020) UV-LED disinfection of coronavirus: Wavelength effect. Journal of Photochemistry and Photobiology B: Biology 212(November):112044. https://doi.org/10.1016/j.jphotobiol.2020.112044
- [188] Bedell K, Buchaklian AH, Perlman S (2016) Efficacy of an automated multiple emitter whole-room ultraviolet-C disinfection system against coronaviruses MHV and MERS-CoV. *Infection Control and Hospital Epidemiology* 37(5):598– 599. https://doi.org/10.1017/ice.2015.348
- [189] Eickmann M, Gravemann U, Handke W, Tolksdorf F, Reichenberg S, Müller TH, Seltsam A (2018) Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. *Transfusion* 58(9):2202–2207. https://doi.org/10.1111/trf.14652
- [190] Duan SM, Zhao XS, Wen RF, Huang JJ, Pi GH, Zhang SX, Han J, Bi SL, Ruan L, Dong XP (2003) Stability of SARS coronavirus to heating and UV irradiation. *Biomedical and Environmental Sciences* 16:246–255. Available at: http://www.diniesturkiye.com/UV-against%20SARS-CORONA-MERS-VIRUS.pdf
- [191] Darnell MER, Subbarao K, Feinstone SM, Taylor DR (2004) Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods 121(1):85–91. https://doi.org/10.1016/j.jviromet.2004.06.006
- [192] Kariwa H, Fujii N, Takashima I (2006) Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. *Dermatology* 212(Suppl. 1):119–123. https://doi.org/10.1159/000089211
- [193] Eickmann M, Gravemann U, Handke W, Tolksdorf F, Reichenberg S, Müller TH, Seltsam A (2020) Inactivation of three emerging viruses—Severe acute respiratory syndrome coronavirus, Crimean–Congo haemorrhagic fever virus and Nipah virus—in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. *Vox Sanguinis* 115(3):146–151. https://doi.org/10.1111/vox.12888
- [194] Biasin M, Bianco A, Pareschi G, Cavalleri A, Cavatorta C, Fenizia C, Galli P, Lessio L, Lualdi M, Tombetti E, Ambrosi A, Redaelli EMA, Saulle I, Trabattoni D, Zanutta A, Clerici M (2021) UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. *Scientific Reports* 11(1):6260. https://doi.org/10.1038/s41598-021-85425-w
- [195] Heilingloh CS, Aufderhorst UW, Schipper L, Dittmer U, Witzke O, Yang D, Zheng X, Sutter K, Trilling M, Alt M, Steinmann E, Krawczyk A (2020) Susceptibility of SARS-CoV-2 to UV irradiation. *American Journal of Infection Control* 48(10):1273–1275. https://doi.org/10.1016/j.ajic.2020.07.031
- [196] Inagaki H, Saito A, Sugiyama H, Okabayashi T, Fujimoto S (2020) Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. *Emerging Microbes and Infections* 9(1):1744–1747. https://doi.org/10.1080/22221751.2020.1796529
- [197] Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, Solomon T, Griffiths MJ, Acosta-Serrano Á, Turtle L, Hughes GL (2020) Methods of inactivation of SARS-CoV-2 for downstream biological assays. *Journal of Infectious Diseases* 222(9):1462–1467. https://doi.org/10.1093/infdis/jiaa507
- [198] Storm N, McKay LGA, Downs SN, Johnson RI, Birru D, de Samber M, Willaert W, Cennini G, Griffiths A (2020) Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. *Scientific Reports* 10(1):22421. https://doi.org/10.1038/s41598-020-79600-8
- [199] Robinson RT, Mahfooz N, Rosas-Mejia O, Liu Y, Hull NM (2021) SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp. *medRxiv* 2021.02.19:21252101. https://doi.org/10.1101/2021.02.19.21252101
- [200] Woo H, Beck SE, Boczek LA, Carlson KM, Brinkman NE, Linden KG, Lawal OR, Hayes SL, Ryu H (2019) Efficacy of inactivation of human enteroviruses by dual-wavelength germicidal ultraviolet (UV-C) light emitting diodes (LEDs). Water 11(6):1131. https://doi.org/10.3390/w11061131
- [201] Meister S, Verbyla ME, Klinger M, Kohn T (2018) Variability in disinfection resistance between currently circulating enterovirus B serotypes and strains. *Environmental Science and Technology* 52(6):3696–3705. https://doi.org/10.1021/acs.est.8b00851
- [202] Carratalà A, Shim H, Zhong Q, Bachmann V, Jensen JD, Kohn T (2017) Experimental adaptation of human echovirus 11 to

ultraviolet radiation leads to resistance to disinfection and ribavirin. Virus Evolution 3(2):1-11. https://doi.org/10.1093/ve/vex035 [203] Zhong Q, Carratalà A, Ossola R, Bachmann V, Kohn T (2017) Cross-resistance of UV- or chlorine dioxide-resistant echovirus 11 to other disinfectants. Frontiers in Microbiology 8(Oct):1928. https://doi.org/10.3389/fmicb.2017.01928 Simonet J, Gantzer C (2006) Inactivation of poliovirus 1 and F-specific RNA phages and degradation of their genomes by [204] UV irradiation at 254 nanometers. Applied and Environmental Microbiology 72(12):7671-7677. https://doi.org/10.1128/AEM.01106-06 Wiedenmann A, Fischer B, Straub U, Wang CH, Flehmig B, Schoenen D (1993) Disinfection of hepatitis A virus and MS-2 [205] coliphage in water by ultraviolet irradiation: Comparison of UV-susceptibility. Water Science and Technology 27(3-4):335-338. https://doi.org/10.2166/wst.1993.0370 Rockey NC, Henderson JB, Chin K, Raskin L, Wigginton KR (2020) Predictive modeling of virus inactivation by UV. [206] Environmental Science & Technology 55(5):3322-3332. https://doi.org/10.1021/acs.est.0c07814 McDevitt JJ, Rudnick SN, Radonovich LJ (2012) Aerosol susceptibility of influenza virus to UV-C light. Applied and [207] Environmental Microbiology 78(6):1666-1669. https://doi.org/10.1128/AEM.06960-11 [208] Nishisaka-Nonaka R, Mawatari K, Yamamoto T, Kojima M, Shimohata T, Uebanso T, Nakahashi M, Emoto T, Akutagawa M, Kinouchi Y, Wada T, Okamoto M, Ito H, Yoshida K, Daidoji T, Nakaya T, Takahashi A (2018) Irradiation by ultraviolet light-emitting diodes inactivates influenza A viruses by inhibiting replication and transcription of viral RNA in host cells. Journal of Photochemistry and Photobiology B: Biology 189(Oct):193-200. https://doi.org/10.1016/j.jphotobiol.2018.10.017 [209] Aoyagi Y, Takeuchi M, Yoshida K, Kurouchi M, Yasui N, Kamiko N, Araki T, Nanishi Y (2011) Inactivation of bacterial viruses in water using deep ultraviolet semiconductor light-emitting diode. Journal of Environmental Engineering 137(12):1215-1218. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000442 Rauth AM (1965) The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. Biophysical [210] Journal 5(3):257-273. https://doi.org/10.1016/S0006-3495(65)86715-7 Nieuwstad TJ, Havelaar AH (1994) The kinetics of batch ultraviolet inactivation of bacteriophage MS2 and microbiological [211] calibration of an ultraviolet pilot plant. Journal of Environmental Science & Health Part A 29(9):1993-2007. https://doi.org/10.1080/10934529409376160 [212] Lazarova V, Savoye P (2004) Technical and sanitary aspects of wastewater disinfection by UV irradiation for landscape irrigation. Water Science and Technology 50(2):203-209. https://doi.org/10.2166/wst.2004.0125 [213] Batch LF, Schulz CR, Linden KG (2004) Evaluating water quality effects on UV disinfection of MS2 coliphage. Journal of the American Water Works Association 96(7):75–87. https://doi.org/10.1002/j.1551-8833.2004.tb10651.x [214] Thompson SS, Jackson JL, Suva-Castillo M, Yanko WA, El Jack Z, Kuo J, Chen C, Williams FP, Schnurr DP (2003) Detection of infectious human adenoviruses in tertiary-treated and ultraviolet-disinfected wastewater. Water Environment Research 75(2):163-170. https://doi.org/10.2175/106143003X140944 [215] Butkus MA, Labare MP, Starke JA, Moon K, Talbot M (2004) Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Applied and Environmental Microbiology 70(5):2848-2853. https://doi.org/10.1128/AEM.70.5.2848-2853.2004 [216] Templeton MR, Hofmann R, Andrews RC, Whitby GE (2006) Biodosimetry testing of a simplified computational model for the UV disinfection of wastewater. Journal of Environmental Engineering and Science 5(1):29-36. https://doi.org/10.1139/s05-022 Lee J, Zoh K, Ko G (2008) Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental [217] conditions. Applied and Environmental Microbiology 74(7):2111-2117. https://doi.org/10.1128/AEM.02442-07 [218] Timchak E, Gitis V (2012) A combined degradation of dyes and inactivation of viruses by UV and UV/H2O2. Chemical Engineering Journal 192:164-170. https://doi.org/10.1016/j.cej.2012.03.054 [219] Guo H, Hu J (2012) Effect of hybrid coagulation-membrane filtration on downstream UV disinfection. Desalination 290:115-124. https://doi.org/10.1016/j.desal.2012.01.015 [220] Sherchan SP, Snyder SA, Gerba CP, Pepper IL (2014) Inactivation of MS2 coliphage by UV and hydrogen peroxide: Comparison by cultural and molecular methodologies. Journal of Environmental Science and Health, Part A 49(4):397-403. https://doi.org/10.1080/10934529.2014.854607 [221] Jenny RM, Simmons OD III, Shatalov M, Ducoste JJ (2014) Modeling a continuous flow ultraviolet light emitting diode reactor using computational fluid dynamics. Chemical Engineering Science 116:524-535. https://doi.org/10.1016/j.ces.2014.05.020 Simons R, Gabbai UE, Moram MA (2014) Optical fluence modelling for ultraviolet light emitting diode-based water [222] treatment systems. Water Research 66:338-349. https://doi.org/10.1016/j.watres.2014.08.031 Song A, Liu X, Zhang Y, Liu Y (2015) Effect of sodium alginate on UVC inactivation of coliphage MS2. RSC Advances [223] 5(127):104779-104784. https://doi.org/10.1039/C5RA22304K [224] Beck SE, Rodriguez RA, Hawkins MA, Hargy TM, Larason TC, Linden KG (2016) Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum. Applied and Environmental Microbiology 82(5):1468-1474. https://doi.org/10.1128/AEM.02773-15 [225] Rattanakul S, Oguma K (2017) Analysis of hydroxyl radicals and inactivation mechanisms of bacteriophage MS2 in response to a simultaneous application of UV and chlorine. Environmental Science and Technology 51(1):455-462. https://doi.org/10.1021/acs.est.6b03394 [226] Zyara AM, Torvinen E, Veijalainen AM, Heinonen-Tanski H (2016) The effect of UV and combined chlorine/UV treatment

on coliphages in drinking water disinfection. Water (Switzerland) 8(4):130. https://doi.org/10.3390/w8040130

- [227] Kim DK, Kim SJ, Kang DH (2017) Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system. Food Research International 91:115–123. https://doi.org/10.1016/j.foodres.2016.11.042
- [228] Hull NM, Linden KG (2018) Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths. *Water Research* 143:292–300. https://doi.org/10.1016/j.watres.2018.06.017
- [229] Havelaar AH, Meulemans CCE, Pot-Hogeeoom WM, Koster J (1990) Inactivation of bacteriophage MS2 in wastewater effluent with monochromatic and polychromatic ultraviolet light. *Water Research* 24(11):1387–1393. https://doi.org/10.1016/0043-1354(90)90158-3
- [230] Zyara AM, Heinonen-Tanski H, Veijalainen AM, Torvinen E (2017) UV-LEDs efficiently inactivate DNA and RNA coliphages. *Water (Switzerland)* 9(1):46. https://doi.org/10.3390/w9010046
- [231] Weng SC, Dunkin N, Schwab KJ, McQuarrie J, Bell K, Jacangelo JG (2018) Infectivity reduction efficacy of UV irradiation and peracetic acid–UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. *Journal of Environmental Management* 221:1–9. https://doi.org/10.1016/j.jenvman.2018.04.064
- [232] Bae KS, Shin GA (2016) Inactivation of various bacteriophages by different ultraviolet technologies: Development of a reliable virus indicator system for water reuse. *Environmental Engineering Research* 21(4):350–354. https://doi.org/10.4491/eer.2016.032
- [233] Walker CM, Ko G (2007) Effect of ultraviolet germicidal irradiation on viral aerosols. Environmental Science and Technology 41(15):5460–5465. https://doi.org/10.1021/es070056u
- [234] Diston D, Ebdon JE, Taylor HD (2012) The effect of UV-C radiation (254 nm) on candidate microbial source tracking phages infecting a human-specific strain of *Bacteroides fragilis* (GB-124). *Journal of Water and Health* 10(2):262–270. https://doi.org/10.2166/wh.2012.173
- [235] Ho J, Seidel M, Niessner R, Eggers J, Tiehm A (2016) Long amplicon (LA)-qPCR for the discrimination of infectious and noninfectious phix174 bacteriophages after UV inactivation. *Water Research* 103:141–148. https://doi.org/10.1016/j.watres.2016.07.032
- [236] Nuanualsuwan S, Thongtha P, Kamolsiripichaiporn S, Subharat S (2008) UV inactivation and model of UV inactivation of foot-and-mouth disease viruses in suspension. *International Journal of Food Microbiology* 127(1–2):84–90. https://doi.org/10.1016/j.ijfoodmicro.2008.06.014
- [237] Oguma K, Rattanakul S, Bolton JR (2016) Application of UV light-emitting diodes to adenovirus in water. Journal of Environmental Engineering 142(3):4015082. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001061
- [238] Caballero S, Abad FX, Loisy F, Le Guyader FS, Cohen J, Pintó RM, Bosch A (2004) Rotavirus virus–like particles as surrogates in environmental persistence and inactivation studies. *Applied and Environmental Microbiology* 70(7):3904– 3909. https://doi.org/10.1128/AEM.70.7.3904-3909.2004
- [239] Li D, Gu AZ, He M, Shi HC, Yang W (2009) UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. *Water Research* 43(13):3261–3269. https://doi.org/10.1016/j.watres.2009.03.044
- [240] Lemons AR, McClelland TL, Martin SB, Lindsley WG, Green BJ (2020) Inactivation of the multi-drug-resistant pathogen Candida auris using ultraviolet germicidal irradiation. Journal of Hospital Infection 105(3):495–501. https://doi.org/10.1016/j.jhin.2020.04.011
- [241] Pereira VJ, Ricardo J, Galinha R, Benoliel MJ, Crespo MTB (2013) Occurrence and low pressure ultraviolet inactivation of yeasts in real water sources. *Photochemical & Photobiological Sciences* 12(4):626–630. https://doi.org/10.1039/C2PP25225B
- [242] Liu L, Chu X, Chen P, Xiao Y, Hu J (2016) Effects of water quality on inactivation and repair of *Microcystis viridis* and *Tetraselmis suecica* following medium-pressure UV irradiation. *Chemosphere* 163:209–216. https://doi.org/10.1016/j.chemosphere.2016.08.027
- [243] Kim JK, Petin VG, Tkhabisimova MD (2004) Survival and recovery of yeast cells after simultaneous treatment of UV light radiation and heat. *Photochemistry and Photobiology* 79(4):349–355. https://doi.org/10.1111/j.1751-1097.2004.tb00020.x
- [244] Olsen RO, Hess-Erga OK, Larsen A, Thuestad G, Tobiesen A, Hoell IA (2015) Flow cytometric applicability to evaluate UV inactivation of phytoplankton in marine water samples. *Marine Pollution Bulletin* 96(1–2):279–285. https://doi.org/10.1016/j.marpolbul.2015.05.012

About the authors: Mahsa Masjoudi is a Ph.D. candidate in the Department of Chemical & Biological Engineering at the University of British Columbia. Her research focuses on the development and application of UV-based advanced oxidation processes for the removal of micropollutants in water reuse applications.

Madjid Mohseni (Ph.D., P.Eng.) is a professor of Chemical & Biological Engineering at the University of British Columbia. He is an expert in drinking water quality and treatment, and his research focuses on novel and robust water treatment processes capable of inactivating pathogens and removing micropollutants from drinking water supplies. His research involves laboratory-scale development and investigation, as well as pilot-scale and field evaluation of the technologies under real operating conditions at several partner community sites.

James R. Bolton (Ph.D.) is president of Bolton Photosciences, Inc. He is an internationally recognized expert in ultraviolet (UV) technologies, including UV disinfection and advanced oxidation treatments. He coauthored (with Christine Cotton) the book "Ultraviolet Disinfection Handbook," published in 2008 by the American Water Works Association.

The National Institute of Standards and Technology is an agency of the U.S. Department of Commerce.