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We address the problem of performing exact (tiling-error free) out-of-core semantic segmentation inference of arbitrarily large images
using fully convolutional neural networks (FCN). FCN models have the property that once a model is trained, it can be applied on
arbitrarily sized images, although it is still constrained by the available GPU memory. This work is motivated by overcoming the GPU
memory size constraint without numerically impacting the final result. Our approach is to select a tile size that will fit into GPU
memory with a halo border of half the network receptive field. Next, stride across the image by that tile size without the halo. The input
tile halos will overlap, while the output tiles join exactly at the seams. Such an approach enables inference to be performed on whole
slide microscopy images, such as those generated by a slide scanner. The novelty of this work is in documenting the formulas for
determining tile size and stride and then validating them on U-Net and FC-DenseNet architectures. In addition, we quantify the errors
due to tiling configurations which do not satisfy the constraints, and we explore the use of architecture effective receptive fields to
estimate the tiling parameters.
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1. Introduction

The task of semantic segmentation, i.e., assigning a label to each image pixel, is often performed using
deep learning based convolutional neural networks (CNNs) [1, 2]. A subtype of CNN that only uses
convolutional layers is called a “fully convolutional neural network” (FCN), which can be used with input of
arbitrary size. Both U-Net 1[2] and the original FCN network [3] are examples of FCN type CNNs. FCNs
enable the network to be trained on images much smaller than those of interest at inference time as long as
the resolution is comparable. For example, one can train a U-Net model on (512×512) pixel tiles and then
perform graphics processing unit (GPU) based inference on arbitrarily sized images, provided the GPU
memory can accommodate the model coefficients, network activations, application code, and an input image
tile. This decoupling of the training and inference image sizes means that semantic segmentation models can
be applied to images that are much larger than the memory available on current GPUs.

1Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the purpose.
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Images larger than GPU memory can also be used to train the model if they are frst broken into tiles. In 
fact, that is a fairly common practice when working with large-format images. Interestingly, the same edge 
effects which cause tiling errors during inference also affects the training process. Therefore, the tiling 
methodology presented here could also be used to generate tiles for network training. 

The ability of FCN networks to perform inference on arbitrarily large images differs from other types of 
CNNs where the training and inference image sizes must be identical. Usually, this static image size 
requirement is not a problem since the input image size is expected to be static, or images can be resized 
within reason to ft the network. For example, if one trained a CNN on ImageNet [4] to classify pictures into 
two classes: {Cat, Dog}, then the content of the image does not change drastically if the cat photo is resized 
to (224 × 224) pixels before inference, provided the resolution is not altered considerably. Convolutional 
networks are not yet capable of strong generalization across scales [5, 6], so the inference time pixel 
resolution needs to approximately match the training time resolution or accuracy can suffer. 

In contrast, there are applications where resizing the image is not acceptable due to loss of information. 
For example, in digital pathology, one cannot take a whole slide microscopy image generated by a slide 
scanner (upwards of 10 gigapixels) and ft it into GPU memory; nor can one reasonably resize the image 
because too much image detail would be lost. 

Our work is motivated by the need to design a methodology for performing inference on arbitrarily large 
images on GPU memory-constrained hardware in those applications where the loss of information due to 
image resizing is not acceptable. This method can be summarized as follows. The image is broken down 
into non-overlapping tiles. The local context of each tile is defned by the halo border (ghost region), which 
is included only when performing inference. The tile size should be selected so that when the halo border is 
included the whole image will ft into GPU memory. The network receptive feld [7] is the set of all input 
pixels which can infuence a given output pixel. We use the receptive feld to defne the halo border as half 
the network receptive feld to ensure that pixels on the edge of the non-overlapping tiles have all of the 
required local context as if computed in a single forward pass. 

There are three important concepts required for this tile-based (out-of-core) processing scheme. 

1. Zone of Responsibility (ZoR): a rectangular region of the output image currently being computed, 
a.k.a. the output tile size. 

2. Halo: minimum horizontal and vertical border around the ZoR indicating the local context that the 
FCN requires to accurately compute all pixels within the ZoR. This value is equal to half of the 
receptive feld size of the model architecture being used. This is derived from the defnition of the 
convolution network, each output pixel in the ZoR is dependent upon other pixels in either the ZoR or 
in the halo. 

3. Stride: the stride (in pixels) across the source image used to create tiles. The stride is fxed at the ZoR 
size. 

The original U-Net paper [2] briefy hinted at the feasibility of an inference scheme similar to the one 
we present in this paper, but it did not fully quantify and explain the inference mechanism. The novelty of 
our work lies in presenting a methodology for tiling-error-free inference over images that are larger than 
available GPU memory for processed data. 

2. Related Work 

Out-of-core, tile-based processing is a common approach in the high performance computing (HPC) 
feld where any local signal processing flter can be applied to carefully decomposed subregions of a larger 
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problem [8]. The goal is often computation acceleration via task or data parallelization. These tile-based 
processes for the purpose of task parallelization also reduce the active working memory required at any 
given point in the computation. 

It has been known since the initial introduction of FCN models that they can be applied via 
shift-and-stitch methods as if the FCN were a single flter [3, 9]. The original U-Net paper [2] also hinted at 
inference performed on arbitrary sized images in its Figure 2. However, none of the past papers mentioning 
shift-and-stitch discuss the methodology for performing out-of-core inference on arbitrarily sized images. 

There are two common approaches for applying CNN models to large images: sliding window 
(overlapping tiles) and patch-based. Sliding windows (i.e., overlapping tiles) have been used for object 
detection [10, 11] and for semantic segmentation [12, 13]. Patch-based inference also supports arbitrarily 
large images, but it can be very ineffcient [13, 14]. 

Huang et al. [15] and Iglovikov et al. [16] both proposed sliding window approaches. Huang et al. [15] 
directly examined the problem of operating on images for which inference cannot be performed in a single 
forward pass. The authors focused on different methods for reducing but not eliminating the error in 
labeling that arises from different overlapping tile-based processing schemes. They examined label 
averaging and the impacts of different tile sizes on the resulting output error and concluded that using as 
large a tile as possible will minimize the error. Huang et al. [15] also examined the effects of zero-padding, 
documenting the error it introduces. At no point did they produce tiling-error free inference. Iglovikov et al. 
[16] remarked upon the error in the output logits at the tile edges during inference and suggested 
overlapping predictions or cropping the output to reduce that error. 

Patch based methods for dealing with large images predict a central patch given a larger local context. 
Mnih [17] predicted a (16 × 16) pixel patch from a (64× 64) pixel area for road segmentation from aerial 
images. This approach will scale to arbitrarily large images, and if a model architecture with a receptive 
feld of less than 48 pixels is used, then it will have zero error from the tiling process. Saito et al. [18] used a 
similar patch-based formulation to Mnih, predicting a center patch given a large local context; however, they 
added a model averaging component by predicting eight slightly offset versions of the same patch and then 
combining the predictions. 

Our ability to perform error-free tile-based inference relies on the limited receptive feld of convolutional 
layers. Luo et al. [19] discussed the receptive felds of convolutional architectures, highlighting the fact that 
for a given output pixel, there is limited context/information from the input that can infuence that output [7]. 
Input data outside the receptive feld cannot infuence that output pixel [19]. The receptive feld of a model is 
highly dependent upon architecture and layer connectivity. We use the theoretical underpinning of receptive 
felds to identify the size of an image tile suffcient for performing inference without tiling-based errors. 

To the best of our knowledge, no published method fully explores a methodology for performing 
error-free tile-based (out-of-core) inference of arbitrarily large images. While tile-based processing schemes 
have been outlined, the past publications do not provide a framework for achieving error-free tile-based 
inference results. Our approach does not handle layers with dynamic inference or variable receptive felds 
like stand-alone self-attention [20], squeeze and excitation layers [21], deformable convolutions [22], or 
non-local layers [23]. 

3. Methods 

Performing inference on arbitrarily large input images requires that we operate based on image tiles and 
only on tiles small enough to ft in GPU memory for any single forward pass. To form a tile, the whole 
image is broken down into non-overlapping regions. This is equivalent to striding across the image with a 
fxed stride (in pixels). Then, if we include enough local context around each tile to cover the theoretical 
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receptive feld of the network, each pixel will have all of the local context it requires. Therefore, while the 
full image is broken into tiles to perform inference, each pixel individually has all of the information 
required to be predicted as if the whole image were passed through the network as one block of memory. 
This work leverages FastImage [24], a high-performance accessor library for processing gigapixel images in 
a tile-based manner. Figure 1 shows a cropped region from an example (20000× 20000) pixel stem cell 
microscope image (left), as well as the segmentation result produced by the model applied to the full image 
with a correct halo (center), and the segmentation result from tiling without the halo (right). 

Fig. 1. (Left) A (250 × 250) pixel subregion of a grayscale stem cell colony image being segmented by U-Net. (Center) 
Segmentation result with proper halo border of 96 pixels. (Right) Segmentation result with artifacts due to tiling (halo 
border is equal to 0). 

Each dimension of the square input tile is then defned as inputTileSize = ZoR + 2 × Halo. Figure 2 
shows an example where a 832× 832 pixel ZoR is shown as a square with a 96 pixel halo surrounding the 
ZoR. Since the local context provided by the pixels in the halo is required to correctly compute the output 
tile, the GPU input is 832+(2 × 96) = 1024 pixels per spatial dimension. 

Fig. 2. Left: ZoR A (832 pixel ×832 pixel square) with a 96 pixel surrounding halo (shaded area) which combine to 
make the (1024 × 1024) pixel input tile required to infer the (832 × 832) pixel output tile (ZoR). Right: segmentation 
output tile showing the ZoR contribution to the fnal segmented image. 
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In other words, the image is broken down into the non-overlapping ZoR (i.e., output tiles). For each 
ZoR, the local context defned by the halo (where that context is available) is included in the input tile to be 
passed through the network. For a specifc output pixel, if an input pixel is more than half the receptive feld 
away, it cannot infuence that output pixel. Therefore, including a halo defned as half the receptive feld 
ensures that pixels on the edge of the ZoR have all the required context. 

After passing the input tile through the model, the ZoR within the prediction (without the halo) is copied 
to the output image being constructed in central processing unit (CPU) memory. Note, the network output is 
the same size as its input, ZoR +(2× Halo). The ZoR needs to be cropped out from the prediction so only 
those pixels with full context are used to build the fnal result. The halo provides the network with all the 
information it needs to make correct, exact predictions for the entirety of the output ZoR. We call this a 
tiling-error free method because each ZoR is responsible for a specifc zone of the output image. 

This tile-based inference can be thought of as a series of forward passes, each computing a subregion 
(ZoR) of the feature maps that would be created while performing inference on the whole image in one pass. 
In summary, each tile’s feature maps are created (forward pass), its ZoR output is extracted, and then the 
GPU memory is recycled for the next tile. By building each ZoR result in a separate forward pass we can 
construct the network output within a fxed GPU memory footprint for arbitrarily large images. 

3.1 U-Net Case Study 

Here we use U-Net [2] as a case study example of FCNs. Nonetheless, the presented tiling concept 
applies to any FCN (without dynamic or variable receptive felds), just the specifc numerical values will be 
different. 

Note: for the purpose of brevity, we will use ‘up-conv’ (as the U-Net paper does) to refer to fractionally 
strided convolutions with a stride of 1/2, which doubles the feature map spatial resolution [25]. 

3.1.1 Determining The Halo 

The halo must be half the receptive feld (halo = dreceptive f ield/2e). The general principle is to sum 
the values along the longest path through the network, the product of half the receptive feld for each 
convolutional kernel, and the stride that kernel has across the input image. The stride a specifc convolution 
kernel has across the input image is a combination of that kernel’s stride with respect to its feature map and 
the downsampling factor between the input image size and the spatial size of that feature map. The 
downsampling factor is determined by the number of spatial altering layers between the input image and a 
specifc layer. 

Let U-Net be described by an ordered sequence of convolutional layers c = 0, ...,N − 1 with each layer 
being associated with a level lc and a square kernel kc × kc. For the network, N defnes the number of 
convolutional layers along the longest path from input to output. 

Let us defne the level lc of an encoder-decoder network architecture as the number of max-pool2 layers 
minus the number of up-conv layers between the input image and the current convolutional layer c along the 
longest path through the network. Levels start at 0; each max pool encountered along the longest path 
increases the level by 1 and each up-conv reduces the level by 1. 

3.1.2 General Halo Calculation 

The required halo can be calculated according to Eq. 1 for a UNet-type FCN architecture. This equation 
can be considered to be a special case of the more general framework presented by Araujo et al. [7] for 

2Convolutions with a stride of 2 can also be used to halve the spatial size of the feature maps, but they will affect the receptive feld. 
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computing CNN receptive felds; however, it enables an exploration of how each UNet element contributes 
to the receptive feld. 

N−1 kcHalo = ∑ 2lc b c (1)
2c=0 

The halo is a sum over every convolutional layer index c from 0 to N − 1 encountered along the longest 
path from the input image to the output image. Equation 1 has two terms. The 2lc term is the number of 
pixels at the input image resolution that correspond to a single pixel within a feature map at level lc. 
Therefore, at level lc = 4, each pixel in the feature map equates to 24 = 16 pixels at the input image 
resolution. This 2lc term is multiplied by the second term b k 

2 
c c which determines, for a given c, the number 

of pixels of local context that are required at that feature map resolution to perform the convolution. 

3.1.3 U-Net Confguration 

We have made two modifcations to the published U-Net architecture. 

1. Normalization: Batch normalization [26] was added after the activation function of each 
convolutional layer because it is current good practice in the CNN modeling community. 

2. Convolution Type: The convolutional padding scheme was changed to SAME from VALID as used in 
the original paper [2]. 

Batch normalization will not prevent numerically identical results compared to performing inference on 
the whole image in a single pass if correct inference procedures are followed, where the normalization 
statistics are frozen, having been estimated during the training process. 

The original U-Net paper used VALID type convolutions3 which shrink the spatial size of the feature 
maps by 2 pixels for each layer [25]. Switching to SAME type convolutions preserves feature map size. See 
Appendix D for additional explanation. 

There is one additional constraint on U-Net that needs to be mentioned. Given the skip connections 
between the encoder and decoder elements for matching feature maps, we need to ensure that the tensors 
being concatenated together are the same size. This can be restated as requiring the input size to be divisible 
by the largest stride across the input image by any kernel. For U-Net this stride is 16 pixels (derivation in 
Appendix D). Another approach to ensuring consistent size between the encoder and decoder is to pad each 
up-conv layer to make its output larger and then crop it to the target feature map size. That is a less elegant 
solution than enforcing a tile size constraint and potentially padding the input image. 

3.1.4 Halo Calculation for U-Net 

The published U-Net (Figure 1 from [2]) has one level per horizontal stripe of layers. The input image 
enters on level lc=0 = lc=1 = 0. The frst max-pool layer halves the spatial resolution of the network, 
changing the level. Convolution layers c = {2,3} after that frst max-pool layer up to the next max-pool 
layer belong to level lc=2 = lc=3 = 1. This continues through level 4, where the bottleneck of the U-Net 
model occurs. In U-Net’s Figure 1 [2], the bottleneck is the feature map at the bottom which occurs right 
before the frst up-conv layer. After the bottleneck, the level number decreases with each subsequent 
up-conv layer, until level lN−1 = 0 right before the output image is generated. 

3For an excellent review of convolutional arithmetic, including transposed convolutions (i.e., up-conv), see “A guide to convolutional 
arithmetic for deep learning by Dumoulin and Visin” [25]. 
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The halo computation in Eq. 1 can be simplifed for U-Net as shown in Appendix A. Appendix B shows 
a numerical example for computing the halo size using Eq. 1. 

Following Eq. 1 for U-Net results in a minimum required halo of 92 pixels in order to provide the 
network with all of the local context it needs to predict the outputs correctly. This halo needs to be provided 
both before and after each spatial dimension, and hence the input image to the network will need to be 
2× 92 = 184 pixels larger. This value is exactly the number of pixels by which the original U-Net paper 
shrunk the output to avoid using SAME convolutions; a 572 pixel input shrunk by 184 results in the 388 pixel 
output [2]. However, this runs afoul of our additional restriction on the U-Net input size, which requires 
images to be a multiple of 16. So rounding up to the nearest multiple of 16 results in a halo of 96 pixels. 
Since one cannot simply adjust the ZoR size to ensure (ZoR+ Halo)%16 = 0 due to convolutional 
arithmetic, we must explore constraints on image partitioning. 

3.2 Constraints on Image Partitioning 

Our tile-based processing methodology operates on the principle of constructing the intermediate feature 
map representations within U-Net in a tile-based fashion, such that they are numerically identical to the 
whole image being passed through the network in a single pass. Restated another way, the goal is to 
construct an input image partitioning scheme such that the ZoR constructs a spatial subregion of the feature 
maps that would exist if the whole image were passed through the network in a single pass. 

3.2.1 Stride Selection 

To properly construct this feature map subregion, the tiling cannot stride across the input image in a 
different manner than would be used to perform inference on the whole image. The smallest feature map in 
U-Net is spatially 16× smaller than the input image. Therefore, 16 pixels is the smallest offset one can have 
between two tile-based forward network passes while having both collaboratively build subregions of a 
single feature map representation. Figure 3 shows a simplifed one-dimensional example with a kernel of 
size 3 performing addition. When two applications of the same kernel are offset by less than the size of the 
kernel, they can produce different results. For U-Net, each (16× 16) pixel block in the input image becomes 
a single pixel in the lowest spatial resolution feature map. A stride other than a multiple of 16 would result 
in subtly different feature maps because each feature map pixel was constructed from a different set of 
(16 × 16) input pixels. 

This requirement means that the tiling of the full image always needs to start at the top-left corner and 
stride across in a multiple of 16. However, this does not directly answer the question as to why we cannot 
have a non-multiple of 16 halo value. 

3.2.2 Border Padding 

The limitation on the halo comes from the fact that if we have arbitrary halo values, we will need to use 
different padding schemes between the full image inference and the tile-based inference to handle the image 
edge effects. Figure 3 shows for a 1D case how refection padding can (1) alter the stride across the full 
image, which needs to be maintained as a multiple of 16 to collaboratively build subregions of a single 
feature map, and (2) change the refection padding required to have an input image for which the spatial 
dimensions are a multiple of 16. Refection padding is preferred since it preserves image statistics locally. 
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Fig. 3. (Left): Simplifed one-dimensional example of an addition kernel of size 3 being applied at an offset less than the 
kernel size, producing different results (compare top and bottom sums of 1, 2, and 3 or 2, 3, and 4). (Right): Simplifed 
1D example of refection padding (refected through dotted line), causing a different stride pattern across a set of pixels. 
The altered stride prevents the tile-based processing from collaboratively building subregions of a single feature map. 

3.2.3 ZoR and Halo Constraints 

Both problems, (1) collaboratively building feature maps and (2) different full image edge refection 
padding requirements disappear if both the ZoR and the halo are multiples of 16. Thus, we constrain the 
fnal values of ZoR and halo to be the closest higher multiple of the ratio F between the image size I and 
minimum feature map size (Eq. 2), where F = 16 for the published U-Net: 

min{HI ,WI}F = 
min∀lc {Hlc ,Wlc }

Halo (2)Halo∗ = Fd e
F 

ZoR 
ZoR = Fd e

F 

where HI and WI are the input image height and width dimensions, respectively, Halo∗ is the adjusted halo 
value to accommodate stride constraints, and Hlc and Wlc are the feature map height and width dimensions, 
respectively. 

4. Experimental Results 

4.1 Data Set 

We used a publicly accessible data set acquired in phase contrast imaging modality and published by 
Bhadriraju et al. [27]. The data set consists of three collections, each with around 161 time-lapse images at 
roughly (20000 × 20000) pixels per stitched image frame with 2 bytes per pixel. 

4.2 Exact Tile-Based Inference Scheme 

Whether performing inference on the whole image in a single forward pass or using tile-based 
processing, the input image size needs to be a multiple of 16 as previously discussed. Refection padding is 
applied to the input image to enforce this size constraint before the image is decomposed into tiles. 
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Let us assume that we know how big an image we can ft into GPU memory, for example, 
(1024 × 1024) pixels. Additionally, given that we are using U-Net, we know that the required halo is 96 
pixels. In this case, the zone of responsibility is ZoR = 1024 − (2 × Halo) = 832 pixels per spatial 
dimension. Despite performing inference on (1024× 1024) pixel tiles on the GPU per forward pass, the 
stride across the input image is 832 pixels because we need non-overlapping ZoR. The edges of the full 
image do not require halo context to ensure identical results when compared with a single inference pass. 
Intuitively, the true context is unknown, since it is outside the existing image. 

In the last row and column of tiles, there might not be enough pixels to fll out a full (1024× 1024) pixel 
tile. However, because U-Net can alter its spatial size on demand, as long as the tile is a multiple of 16, a 
narrower (last column) or shorter (last row) tile can be used. 

4.3 Errors due to an Undersized Halo 

To experimentally confrm that our out-of-core image inference methodology does not impact the results 
we determined the largest image we could process on our GPU, performed the forward pass, and saved the 
resulting softmax output values as ground truth data. We then processed the same image using our tiling 
scheme with varying halo values. We show that there are numerical differences (greater than foating point 
error) when using halo values less than 96. 

Our U-Net model was trained to perform binary (foreground/background) segmentation of the phase 
contrast microscopy images. The largest image on which we could perform inference given our GPU with 
24GB of memory was (3584 × 3584) pixels. Therefore, we created 20 reference inference results by 
cropping out K = 20 random (3584× 3584) subregions of the data set. Tile-based out-of-core inference was 
performed for each of the 20 reference images using a tile size of 512 pixels (thereby meeting the multiple 
of 16 constraint) with halo values from 0 to 96 pixels in 16 pixel increments. 

The tiling codebase seamlessly constructs the output in CPU memory as if the whole image had been 
inferred in a single forward pass. So our evaluation methodology consists of looking for differences in the 
output softmax values produced by the reference forward pass (R) as well as the tile-based forward pass (T ). 

We used the following two metrics for evaluation: root mean squared error (RMSE) of the softmax 
outputs as given in Eq. 3 and misclassifcation error (ME) of the resulting binary segmentation masks as 
given in Eq. 4. We also included misclassifcation error rate (MER) as in Eq. 5 where the ME is normalized 
by the number of pixels; and relative runtime, where the computation time required to perform inference is 
shown relative to the runtime without the tiling scheme. This runtime highlights the tradeoff to be made 
between the error introduced due to the out-of-core GPU inference and the computational overhead required 
to do so. The MER metric can be multiplied by 100 to compute the percent of pixels with errors due to the 
tiling scheme. All metrics were averaged across the K = 20 reference images. s 

K ∑
m
i=1 ∑

n
j=1(Ri j − Ti j)21

RMSE = ∑ (3)
K mni=1 ! 

K m n1
ME = ∑∑∑ [Ri j =6 Ti j] (4)

K i=1 i=1 j=1 � �K ∑i
m 
=1 ∑

n
j=1[Ri j =6 Ti j]1

MER = ∑ (5)
K nmi=1 

The total inference error is a composite of model error (which is directly minimized by gradient descent 
during training) and tiling error. We demonstrate a zero error contribution from tiling in the case of trained 
and untrained U-Net models (or minimum and maximum inference errors due to a model). 
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Table 1. Error Metrics for Tile Size = 512 

TileSize ZoR Halo RMSE ME σ (ME) MER RelativeRuntime 
3584 n/a n/a 0.0 0.0 0.0 0.0 1.0 

512 512 0 1.11× 10−2 7773.4 1350 6.1× 10−4 1.08 
512 480 16 6.35× 10−3 5455.4 1420 4.2× 10−4 1.31 
512 448 32 3.29× 10−3 2372.2 670 1.8× 10−4 1.36 
512 416 48 1.95× 10−3 1193.7 350 9.3× 10−5 1.61 
512 384 64 7.79× 10−4 434.1 141 3.4× 10−5 1.85 
512 352 80 1.50× 10−4 71.6 27 5.6× 10−6 2.21 
512 320 96 4.17× 10−10 0.0 0.0 0.0 2.58 

For the trained model, the error metrics are shown in Table 1 with 512 pixel tiles 4. Once the required 96 
pixel halo is met, the RMSE falls into the range of foating point error, and the ME goes to zero. Beyond the 
minimum required halo, all error metrics remain equivalent to the minimum halo. The frst row shows the 
data for the whole image being inferred without the tiling scheme. The ME metric is especially informative, 
because when it is zero, the output segmentation results are identical regardless of whether the whole image 
was inferred in a single pass or it was decomposed into tiles. Table 1 highlights the engineering tradeoff that 
must be made, where obtaining zero inference error requires 2.58× the wall clock runtime. The MER with 
naive tailing is 6.1 × 10−4 or 0.06%. Depending on your application, this level of error might be acceptable 
despite the potential for edge effects between the non-overlapping tiles. One consideration is that larger tile 
sizes are more computationally effcient because the ratio of the ZoR area to the tile area increases. 

For the untrained model, results are shown in Table 3 in Appendix C with 1024 pixel tiles. The results 
were generated using an untrained 4 class U-Net model, in which weights were left randomly initialized. 
Additionally, the image data for that result was normally distributed random noise with µ = 0,σ = 1. The 
error coming from tile-based processing was zero once the required halo was met. 

4.4 Errors due to Violation of Partitioning Constraints 

To demonstrate how the inference results differ as a function of how the network strides across the input 
image, we have constructed 32 overlapping (2048× 2048) pixel subregions of an image; each offset from 
the previous subregion start by 1 pixel. So the frst subregion is [xst ,yst ,xend ,yend ] = [0,0,2048,2048], while 
the second subregion is [1,0,2049,2048], and so on. In order to compare the inference results without any 
edge effects confounding the results, we only computed the RMSE (Eq. 3) of the softmax output within the 
area in common between all 32 images, inset by 96 pixels; [128,96,1920, 1952]. The results are shown in 
Figure 4, where identical softmax outputs only happen when the offset is a multiple of 16. 

4All results were generated on an Intel Xeon 4114 CPU with an NVIDIA Titan RTX GPU using Python 3.6 and TensorFlow 2.1.0 
running on Ubuntu 18.04. 
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Fig. 4. Impact of the stride offset on the RMSE of the U-Net softmax output. 

4.5 Application to a Fully Convolutional DenseNet 

Up to this point, we have shown that our ZoR and halo tiling scheme produces error-free out-of-core 
semantic segmentation inference for arbitrarily large images when using the published U-Net architecture 
[2]. This section demonstrates the tiling scheme on a fully convolutional DenseNet confgured for semantic 
segmentation [28]. DenseNets [29] replace stacked convolutional layers with densely connected blocks, 
where each convolutional layer is connected to all previous convolutional layers in that block. Jegou et al. 
[28] extended this original DenseNet idea to create a fully convolutional DenseNet based semantic 
segmentation architecture. 

While the architecture of DenseNets signifcantly differs from U-Net, the model is still fully 
convolutional and thus our tiling scheme is applicable. Following Eq. 1 for a FC-DenseNet-56 [28] model 
produces a required halo value of 377. This is signifcantly higher than U-Net due to the architecture depth. 
FC-DenseNet-56 also has a ratio between the input image size and the smallest feature map of F = 32. 
Therefore, the inference image sizes need to be a multiple of 32, not 16 like the original U-Net. Thus, the 
computed 377 pixel halo is adjusted up to 384. 

The error metrics for FC-DenseNet-56 as a function of halo are shown in Table 4 in Appendix C. This 
numerical analysis relies on versions of the same 20 test images from the U-Net analysis, but they are 
cropped to (2304× 2304), which was the largest image on which we were able to perform inference using 
FC-DenseNet-56 on our 24GB GPU in a single forward pass. 

4.6 Halo Approximation via Effective Receptive Field 

The halo value required to achieve error free inference increases with the depth of the network. For 
example, see Table 2 which shows the theoretical halo values (computed using Eq. 1) for a few common 
semantic segmentation architectures. The deeper networks, like FC-DenseNet-103, require very large halo 
values to guarantee error-free tile-based inference. 

Using the empirical effective receptive feld estimation method outlined by Luo et al. [19], which 
consists of setting the loss to 1 in the center of the image and then back propagating to the input image, we 
can automatically estimate the required halo. This method produces an estimated halo of 96 pixels for our 
trained U-Net [2], which is exactly the theoretical halo. This matches the data in Tables 1 and 3, where the 
ME metric did not fall to zero until the theoretical halo was reached. On the other hand, according to Table 4 
for FC-DenseNet-56, there is no beneft to using a halo larger than 192 despite the theoretical required halo 
(receptive feld) being much larger. This is supported by the effective receptive feld estimated halo of 160 
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Table 2. Theoretical Radii for Common Segmentation Architectures 

Architecture 
U-Net [2] 

SegNet [1] 
FCN-VGG16 [3] 

FC-DenseNet-56 [28] 
FC-DenseNet-67 [28] 

FC-DenseNet-103 [28] 

Halo (pixels) 
96 

192 
202 
384 
480 

1120 

pixels; which is just below the empirically discovered minimum halo of 192. Using the effective receptive 
feld for estimating the required halo is not foolproof, but it provides a good proxy for automatically 
reducing the tiling error. The effective receptive feld will always be less than or equal to the true network’s 
potential receptive feld because convolution kernel weights can learn to ignore information, but they cannot 
increase the kernel size. 

5. Conclusions 

This paper outlined a methodology for performing error-free segmentation inference for arbitrarily large 
images. We documented the formulas for determining the tile-based inference scheme parameters. We then 
demonstrated that the inference results are identical regardless of whether or not tiling was used. These 
inference scheme parameters were related back to the theoretical and effective receptive felds of deep 
convolutional networks as previously studied in literature [19]. The empirical effective receptive feld 
estimation methods of Luo et al. [19] were used to provide a rough estimate of the inference tiling scheme 
parameters without requiring any knowledge of the architecture. While we used U-Net and FC-DenseNets 
as example FCN models, these principles apply to any FCN model while being robust across different 
choices of tile size. 

In this work we did not consider any FCN networks with dilated convolutions, which are known to 
increase the receptive feld side of the network. We will include this extension in future work as well as 
tradeoff evaluations of the relationships among relative runtime, GPU memory size, and maximum tile size. 

6. Test Data and Source Code 

The test data and the Tensorfow v2.x source code are available from public URLs5. While the available 
codebase in theory supports arbitrarily large images, we made the choice at implementation time to load the 
whole image into memory before processing it through the network. In practice, this means the codebase is 
limited to performing inference on images that ft into CPU memory. However, a fle format that supports 
reading sub-sections of the whole image would support inference of disk-backed images which do not ft 
into CPU memory. 

5https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency 
https://github.com/usnistgov/semantic-segmentation-unet/tree/ooc-inference. 
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A. Appendix A: Derivation of the Simplifed Halo Formula 

Let us assume that in the entire U-Net architecture the kernel size is constant kc = k = const and each 
level has the same number of convolutional layers on both decoder and encoder sides nl = n = const. If 
these constraints are satisfed, then the general formula for determining the halo can be simplifed as follows: 

N kc2lc b∑Halo = c
2c=1 

Nk 
2lc∑= b c× 

2 c=1 
M−1k (6)

(2m × n)+ 2M × n)∑c× (2 ×= b 
2 m=0 

k 1× (1 − 2M) 
= b c× n× (2× )+ 2M)

2 1− 2 

= b k c× n × (3 × 2M − 2)
2 

where M is the maximum U-Net level M = max∀c{lc} . 
For U-Net architecture, the parameters are k = 3, n = 2 and M = 4, and the equation yields Halo = 92. 
For DenseNet architecture, the parameters are k = 3, n = 4 and M = 5, and the equation yields 

Halo = 376. This value differs by one from the value computed according to Eq. 6 because the DenseNet 
has asymmetry between the frst encoder layer with a kernel size k = 3 and the last decoder layer with a 
kernel size k = 1. 

B. Appendix B: Example U-Net Halo Calculation 

Following Eq. 1 for U-Net results in a required halo of 92 pixels in order to provide the network with all 
of the local context it needs to predict the outputs correctly. With k = 3, b k 

2 
c c reduces to b 2

3 c = 1. The halo 
computation for U-Net thus reduces to a sum of 2lc terms for each convolutional layer encountered along the 
longest path from input to output as shown in Eq. 7. 

17 
Halo = ∑ 2lc (7) 

c=0 

By substituting the level numbers for each convolutional layer from 0 to 17 as shown in Eq. 8, one 
obtains the minimum halo value of 92 pixels. 

lc = {0, 0,1,1, 2,2,3,3,4,4,3,3, 2,2,1, 1,0,0} 
(8)

92 = 20 + 20 + 21 + 21 + 22 + 22 + 23 + ... 

Similarly, according to Eq. 6, the calculation simplifes to: 

M = max lc = 4 
∀c 

kc = k = 1 (9) 
nl = n = 2 

92 = 1 × 2 × (3× 24 − 2) 
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C. Appendix C: Error Metrics 

Table 3. UnTrained U-Net Error Metrics for Tile Size = 1024 

TileSize ZoR Halo RMSE ME NME RelativeRuntime 
3584 n/a n/a 0.0 0.0 0.0 1.0 
1024 1024 0 2.36× 10−4 21856.9 1.7× 10−3 1.08 
1024 992 16 1.05× 10−6 234.8 1.8× 10−5 1.23 
1024 960 32 1.92× 10−7 49.7 3.9× 10−6 1.30 
1024 928 48 5.47× 10−8 13.2 1.0× 10−6 1.35 
1024 896 64 1.44× 10−8 2.8 2.1× 10−7 1.31 
1024 864 80 5.87× 10−9 1.4 1.1× 10−7 1.5 
1024 832 96 3.54 × 10−10 0.0 0.0 1.58 

Table 4. Error Metrics for FC-DenseNet Tile Size = 1152 

TileSize ZoR Halo RMSE ME NME RelativeRuntime 
2304 n/a n/a 0.0 0.0 0.0 1.0 
1152 1152 0 5.40 × 10−3 821.5 1.5 × 10−4 1.15 
1152 1088 32 1.81 × 10−3 376.1 7.1 × 10−5 1.42 
1152 1024 64 9.16 × 10−4 168.0 3.2 × 10−5 1.54 
1152 960 96 3.36 × 10−4 51.6 9.7 × 10−6 1.59 
1152 896 128 5.63 × 10−5 5.3 1.0 × 10−6 1.67 
1152 832 160 4.97 × 10−6 0.2 4.7 × 10−8 1.76 
1152 768 192 2.44 × 10−7 0.0 0.0 2.32 
1152 704 224 1.92 × 10−8 0.0 0.0 2.22 
1152 640 256 1.37 × 10−8 0.0 0.0 2.33 
1152 576 288 1.44 × 10−8 0.0 0.0 2.39 
1152 512 320 1.37 × 10−8 0.0 0.0 2.52 
1152 448 352 1.45 × 10−8 0.0 0.0 4.65 
1152 384 384 1.37 × 10−8 0.0 0.0 5.89 

D. Appendix D: Convolution Padding 

The original U-Net paper used VALID type convolutions which shrink the spatial size of the feature 
maps by 2 pixels for each layer [25]. Figure 2.1 from Dumoulin and Visin [25] shows an illustration 
showing why VALID causes the feature maps to shrink. The effect of VALID convolutions can also be seen in 
the frst layer of the original U-Net, where the input image size of (572 × 572) pixels shrinks to (570 × 570) 
pixels [2]. SAME type convolutions requires zero padding to be applied to each feature map within each 
convolutional layer ensure the output has the same spatial size as the input. Figure 2.3 from [25] shows an 
illustration where a input (5× 5) remains (5 × 5) pixels after the convolution is applied. While VALID type 
convolutions avoid the negative effects of the zero padding within SAME type convolutions, which can affect 
the results as outlined by Huang et al. [15], it is conceptually simpler to have input and output images of the 
same size. Additionally, our tiling scheme overcomes all negative effects that zero padding can introduce, 
justifying the choice of SAME type convolutions. 
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The change to SAME type convolutions introduces an additional constraint on U-Net that needs to be 
mentioned. Given the skip connections between the encoder and decoder elements for matching feature 
maps, we need to ensure that the tensors being concatenated together are the same size. This can be restated 
as requiring the input size to be divisible by the largest stride across the input image by any kernel. Another 
approach to ensuring consistent size between the encoder and decoder is to pad each up-conv layer to make 
its output larger and then crop to the target feature map size. We feel that is a less elegant solution than 
enforcing a tile size constraint and potentially padding the input image. 

The feature map at the bottleneck of U-Net is spatially 16× smaller than the input image. Therefore, the 
input to U-Net needs to be divisible by 16. As we go deeper into a network we trade spatial resolution for 
feature depth. Given a (512× 512) pixel input image, the bottleneck shape will be N × 1024 × 32× 32 
(assuming NCHW6 dimension ordering with unknown batch size). Thus the input image height divided by the 
bottleneck feature map height is 512 = 16. However, if the input image is (500× 500) pixels, the bottleneck 32 
would be (in theory) N × 1024 × 31.25× 31.25. When there are not enough input pixels in a feature map to 
perform the 2× 2 max pooling, the output feature map size is the foor of the input size divided by 2. Thus, 
for an input image of (500 × 500) pixels the feature map heights after each max pooling layer in the encoder 
are: [500, 250,125,62,31]. Now following the up-conv layers through the decoder, each of which doubles 
the spatial resolution, we end up with the following feature map heights: [31,62,124,248,496]. This results 
in a different feature map spatial size at the third level; encoder 125, decoder 124. If the input image size is a 
multiple of 16, then this mismatch cannot happen. 
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