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1. Introduction

A generative network is an artifcial neural network (ANN) designed to synthesize examples similar in
desired ways to the examples on which the network is trained. The examples presented to the generative 
network during training are understood to be points in a sample S drawn from a target distribution T , and the 
generative network seeks to learn T . Because the learning process is imperfect, the target distribution T and 
the distribution L actually learned by the generative network will differ, and this error—the distance d(T, L) 
between the two distributions—determines the generative network’s performance. An example of generative 
modeling is the task of creating faces for cartoon characters [1]. A generative network is trained with 
examples of cartoon faces taken from available hand-drawn animations so that it can synthesize faces that 
are original but yet, for example, have the desired hand-drawn appearance and adherence to face 
conventions (nose above mouth, etc.). The target distribution T in this example is the population of all 
cartoon faces with the desired characteristics. Based on a sample S of training faces from T , the generative 
network learns to synthesize faces with distribution L, ideally with an error d(T,L) so small that a face 
randomly generated from L and a target face from T are indistinguishable in the desired ways. 
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Generative adversarial networks (GANs), introduced by Goodfellow et al. [2] and Creswell et al. [3], 
are a form of generative network with a novel training architecture in which the generative network, termed 
the generator, is trained alongside a classifer network, termed the discriminator. In this arrangement the 
generator and discriminator are pitted one against the other and trained simultaneously in iterative fashion: 
At each iteration the generator presents learned examples to the discriminator, and the discriminator 
attempts to correctly identify these learned examples from among a pool of training examples. The 
discriminator reports its successes and failures back to the generator, each network updates itself based on 
the discriminator’s successes and failures, and a new iteration begins. At each iteration the generator is 
trying to mislead the discriminator, and the discriminator is trying to avoid being misled. After enough 
iterations, the generator and discriminator approach a game-theoretic equilibrium where the discriminator 
cannot distinguish between synthesized examples and training examples any better than guessing [2, 3]. At 
this equilibrium the generator—the GAN—is ready for use. 

GANs have been successfully applied in many felds; for example, drug design [4], galactic astronomy 
[5], and health care [6]. GANs have been applied most prominently and extensively to image processing, for 
image generation and image-to-image translation [2, 7, 8], to generate fake celebrity faces [9], for 
super-resolution [10], to give images the style of another image [11], and to selectively alter images [12]. 
These applications all involve inputs and outputs that are both high-dimensional features.1 Generative 
networks are distinctive in this respect; the outputs of ANNs designed for classifcation or prediction are 
commonly just one-dimensional features, a categorical variable for ANN classifers and a real-valued 
variable for ANN predictors. The high-dimensional problem settings in which GANs are applied complicate 
study of GAN performance because of the multitude of effects associated with the rich detail in the input 
during training and the challenge of assessing GAN performance from its high-dimensional distributional 
output. Additionally, the high dimensionality of both input and output imposes a computational burden on 
experiments with GANs. Directly addressing GAN performance in high-dimensional application settings 
has yielded only limited progress on pressing issues such as mode collapse [13], model evaluation [14], and 
training instability due to saddlepoints [15, 16], hidden low-dimensional target support [17], and absence of 
an equilibrium [18]. 

To avoid the complications entailed by high-dimensional inputs and outputs, we took a different tack 
and studied GANs in low-dimensional settings. This enabled us to transparently address some basic 
questions about GAN performance. In the work described in this paper, we conducted an experiment to 
explore the effects of training sample size and target distribution complexity on GAN error. Target 
distribution complexity is determined in signifcant part by the distribution’s number of modes. For 
example, consider the 28×28-pixel images of the 10 digits in the Modifed National Institute of Standards 
and Technology (MNIST) data set [19]. The MNIST target distribution has nominally 10 modes within its 
28×28-dimensional support, and its complexity can be varied by excluding digits from consideration. 
Modes—their placements, sizes, and feature associations—are not readily interpreted or manipulated in 
many high-dimensional applications, where mode shape2 is a complicating factor. In low-dimensional 
settings, by contrast, multimodal target distributions are easily rendered, for example, by mixtures of 
Gaussian distributions. 

This paper reveals important features of GANs and sets a path for further study. We focused on GAN 
performance in low-dimensional settings, where experiments can be conducted with a manageable 
computational burden. This approach also allows the experimenter to control for confounding effects and 
achieve transparent results. The experiment conducted in this study introduces and verifes procedures (for 

1In image processing the dimensionality of the GAN input is of the order of the image size in pixels. 
2The shape of a mode can be intuited in terms of the shape and dimensionality of the submanifold on which it resides; a mode in one 
dimension is a zero-dimensional point, and a mode in two dimensions might be a point or a section of a curve (on a one-dimensional 
sub-manifold). 
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GAN error measurement, design, stability, and training convergence) that can be used in subsequent 
experiments with broader scope and more factors. Also, this study emphasizes the primacy of the 
relationship of GAN error to the size N of the training sample, and our experiment fnds that GAN error is 
log-log linear with respect to N. Surprisingly, in the cases in our experiment, this relationship extends to 
even small N, allowing GAN error to be understood succinctly in terms of its error exponent (log-log slope). 
Finally, our experiment uncovers two forms of GAN error, which we term tail underflling and bridge bias. 
This demonstrates that GAN mode tunneling (of which bridge bias is the low-dimensional analogue) occurs, 
and can be studied, in low-dimensional GANs. This is a validation of our choice to study GAN performance 
in low-dimensional settings. 

The remainder of this paper is organized as follows. Section 2 presents important details of our 
experiment, including the experiment protocol followed and our use of earth mover (EM) distance to 
quantify GAN error d(L,T ). We also present the architecture of the GAN in our experiment and our GAN 
training procedure. Section 3 presents and discusses the results of our experiment. Section 4 closes with a 
summary and some related fnal remarks. 

2. Preliminaries

This section details the way our experiment was conducted. This includes, in particular, the protocol
used for the experiment’s trials and the particular form of GAN studied. We also discuss our use of EM 
distance to quantify GAN error. 

2.1 Protocol for Experiment Trials 

The primary objective of our study was to determine how training sample size affects GAN performance 
for different degrees of target distribution complexity. Our experiment to explore this relationship among 
GAN error, sample size, and target complexity consisted of trials in which our GAN was trained and 
exercised over a range of training sample sizes N for each of six target distributions T with varying 
complexity, including three one-dimensional distributions and three two-dimensional distributions. 

All trials in our experiment were conducted according to the protocol diagrammed in Fig. 1. Each trial 
began with a given target distribution T and a size N for the training sample S. The training sample S was 
drawn by simple random sampling from T and used to train the GAN. Once trained, the GAN generator 
synthesized a sample Q of size 10,000 from the GAN’s learned distribution L, a second sample R of size 
10,000 was drawn from T , and the distance d(Q,R) was calculated. This distance d(Q,R) is an 
approximation of the GAN error d(L,T ). This whole process was repeated 100 times (a new GAN trained 
each time), and the GAN error d(L,T ) for the trial was estimated by the average d̄(Q,R) of the 100 d(Q,R). 
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Average the 100 d(Q,R) to

estimate GAN error d(L,T)

Repeat 100 times

Calculate d(Q,R)

Draw a sample Q

of size 10,000 from L

Draw a sample R

of size 10,000 from T

Train GAN with S - yields L

Draw a sample S

of size N from T

Set T and N

Fig. 1. Protocol for trials in GAN performance experiment. The GAN learns L from a training sample S. The GAN error 
d(L,T ) is then estimated by comparing samples Q and R from L and T , respectively. 

2.2 GAN Fundamentals 

A GAN has two components in its training phase, its generator, Gθ , and a discriminator, Dφ , where θ 
and φ are vectors of parameters estimated in the learning process. The generator Gθ is a mapping from a 
noise (latent) distribution Z to its learned distribution L. The discriminator Dφ assigns a probability3 that a 
presented example, whether from T or synthesized, comes from T . Both Gθ and Dφ are typically 
implemented by ANNs. These two networks are trained according to a combined loss function [21] 

L (θ ,φ) = Eζ ∼Z [ f (Dφ (Gθ (ζ ))] + Eτ∼T [ f (−Dφ (τ))]. (1) 

At each iteration in training, Gθ tries to minimize L (θ ,φ ) while Dφ tries to maximize L (θ ,φ). Popular 
GAN variants are distinguished by different choices of f (x) in Eq. (1). For example, the original 
Goodfellow GAN [2] and the Wasserstein GAN [20] correspond, respectively, to f (x) = − ln(1 + e−x) and 
f (x) = x. When the GAN discriminator is optimal, the GAN generator minimizes the distance between the 
target distribution T and the distribution L learned by the generator; the Goodfellow GAN minimizes the 
Jensen-Shannon divergence, and the Wasserstein GAN minimizes the EM distance between L and T . We 
used in our experiment a Wasserstein GAN with a gradient penalty term, called a WGAN-GP [22], added to 
the loss in Eq. (1). Table 1 summarizes the architecture of our WGAN-GP; this architecture is recommended 
in Ref. [24]. The generator output dimension is either one or two depending on the dimension of the target 
distribution in our experiment. We used an Adam optimizer [27] for both the generator and discriminator 
with a learning rate of 1e–4, with β1 = 0.5 and β2 = 0.9. For each update of the generator, we performed 

3A discriminator that outputs a class membership probability rather than just a class label is sometimes termed a critic [20]. 
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fve updates of the discriminator. We found these values to give relatively consistent, stable results during 
training. Choosing training parameters remains an art based on experience and trial-and-error. 

The GAN training process is notoriously unstable, and various expediencies have been proposed in the 
literature to stabilize training [15]. These include changes to the loss function used in training [20, 22], 
tricks for improving GAN training [15, 23], and investigations of GAN convergence [24, 26]. Our 
WGAN-GP is known to exhibit training instabilities [24], but we encountered none in our low-dimensional 
setting. We found with the WGAN-GP that the GAN error d(L,T ) consistently reached steady-state after 
training for 50,000 epochs.4 Figure 2 shows the evolution of GAN error with number of learning epochs for 
a typical trial in our experiment. 

Fig. 2. GAN error versus number of epochs for a representative experiment trial. In our experiment, the GAN was 
trained in each trial for 50,000 epochs. 

Table 1. Architecture of GAN generator (left) and discriminator (right). The generator input is a vector of independent 
N(0,1) noises with a length of 128. The leaky-relu function is defned f (x) = 1(x < 0)(αx)+ 1(x ≥ 0)(x), where α is a 
small constant. 

Generator Discriminator 
Layer Connectivity No. of units Activation Layer Connectivity No. of units Activation 

1 Full 128 Leaky-relu 1 Full 32 Leaky-relu 
2 Full 128 Leaky-relu 2 Full 32 Leaky-relu 
3 Full 128 Leaky-relu 3 Full 32 Leaky-relu 
4 Full Dim. of T None 4 Full 1 Leaky-relu 

4An epoch is one complete use of the training sample S during learning. Usually, only a subset (batch) of S is used in any given learning 
iteration, so one epoch typically corresponds to multiple iterations. 
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2.3 EM Distance 

Our study of GAN performance needed a measure of distance between distributions to quantify GAN 
error. EM distance is attractive for this purpose, and hereafter, d(U,V ) denotes the EM distance between 
distributions U and V . EM distance is a special case (p = 1) of p-Wasserstein distance, which measures 
separation among probability distributions and is a metric in the general setting of Radon spaces [25]. Let U 
and V be two distributions on d-dimensional Euclidean space, where ℜd is defned by cumulative 
distribution functions (CDFs) F and G, respectively. The EM distance separating the distributions U and V is Z 

d(U,V ) = inf k~u −~vkdH(~u,~v), (2)
H ℜd ×ℜd

where H is any joint CDF on ℜd × ℜd such that, marginally, U ∼ F and V ∼ G. EM distance can be 
understood intuitively as the infmum cost required to move/rearrange a probability mass distributed 
according to U ∼ F into the distribution of V ∼ G, with Euclidean distance k · k measuring the move 
required for each infnitesimal of probability mass. The joint CDF H in the infmum in Eq. (2) represents 
different possible plans for transporting each infnitesimal of probability mass from U to V . 

EM distance has a long history, stretching back to Monge’s 1781 work in transportation theory [28]. 
Recently, EM distance has been used broadly in computer science, with applications to pattern recognition 
[29], image databasing [30], and content-based image retrieval [31]. Arjovsky et al. used EM distance to 
formulate the Wasserstein GAN [20] to address issues of mode collapse and vanishing gradients, two 
problems inherent in the original GAN framework [2] and of continuing concern. EM distance is just one of 
many distance measures that can be defned for probability distributions [32], and no consensus has yet 
emerged for measuring GAN error [33]. Among measures of distance between distributions, EM distance 
has a powerful and prevailing role in many felds because of its sensitivity to both amount of mass and to 
underlying metrical, or ground, distance. This feature of EM distance, its dual sensitivity to mass and 
distance, makes it attractive for our purposes as a direct measure of GAN error. 

EM distance can be expressed analytically in some limited cases, and in one dimension the sample S 
closest in EM distance to T takes a simple form. In general, though, EM distance is found numerically using 
Sinkhorn’s algorithm to solve a regularized version of the basic optimal transport problem [34, 35]. We used 
the Python Optimal Transport Library [36] implementation of Sinkhorn’s algorithm in this work to calculate 
GAN error d(L,T ). 

3. Experiment Results

This section presents and discusses the results of our target distribution complexity experiment in which
the relationship of GAN error to training sample size was studied as it varied with the complexity of the 
target distribution. The experiment included six target distributions, three one-dimensional distributions and 
three two-dimensional distributions. The three one-dimensional target distributions had one, two, and three 
modes. As remarked earlier, adding more modes can be thought of as adding more digits in the MNIST data 
set. The three two-dimensional distributions in this experiment were a Gaussian distribution, an equal 
mixture of two Gaussian distributions, and a Swiss roll distribution. The Swiss roll distribution, commonly 
used in machine learning studies [37], is given by the random vector 

(X1, X2) = (U cosU,U sinU)+(W1,W2), 

where W1, W2, and U are independent random variates with U ∼ Unif(0,9π/4) and W1,W2 ∼ N(0,0.01). 
The density of the Swiss roll distribution is shown in Fig. 3. 
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Fig. 3. Density of the Swiss roll target distribution. 

3.1 Results 

The results from the target distribution complexity experiment are plotted in Fig. 4. First, these results 
confrm that increased target complexity results in poorer GAN performance and greater error. We see this 
in Fig. 4 for the one-dimensional T in the ordering of higher GAN error with greater number of modes. 
Figure 4 shows this also for the two-dimensional T in the experiment, provided the Swiss roll T is 
interpreted as more complex than a distribution with a single point mode but less complex than a T with two 
point modes. Second, in the log-log format of Fig. 4, the relationship of GAN error d(L,T ) to sample size N 
appears to be linear 

logd(L,T ) = a − b logN (3) 

or, equivalently, d(L,T ) = 10aN−b, with error exponent b. This linear relationship might be anticipated to 
hold asymptotically for large N; in the results in Fig. 4, it appears to apply even at small sample sizes. 
Analysis of a standard analysis of covariance (ANCOVA) model confrms this. That analysis indicates 
further that the error exponent b in Eq. (3) differs signifcantly according to the dimensionality of T , but that 
no statistically discernible differences exist (at α = 0.05, general linear F test [38]) among the error 
exponents for the one-dimensional T or among those for the two-dimensional T distributions. The common 
error exponents are estimated to be 0.47 and 0.19, respectively, for the one- and two-dimensional T 
distributions in the experiment. 

The GAN errors d(L,T ) shown in Fig. 4 were obtained according to the protocol in Fig. 1. The 
protocol’s size, using 10,000 samplings of Q and R and its numerical approximation of d(Q,R) together 
impose a noise foor on the GAN error that can be resolved by this approach. This foor can be determined 
by using the protocol to fnd d(L,T ) in the extreme case where the GAN learns the target distribution 
perfectly so that L = T with zero GAN error. These protocol-estimated d(T,T ) foors are reported in Table 2 
for each target distribution in our experiment. GAN errors below these foors cannot be accurately 
determined by our protocol with size-10,000 Q and R samples; larger sample sizes would lower these foors 
and increase the protocol’s resolution. The foors in Table 2 show that Q and R samples of size 10,000 are 
suffcient for our experiment. 
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Fig. 4. GAN error d(L, T ) for one-dimensional target distributions with one, two, and three modes (top) and for three 
two-dimensional target distributions (bottom). For the one-dimensional T , the GAN error decreases with sample size N 
at a common rate with estimated error exponent 0.47. For two-dimensional T , the error decreases at a common rate with 
estimated error exponent 0.19. 

The measurements of GAN error d(L, T ) in Fig. 4 made according to the protocol in Fig. 1 were 
produced on the Raritan computing cluster at the National Institute of Standards and Technology. Twelve of 
the cluster’s Nvidia Volta graphics processing units (GPUs) were used in parallel for the experiment5. 
Training a GAN to 50,000 epochs (Fig. 2) took about 45 min. By training 12 GANs in parallel, each GAN 
error d(L,T ) in the experiment was calculated in 5 to 8 h. The six error curves in Fig. 4, each estimated 
from 16 error measurements, therefore required a total of about 600 h (25 d) to complete. 

5Certain commercial equipment, instruments, or materials are identifed in this paper in order to specify the experimental procedure 
adequately. Such identifcation does not imply recommendation or endorsement by the National Institute of Standards and Technology, 
nor does it imply that the materials or equipment identifed are necessarily the best available for the purpose. 
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Table 2. Measurement foors for GAN error for the six target distributions in Fig. 4. These foors were estimated by 
d(T,T ) with size 10,000 samples from T . 

GAN error 
Target distribution T measurement foor 
One-dimensional distributions: 

Unimodal Gaussian 0.018 
Bimodal Gaussian mixture 0.072 
Trimodal Gaussian mixture 0.117 

Two-dimensional distributions: 

Unimodal Gaussian 0.057 
Swiss roll 0.080 
Bimodal Gaussian mixture 0.042 

3.2 Discussion 

The low-dimensional setting of our experiment readily revealed two major sources for the GAN errors 
presented in Fig. 4: underflled tails and bridge bias. Figure 5 presents three trials with a target standard 
normal N(0,1) distribution, using training sample sizes N ranging from 10 to 1000. Fig. 5 shows that at 
small training sample sizes N, the GAN’s learned distributon, represented by the examples in red, underflls 
the tails of the target distribution (in black), and this error diminishes as N increases. Figure 5 also suggests 
that this is not inherently a problem with the GAN. The GAN can do no better than the training data 
available to it, and the poor fdelity of the training sample (in blue) at small N is at least partially the origin 
of the underflled tails. 

Fig. 5. Histograms (red) of learned distributions L for a bimodal target distribution T (black), for three sizes N = 10, 
100, and 1000 of training sample (blue). Each histogram of examples from L exhibits a bridge bias where the GAN has 
generated examples inconsistent with both the density of the bridge in T and the training data drawn from distribution T . 
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Figure 6 shows results of a GAN trained on a bimodal target distribution (in black) made of an equal 
mixture of two normal distributions N(−5,1) and N(5,1). The target distribution T has a low-density bridge 
connecting its two modes. Figure 6 shows that for small N the GAN’s learned distribution (examples in red) 
over-estimates the bridge density, even though the training sample (in blue) actually underrepresents the 
target bridge. The side experiment described next suggests that this bridge bias is a GAN structural feature 
that is only slowly corrected by increasing the size N of the training sample. 

Fig. 6. Histograms (red) of learned examples from distribution L for a unimodal target distribution T (black) for three 
sizes N = 10, 100, and 1000 of training sample (blue). The learned distribution L underflls the tails of T at small sample 
sizes N. 

A side experiment separate from our main target complexity experiment was conducted to explore the 
bridge bias seen in Fig. 6. This side experiment looked at only the univariate bimodal target distribution T of 
Fig. 6, estimating the size of the bridge in the GAN-learned distribution L over a set of training sample sizes 
N. The results of this side experiment are presented in Fig. 7, where the proportion of L in T ’s bridge6 is
plotted against N. These results show diminishing bridge bias as the training sample size increases.
However, extrapolation of the regression line (solid line) in Fig. 7 suggests that very large sample sizes
would be needed—even in this simple one-dimensional learning problem—to approach the target bridge
proportion (dashed line) and effectively eliminate the bridge bias in L.

The trimodal target distribution in Fig. 8 shows that for a given sample size N, bridge bias worsens in 
the presence of multiple target bridges. Figures 6 and 8 show the presence of GAN bridge bias in examples 
where the target distribution modes are connected by bridges. In fact, GAN bridge bias occurs even when no 
bridge connects different modes of the target distribution, as demonstrated when the training sample 
happens to have no examples between two modes. 

6The target distribution T is a bimodal mixture of Gaussian distributions N(−5,1) and N(5, 1). We defned T ’s bridge to be that part of 
T that falls more than three standard deviations below its upper mode and more than three standard deviations above its lower mode. 
With this defnition the bridge constitutes 0.0013 of T . 
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Fig. 7. Bridge bias in the GAN-learned distribution L of the univariate bimodal target distribution T . The plotted 
proportions of L in the bridge of T decrease slowly with increasing training sample size N. The learned distribution L 
over-estimates the proportion of T in its bridge (dashed line). 

Fig. 8. Histograms (red) of learned distributions L for a trimodal target distribution T (black), for three sizes N = 10, 
100, and 1000 of training sample (blue). Each histogram of examples from L exhibits a bridge bias where the GAN has 
generated examples inconsistent with both the density of the bridge in T and the training data drawn from distribution T . 
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The GAN bridge bias seen with our one-dimensional multimodal target distributions appears also with 
our two-dimensional distribution T . Figure 9 shows GAN-generated samples for the target bimodal mixture 
of bivariate Gaussian distributions in our experiment. In each of the three cases in Fig. 9—N = 10, 100, and 
1000—the learned bridge between the two modes greatly over-estimates the (very low) density of the bridge 
in the target distribution. This bias is greater than that for our one-dimensional target distributions. Also, 
while the bridge bias for two-dimensional T decreases with N, this decrease is slower than that in the 
corresponding one-dimensional T . Interestingly, this bridge bias in two dimensions is restricted mostly to 
the one-dimensional line between the two modes, meaning that while the bridge bias for two-dimensional T 
is more pronounced compared to that for one-dimensional T , it is also more restricted relative to the support 
of T . Experiments to explore the relationships among amount and extent of GAN bridge bias, GAN 
architecture, training parameters, training sample size, and target complexity (dimensionality and 
multimodality) are needed. 

Fig. 9. Scatterplots of GAN-generated samples (red) for the bimodal bivariate target distribution, for training samples 
(blue) of three sizes N = 10, 100, and 1000. The GAN exhibits a strong learned bridge bias. 

The univariate and bivariate bimodal target distributions in Figs. 6 and 9 have point modes and the GAN 
bridge between the modes is essentially one-dimensional. The Swiss roll distribution in our complexity 
experiment affords us an opportunity to see what can happen when a target mode extends beyond just a 
point. Figure 10 presents scatterplots of GAN-generated samples for the Swiss roll target distribution in our 
experiment. The training sample of size N = 10 is not enough for the GAN to learn the submanifold on 
which the target ridge resides and it reverts to identifying modes with heavily biased bridges. With a 
relatively small training sample size N = 100, though, the GAN has discovered this structure and almost all 
bridge bias is gone. Bridge bias could be understood to arise from the fact that the generator is a continuous 
map from the latent space of the GAN input noise distribution to the support (data space) of the target 
distribution, while a bimodal target distribution with no bridge (zero mass between modes) would require a 
discontinuous map between the latent space and the data space. In other words, GAN bridge bias may be an 
artifact of a continuous approximation to a discontinuous function. 
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Fig. 10. Scatterplots of GAN-generated samples (red) for the Swiss roll target distribution, for training samples (blue) of 
three sizes N = 10, 100, and 1000. The GAN exhibits a bridge bias for N = 10. Unlike for our other one- and 
two-dimensional target distributions, though, the GAN soon learns the essential structure of the Swiss roll as N is 
increased, and bridge bias no longer occurs. 

Our experiment found that GAN performance decreases as modes are added, and we identifed bridge 
bias as a signifcant cause. In fact, a GAN bridge can exist between modes even in the absence of any 
corresponding target bridge. These GAN bridges may be the source of low-fdelity realizations synthesized 
by GANs trained for image generation [39]. A conditional GAN can alleviate bridge bias to some degree. A 
GAN is trained in an unsupervised fashion, with no labels or other identifying information attached to the 
examples in the training sample S. A conditional GAN is trained with labeled data, and if these class labels 
line up well with target modes, bridge bias can be reduced. To see this, consider the trimodal target 
distribution T shown (top) in Fig. 11. Training examples drawn from T are identifed (red or blue) 
depending on the mode from which they derive. The color labels unambiguously identify the left mode, but 
they do not resolve the center and right target modes. This is akin to having labels for images of cats and 
dogs, but no labels specifying dog breed. A GAN trained with labeled data—a conditional GAN 
[40]—learned the distribution shown (bottom) in Fig. 11. The left and center modes from different classes 
have no appreciable bridge, while the center and right modes from the same class have a bridge. Of course, 
labeled data are not always available, and when labels are available they may not correspond to different 
modes. Still, further study is warranted to discover when and to what extent a conditional GAN with labeled 
training data can alleviate bridge bias. 
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Fig. 11. A trimodal target distribution (top) with color-labeled modes and data (bottom) synthesized by a conditional 
GAN. A bridge exists in the learned distribution between the center and right modes of the same labeled class but not 
between the left and center modes from different labeled classes. 

4. Summary and Related Remarks

GAN performance studies in the setting of high-dimensional applications have made only limited
progress on pressing problems associated with GAN training, including mode collapse and training 
instability. In this study, to make progress on these and other questions relating to GAN performance, we 
took a fresh approach and considered GAN performance in low-dimensional settings. This approach offered 
important advantages: a reduced computational burden in experiments, more comprehensible and malleable 
target distributions, and easier assessment of GAN error. Our low-dimensional approach also carried risk. A 
low-dimensional GAN may not reproduce the high-dimensional phenomena that need to be understood. 
Encouragingly in this regard, our experiment reveaeds bridge bias in trained GANs, analogous to that seen 
in high dimensions. 

A major purpose of our study was to establish protocols for GAN design and experimentation that fully 
exploit the advantages of low dimension and that can be used in subsequent, more elaborate experiments 
with low-dimensional GANs. Beyond this, our work makes two contributions. First, our work highlights the 
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perspective of GAN error as a function of training sample size, because our experiment shows that this 
relationship is log-log linear and that the GAN error exponent (log-log slope) depends solely on the 
dimension of the target distribution. Second, our experiment uncovers two prominent forms of GAN error, 
tail underflling and bridge bias, fnding that both decrease only slowly with increasing sample size. 

This initial study of low-dimensional GAN performance offers a framework for further investigation in 
many directions. Target distribution complexity can be varied by dimension and by number, distribution, 
and dimensionality of modes. Our experiment found, for example, that doubling the dimension of the target 
support from 1 to 2 roughly halved (from 0.47 to 0.19) the GAN error exponent. Determining whether and 
how this effect scales to higher dimensions has important implications for defning how well GANs can 
reasonably be expected to perform in many application settings. Also, investigation into the relationship 
between bridge bias and bridge length (spacing between modes) is needed; all else remaining equal, modes 
tend to be more separated in higher-dimensional data spaces. 

All the GAN training samples in our experiment were drawn from the target distribution by simple 
random sampling. Other sampling schemes can be envisioned; one such scheme is stratifed random 
sampling, in which the training sample is assembled from simple random samples drawn from each target 
mode. This higher-fdelity sampling scheme could be expected to yield reduced GAN error for any given 
sample size N; one would like to determine whether such a sampling scheme would, more powerfully, 
increase the GAN error exponent. The effect of training sample fdelity could be tested to its limit by 
studying training samples S that minimize the EM distance d(S,T ) separating S and the target distribution T . 
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