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1. Introduction

The Guide to the Expression of Uncertainty in Measurement (GUM) [1–3] states:

“In many industrial and commercial applications, as well as in the areas of health and safety, it 
is often necessary to provide an interval about the measurement result that may be expected to 
encompass a large fraction of the distribution of values that could reasonably be attributed to the 
quantity subject to measurement. Thus the ideal method for evaluating and expressing 
uncertainty in measurement should be capable of readily providing such an interval, in 
particular, one with a coverage probability or level of confdence that corresponds in a realistic 
way with that required” — GUM 0.4 

The intervals the GUM contemplates are of the form y ±U(y), where y denotes an estimate of the true 
value of the measurand, and U(y) denotes an expanded uncertainty associated with y, for some specifed 
level of confdence. The GUM calls such intervals coverage intervals for the following reason: 

“The terms confdence interval (C.2.27, C.2.28) and confdence level (C.2.29) have specifc 
defnitions in statistics and are only applicable to the interval defned by U when certain 
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conditions are met, including that all components of uncertainty that contribute to uc(y) be 
obtained from Type A evaluations. Thus, in this Guide, the word ‘confdence’ is not used to 
modify the word ‘interval’ when referring to the interval defned by U ; and the term ‘confdence 
level’ is not used in connection with that interval but rather the term ‘level of confdence’. More 
specifcally, U is interpreted as defning an interval about the measurement result that 
encompasses a large fraction p of the probability distribution characterized by that result and its 
combined standard uncertainty, and p is the coverage probability or level of confdence of the 
interval.” — GUM 6.2.2 

In its clause 6.1.2, the GUM states that the coverage interval is “expected to encompass a large fraction 
of the distribution of values that could reasonably be attributed to the measurand.” This may be a more 
cogent reason not to call it a confdence interval than the reason quoted above. In fact, an interval of this 
nature would, in normal statistical practice, be more like a credible interval, or a tolerance interval, as will be 
explained below, in Sec. 3, not a confdence interval. 

A conventional confdence interval is designed to cover the true value of a parameter of a probability 
distribution, or the true value of some known function of the parameters of a probability distribution. In the 
GUM framework, y is not portrayed as such parameter: it is just a function of n random variables, hence a 
random variable, or the realized value of a random variable (our informal notation does not distinguish one 
from the other). 

The GUM’s approach to the evaluation and expression of measurement uncertainty is based on the 
concept that estimates of measurands are functions of values of input quantities that have been measured 
previously, or that are measured in the course of the experiment designed to measure the quantity of interest. 

The GUM formulates this approach: (1) use a measurement function f whose arguments are the input 
quantities, and whose value is an estimate of the measurand: y = f (x1, . . . ,xn); and (2) model the quantities 
involved as random variables, whose probability distributions describe the uncertainty surrounding their true 
values. 

Since the GUM focuses on scalar measurands, we will do the same here. The function f , however, has a 
special property that the functions usually considered in mathematics do not have: it operates not only on 
the numerical values of its inputs, but it also preserves their measurement units and transfers them correctly 
to the output. √ 

For example, consider the measurement model for airspeed using a Pitot tube [4], v = 2Δ/ρ , where Δ 
(expressed in Pa, i.e., N/m2) denotes the difference between total and static air pressures, and ρ (expressed 
in kg/m3) denotes the mass density of air. The measurement function produces a value of the velocity 
expressed in m/s because it is an algebraic function of its arguments and the units are treated as if they were 
names of mathematical variables. 

Some measurement functions are not algebraic, but transcendental. For example, when using the 
Arrhenius equation [5, Sec. 17D.1] to measure the rate k = Aexp{−Eα /(RT )}, at a particular temperature 
T , of a frst-order reaction whose activation energy is Eα , where R denotes the gas constant. In this case, the 
argument of the exponential is unitless, and k has the same units, s−1, as the frequency factor A. 

This contribution discusses and elucidates the meaning of coverage interval as considered in the GUM, 
and offers a novel interpretation of the meaning of these intervals when they are produced according to the 
GUM Supplement 1 (GUM-S1) [6]. 

Section 2 reviews the several different characterizations that the GUM offers for the concept of coverage 
interval. Section 3 describes and illustrates the principal types of probabilistic intervals that are recognized 
and widely used in the practice of statistics, and compares them with the coverage intervals proposed by the 
GUM and by the GUM-S1. 

Section 4 offers a novel interpretation for the intervals built following the GUM-S1, which explains 
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much of the criticism leveled against intervals derived from Monte Carlo samples. Section 5 recapitulates 
the main fndings and presents recommendations for how to use and interpret coverage intervals. 

2. Coverage Intervals

The GUM calculates coverage intervals in three steps:

(1) Compute y and evaluate u(y) using the approximation either in Equation (10) or in Equation (13) in
the GUM, depending on whether the input quantities are uncorrelated or correlated.

(2) Assign a probability distribution to y: either a Gaussian (or normal) distribution when the
uncertainties of the input quantities are all based on infnitely many degrees of freedom, or a rescaled
and shifted Student’s t distribution in other cases, whose number of effective degrees of freedom is
computed using the Welch-Satterthwaite formula (GUM G.4.1).

(3) Calculate a coverage factor k such that y± ku(y) achieves the required coverage probability.

The GUM justifes step (2) based on a linear approximation to the measurement function, assumed to be 
valid in a suitably small neighborhood of the point, (ξ1, . . . ,ξn), whose coordinates are the true values of 
(x1, . . . ,xn). If f is differentiable, i.e., suffciently smooth, and η = f (ξ1, . . . ,ξn) denotes the true value of y, 
then we have f (y) ≈ η+ α1(x1 − ξ1)+ · · ·+ αn(xn − ξn), where {α j} denote the values that the frst-order 
partial derivatives of f take at (ξ1, . . . ,ξn). 

This linearization is the basis for the approximations for u(y) in Equations (10) and (13) of the GUM, 
and also for invoking the Central Limit Theorem (GUM, Annex G.2). However, considering the example 
above, for the velocity of air measured using a Pitot tube, and so many others like it, where the number of 
summands in the linear approximation for y is very small, it becomes clear that invoking the Central Limit 
Theorem (which describes how the distribution of y evolves as the number of input quantities becomes very 
large), is mere wishful thinking. 

The more relevant result is the so-called Berry-Esseen bound [7, Sec. XVI.5], which characterizes how 
close to Gaussian the distribution of a sum of random variables should be, for small or large numbers of 
summands. However, this result involves the third moments of the input quantities, which usually are neither 
available nor required because the techniques for uncertainty analysis described in the GUM involve only 
the frst two moments of the random variables used to model the input quantities. 

The GUM also effectively assumes that u2(y) is approximately like a multiple of a chi-squared random 
variable with ν degrees of freedom that is independent of y. If both this and the foregoing approximation are 
tenable, then y± ku(y), with k a suitable percentile of Student’s t distribution with ν degrees of freedom, is 
an approximate interval covering the specifed amount of the probability distribution conveying uncertainty 
about the true value of y. Annex G.4 in the GUM explains how ν can be computed, which involves 
additional assumptions and approximations. 

The Monte Carlo method for uncertainty propagation described in the GUM-S1 [6] provides an 
alternative to the three-step above, requiring neither the preliminary evaluation of u(y), nor the 
determination of the factor k. Instead, coverage intervals are derived directly from a large sample drawn 
from the probability distribution of the output quantity. 

Hall [8], Willink [9], and Stant et al. [10], among others, have criticized particular aspects of the Monte 
Carlo method. Possolo et al. [11] have explained that some of this criticism is deserved not by the Monte 
Carlo method itself, but by how the GUM-S1 suggests input quantities should be modeled, or how the 
Monte Carlo sample should be reduced. Possolo and Iyer [4] also have pointed out anomalies that may arise 
in the use of the Monte Carlo method in practice. 
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This overview should suffce to suggest that, within the framework of the GUM, the validity of Student’s 
t intervals requires that multiple assumptions be satisfed, none of which is easily verifable. The Monte 
Carlo method of the GUM-S1, being able to provide an arbitrarily large sample drawn from the probability 
distribution of y, involves no such set of assumptions and coordinated approximations, yet it requires 
supplementary criteria whereby this large sample may be reduced to a coverage interval that is ft for 
purpose. 

Therefore, while the GUM-S1 circumvents the demanding assumptions and approximations required to 
produce a coverage interval within the framework of the GUM, it still leaves unanswered the same question 
that the GUM falls short of answering: what is the nature of a coverage interval, and what relation does it 
bear to its cousins that are used routinely in statistical practice, where the term “coverage interval” is not 
used? 

The concept of coverage interval is the elephant in the room where the GUM entertains her guests. 
There is an obvious nervousness in the air about it, because the GUM attempts to explain what it is, and what 
it is not, on multiple occasions: in Sec. 2.3.5, where it states that the purpose of the expanded uncertainty is 
to defne such an interval; in Sec. 3.3.7, where it suggests that coverage intervals serve “to meet the needs of 
some industrial and commercial applications, as well as requirements in the areas of health and safety”; and 
in Sec. 6.2.2, where it emphasizes that a coverage interval is not a confdence interval because such 
characterization would be “applicable to the interval defned by U when certain conditions are met, 
including that all components of uncertainty that contribute to uc(y) be obtained from Type A evaluations.” 

A little later, in Sec. C.2.30, the GUM qualifes the term with the adjective “statistical,” and defnes 
statistical coverage interval as “an interval for which it can be stated with a given level of confdence that it 
contains at least a specifed proportion of the population,” yet without explaining which population it refers 
to. A revealing note adds that it is also called a “statistical tolerance interval,” only to admonish that this 
term should not be used because it may cause confusion with “tolerance interval,” for whose defnition the 
GUM refers the reader to ISO 3534 [12]. 

Possolo and Iyer [4, Sec. IV.D.3] provide a concise review of the concepts of confdence interval, 
credible interval, prediction interval, and tolerance interval, and compare instances of them for a specifc 
data set. A (Bayesian) predictive interval may be regarded as a particular kind of prediction interval. Meeker 
et al. [13] discuss at great length statistical intervals that may generally be called probability intervals. Some 
classical statistical intervals as well as their relationship to metrology are reviewed in Ref. [14]. In the next 
section we begin by reviewing the principal types of probabilistic intervals, pointing out their differences 
and comparing them with the ways in which the GUM and the GUM-S1 use the term “coverage interval.” 

Similarly to how coverage intervals seem to share traits with different types of commonly recognized 
probabilistic intervals [13], the concept of limit of detection, which is of great importance in analytical 
chemistry and in measurements of radionuclides, has also been redefned repeatedly and variously in terms 
of these different types of intervals [15]. 

3. Probabilistic Intervals

We will illustrate the principal types of probabilistic intervals using the following, recent X-ray
fuorescence (XRF) determinations of the mass fraction of iron in National Institute of Standards and 
Technology (NIST) Standard Reference Material™ (SRM) 690, an iron ore powder packaged in 100 g units. 
This reference material became available in 1978, having been originally measured by fve different 
laboratories, including NIST, using classical and instrumental methods. 

Determinations made in duplicate of eight different bottles yielded the following sixteen values for the 
mass fraction of iron, expressed as percentages (meaning cg/g): 67.43, 66.97, 67.65, 66.84, 67.05, 66.57, 
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67.16, 68.3, 67.01, 67.07, 67.23, 66.51, 66.46, 67.54, 67.09, 66.77. 
A conventional analysis of variance of these XRF determinations revealed that the bottle effects are 

statistically insignifcant, and a linear, Gaussian, mixed effects model [16] with bottle as a random effect, 
ftted to these data by the method of restricted maximum likelihood (REML), estimated the standard 
deviation of the variance component attributed to between-bottle differences to be 0 cg/g and the 
within-bottle standard deviation to be 0.5 cg/g. 

This reference material is suffciently homogeneous for its intended purpose, hence warrants a single 
value assigned to all its units even though the mass fraction may vary from unit to unit within the margin of 
uncertainty that surrounds the assigned value. Both the assigned value and the associated standard 
uncertainty that are listed in the corresponding certifcate are based on these XRF determinations and on 
measurements made by other methods. 

We begin by reviewing (sampling theoretic) confdence and (Bayesian) credible intervals for parameters 
(either the mean or the median) of the probability distribution that the data above originate from. All of them 
are probabilistic intervals: this means that they have a specifed probability of including the true value of the 
quantity of interest, yet none offers any guarantee that it actually does so. 

Confdence intervals have traditionally been built by fnding a function of the data and of the parameter 
of interest whose probability distribution does not depend on this parameter — a so-called pivot. 

The most famous pivot, for the mean ω of a Gaussian distribution whose standard deviation σ also is √ 
unknown, based on a sample of replicated determinations, w1, . . . ,wm, is (w − ω)/(s/ m), where w denotes 
the average of the determinations, and s denotes their sample standard deviation. This pivot has a Student’s t 
distribution with m − 1 degrees of freedom, which is independent of both the true mean ω and the true 
standard deviation σ [17]. 

Pivots also play a crucial role when building intervals based on the fducial approach to statistical 
inference [18], but we will not discuss these here. Since pivots are not always easy to fnd, in Sec. 3.1 we 
also present a general purpose method for producing confdence intervals based on the likelihood function. 

A (Bayesian) credible interval for a parameter of a probability distribution is an interval of possible 
values of the parameter to which the posterior distribution of this parameter assigns a specifed probability. 

For example, suppose that the observations are a sample from a lognormal distribution, and that one is 
interested in building a credible interval for the mean of this distribution. The observations, the version of 
the likelihood function where that mean appears as a parameter, and a prior distribution for the mean 
together determine the posterior distribution for the mean. Any interval to which this distribution assigns 
probability 0 < γ < 1 is a 100γ % credible interval for the mean, conveying the belief that the true mean lies 
in it with 100γ % probability. 

Now suppose instead that one is interested in building a credible interval for the median of the 
lognormal distribution. The observations, the version of the likelihood function where that median appears 
as a parameter, and a prior distribution for the median, together determine the posterior distribution for the 
median, whence a credible interval for the median will be built. 

If the criterion to build these intervals is that they should be highest posterior density intervals, then the 
credible intervals for the mean and for the median will be different. This is the reason and sense in which 
below we often say that the true value of the parameter of interest is the target of the credible interval built 
for it. 

Prediction and predictive intervals, considered in Sec. 3.2, characterize the uncertainty surrounding an 
estimate of the mass fraction of iron in an individual unit of SRM 690 that is sent to a customer. These 
intervals are wider than their counterparts for the mean of all the units, for the same level of confdence. 
Prediction intervals can generally be calculated by applying a minor modifcation to corresponding 
confdence intervals, and credible intervals can easily be derived from a large sample drawn from the 
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posterior probability distribution of the parameters of the probability distribution of the replicates. 
Tolerance intervals (Sec. 3.3) appear to be the closest in concept to the meaning that the GUM ascribes 

to coverage intervals: they are intended to cover a specifed fraction (called content) of the unit of 
probability that a probability distribution allocates to its support, and to do so with some specifed 
confdence. However, they differ obviously from coverage intervals in that their specifcation involves both a 
content and a confdence level, while coverage intervals are determined by their coverage probability only. 

In the fnal subsection (Sec. 3.4), we compare the different types and modalities of intervals both 
numerically and graphically, all derived from the same set of replicate determinations of the mass fraction of 
iron in NIST SRM 690, but with different modeling assumptions. 

3.1 Confdence and Credible Intervals 

Classical (or sampling-theoretic) confdence intervals, and their Bayesian counterparts, credible 
intervals, aim to include the true mean (or the true median, or any other particular characteristic) of the 
probability distribution of the mass fraction of iron in all units of the material, with some specifed 
probability. 

Even when their endpoints are identical, confdence and credible intervals are interpreted differently: the 
former from a classical viewpoint, the latter from a Bayesian viewpoint. 

The classical viewpoint interprets the confdence as the probability that an interval built from a random 
sample drawn from the distribution that describes the variability of the observations, will straddle the true 
value of the parameter of interest. That is, from this viewpoint, confdence characterizes the (frequentist, or 
long-run) performance of the procedure that is used to compute such intervals and does not offer any 
guarantees about the specifc interval derived from the single sample in hand. 

Hoekstra et al. [19] and Morey et al. [20] have shown that the classical interpretation is very often 
misunderstood, and a plethora of consequential counter-examples challenge the very logic of the classical 
interpretation [21–23]. 

The Bayesian viewpoint interprets the confdence as the posterior probability of the target being inside 
the actual interval derived from the sample in hand, thus remaining unconcerned with how the 
interval-building procedure performs for samples that have not been drawn (cf. [24, Page 385]). 

The 16 determinations of the mass fraction of iron in NIST SRM 690 have average w = 67.10 cg/g and 
sample standard deviation s = 0.47 cg/g. The 95 % coverage interval according to the GUM Annex G is √ 
w± 2.131s/ m, where m = 16 is the number of replicates and 2.131 is the 97.5th percentile of the Student’s 
t distribution with m− 1 = 15 degrees of freedom, hence ranges from 66.85 cg/g to 67.35 cg/g. This is the 
same as the conventional Student’s t confdence interval for the true mean mass fraction because the 
uncertainty associated with w is the result of a Type A evaluation. Figure 1 lists the corresponding R code 
[25]. 

This coverage interval rests on the assumption that the set of replicate determinations is like a sample 
drawn from a Gaussian distribution. The Anderson-Darling [26] test of Gaussian shape, applied to the 16 
determinations listed above, yields a p-value of 0.41, which does not challenge this assumption. 

When the assumption of Gaussian shape is questionable, confdence intervals may still be built that are 
based on less demanding assumptions. One of these requires only that the replicated observations be a 
sample drawn from a symmetric distribution: it ranges from 66.83 cg/g to 67.33 cg/g, and was obtained by 
inversion of Wilcoxon’s signed rank test [27, Sec. 3.2], using the R code listed in Fig. 1. Intervals of this 
kind are called non-parametric because their construction does not involve assumptions about the shape of 
the probability distribution the sample comes from. 
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w = c(67.43, 66.97, 67.65, 66.84, 67.05, 66.57, 67.16, 68.3, 
67.01, 67.07, 67.23, 66.51, 66.46, 67.54, 67.09, 66.77) 

library(nortest) 
ad.test(w) 
w.student = t.test(w, conf.level=0.95)
round(w.student$conf.int, 2)
w.wilcox = wilcox.test(w, conf.int=TRUE, conf.level=0.95)
round(w.wilcox$conf.int, 2) 
library(robustbase) 
w.lmrob = lmrob(w~1)
round(predict(w.lmrob, interval="confidence", level=0.95)[1,-1], 2)

Fig. 1. R code to build three confdence intervals for the mean mass fraction of iron in NIST SRM 690, based on 16 
replicated determinations. The frst is the classical Student’s t interval, which can be computed with as few as two 
numerically distinct replicates. The second is non-parametric and is obtained by inverting Wilcoxon’s signed rank test, 
requiring at least fve numerically distinct replicates. The third is based on robust regression, and can derive a 95 % 
confdence interval from as few as two numerically distinct replicates. The R code to compute the Anderson-Darling test 
of Gaussian shape is also provided. 

R function lmrob, also used in the code listed in Fig. 1, implements an MM-estimator and produces 
non-parametric intervals that allow for up to 50 % of the data to be moved arbitrarily far away from the other 
50 % without the estimate deviating from its original value by more than a bounded amount. This 
MM-estimator is highly effcient in the sense that its variance remains almost as small as it would be if the
distribution were actually Gaussian [28, 29]. The term “MM,” which was introduced by V. Yohai [28],
alludes to the involvement of two estimates (one of scale, the other of location) that are of maximum
likelihood type (even if non-parametric). The procedure offers high breakdown (that is, resistance to a high
proportion of abnormally deviant observations) and high effciency.

The profle likelihood (PL) confdence interval is the result of a model-based, widely applicable 
procedure that does not involve a pivot. The idea is to build an interval that comprises values of the 
parameter of interest in the neighborhood of the value that maximizes the likelihood function. Since the 
model may include other parameters (called nuisance parameters in this context) besides the parameter of 
interest, one defnes that neighborhood using the version of the likelihood function where for each value of 
the parameter of interest, the values of the nuisance parameters are chosen so as to maximize the likelihood 
function. 

In this case, the model is Gaussian, whose likelihood is a function of two parameters, Lw(ω,σ), where 
the subscript w denotes the vector of 16 replicated determinations of the mass fraction of iron in NIST 
SRM 690, which are fxed, and ω and σ denote the mean and standard deviation of the Gaussian distribution 
the {wi} originate from. 

If ωb and σb denote the maximum likelihood estimates, then the PL interval is the set of values of ω for 
which maxσ Lw(ω, σ)/Lw(ωb,σb) > exp(−χ95%,1/2), where χ95%,1 denotes the 95th percentile of the
chi-squared distribution with 1 degree of freedom [13, Sec. 12.5.2]. 

Figure 2 lists a combination of R and Stan [30] codes that yield a (Bayesian) predictive interval for the 
same data, ranging from 66.86 cg/g to 67.35 cg/g, and conforming with the intuitive interpretation that the 
true value of the measurand is believed to lie within the interval with 95 % probability. 
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require(rstan) 
w = c(67.43, 66.97, 67.65, 66.84, 67.05, 66.57, 67.16, 68.3, 

67.01, 67.07, 67.23, 66.51, 66.46, 67.54, 67.09, 66.77) 
w.model = "data { real w[16]; real delta; }

parameters { real<lower=0, upper=1> omega; 
real<lower=0> sigma; } 

model { // Priors on parameters 
// True mean mass fraction 
omega ~ beta(2.017319, 1); 
// Std. Dev. of measurement errors 
// Half-Cauchy prior for sigma with median delta 
sigma ~ cauchy(0, delta); 
// Likelihood 
w ~ normal(omega, sigma); }" 

w.fit = stan(model_code = w.model,
data = list(w=w/100, delta=mad(w/100)), 
warmup=500000, iter=4000000, chains=4, cores=4, thin=25) 

w.post = extract(w.fit)

## Posterior mean, standard deviation, and endpoints 
## of 95 % credible interval 
round(100*c(mean(w.post$omega), sd(w.post$omega)), 2) 
round(100*quantile(w.post$omega, probs=c((1-0.95)/2, (1+0.95)/2)), 2) 

Fig. 2. Bayesian model for the determinations of mass fraction of iron in NIST SRM 690, formulated and ftted to the 
data via Markov chain Monte Carlo sampling [32] using facilities of the Stan language for Bayesian statistical modeling 
[33], of R package rstan [34]. Note that in the line where function stan is invoked, the value assigned to the data is 
w/100, thus expressing the percentages as proportions consistently with omega having a prior beta distribution, hence 
lying between 0 and 1. 

The prior distribution assigned to ω was a beta distribution with mean 0.66858 g/g, where the change in 
units serves to express the magnitude as a number between 0 and 1, which is the support of the beta 
distribution. This beta distribution also has the maximum variance possible subject to the constraint that 
both shape parameters should be no smaller than 1 (to ensure a plausible shape of the overall distribution). 
The value chosen for the prior mean is the average of fve determinations of the same mass fraction that 
were made by fve different laboratories when the material frst became available, about 40 years prior to the 
recent XRF determinations. 

The prior distribution assigned to σ was half-Cauchy, following Gelman’s recommendation [31], with 
median set equal to the median of the absolute deviations of the replicated determinations from their 
median, rescaled to be a consistent estimate of the standard deviation for Gaussian samples, as implemented 
in R function mad. We also assumed that ω and σ are independent a priori. Both these priors are rather 
uninformative, yet both are proper: that is, they assign probability 1 to their respective supports. 

3.2 Prediction and Predictive Intervals 

Prediction and predictive intervals are probabilistic statements about the mass fraction of iron in the unit 
that will be randomly pulled from the shelf and shipped to a customer. This question is relevant in practice 
because customers only care about the particular units that they receive, after all. 
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A prediction interval, which typically will be appreciably wider than the confdence interval for the 
mean mass fraction over all the units, is the classical answer to that question. The Bayesian counterpart is 
called a predictive interval, and it is derived from the conditional distribution of a “future” observation given 
the observations one has already made. A “future” observation refers to the value of the mass fraction of 
iron that may be measured in an individual unit of the material using an analytical method whose 
performance is comparable to the methods used for certifcation. 

A slight modifcation of the GUM’s coverage interval, yields the GUM-like prediction interval with√ 
95 % coverage probability: w ± 2.131s 1+ 1/m [13], which ranges from 66.07 cg/g to 68.14 cg/g. Since 
the GUM’s coverage interval in this case is the same as the Student’s t confdence interval for the mean, this 
prediction interval rests on the same assumptions. 

The same R function, lmrob, that was used in the R code listed in Fig. 1, is used again here as listed in 
Fig. 3, to produce a prediction interval based on a robust statistical procedure, that is, dispensing with the 
assumption that the observations are a sample from a Gaussian distribution. 

R function predIntNpar, defned in package EnvStats [35], produces yet another non-parametric 
interval, whose endpoints are suitably selected percentiles of the data [13], which is depicted in Fig. 3, 
where it is labeled NP∗ . The actual confdence of this interval is only 0.8824. Section 4 explains why this 
happens to be 15/17. 

The corresponding (empirical Bayes) predictive interval is derived from the predictive distribution for a 
“future” observation w ∗, whose probability density is q(w ∗|w1, . . . ,wm) given by ZZ 1 +∞

p(w ∗|w1, . . . ,wm,ω,σ)q(ω,σ |w1, . . . ,wm)dσdω 
0 0ZZ 1 +∞ ∗|ω,σ)p(w1, . . . ,wm,w 

= q(ω,σ |w1, . . . ,wm)dσdω 
0 0 p(w1, . . . , wm|ω,σ)Z 1 Z +∞

= p(w ∗|ω,σ)q(ω,σ |w1, . . . ,wm)dσdω, 
0 0 

where q is the posterior density of ω and σ given the data, and p is the probability density of the data (and 
of the “future” observation w ∗) given ω and σ . The last line follows from the middle line because w ∗ and 
the {wi} are mutually independent given ω and σ . 

Instead of computing these integrals, one can sample the predictive distribution by making draws from a 
mixture of likelihoods with the posterior distribution of ω and σ as the mixing distribution, as specifed in 
the last four lines of the R code in Fig. 3. This produces a sample whose 2.5th and 97.5th percentiles are the 
endpoints of the 95 % predictive interval sought: (66.08cg/g, 68.13cg/g). 

3.3 Tolerance Intervals 

A tolerance interval seeks to cover the values of the mass fraction of iron in a specifed proportion of the 
units, with a specifed probability: for example, an interval that will include the values of the mass fraction 
of iron in 90 % of the units, with 95 % probability. That proportion (90 %) is the content of the tolerance 
interval, and this probability (95 %) is its confdence. 

Tolerance intervals with a particular confdence may be wider or narrower than confdence or credible 
intervals with the same confdence, depending on the specifed content. Hamada et al. [36] explain the 
relation between (Bayesian) predictive intervals and tolerance intervals. 

Similarly to confdence and prediction intervals, tolerance intervals may be built either making specifc 
assumptions about the probability distribution that the data originate from, or non-parametrically. Figure 4 
provides R code for a classical tolerance interval and a Bayesian tolerance interval that assume the data 
originate from a Gaussian distribution as well as a classical non-parametric tolerance interval. Both classical 
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intervals use functions defned in the package tolerance [37]. The Bayesian interval uses the Stan output 
from Fig. 2 and the prescription in Sec. 2 of Ref. [36]. 

w.lm = lm(w~1)
round(predict(w.lm, interval="prediction", level=0.95)[1,-1], 2)
library(robustbase)

predict(lmrob(w~1), interval="prediction", level=0.95)[1,]
library(EnvStats)

predIntNpar(w, k=1, m=1)$interval

## Sampling the (empirical Bayes) predictive distribution 
K = length(w.post$omega) 
wSTAR = rnorm(K, mean=w.post$omega, sd=w.post$sigma) 
round(100*c(mean(wSTAR), sd(wSTAR)), 2) 
round(100*quantile(wSTAR, probs=c((1-0.95)/2, (1+0.95)/2)), 2) 

Fig. 3. Calculation of three different 95 % prediction intervals (frst six lines), and calculation of a 95 % predictive 
interval (last four lines) for the true mass fraction of iron in an individual unit of the material, where the latter uses the 
output of the code in Fig. 2. The actual confdence of the interval produced by R function predIntNpar is only 0.8824. 
Section 4 explains why this happens to be 15/17. 

library(tolerance) 
w = c(67.43, 66.97, 67.65, 66.84, 67.05, 66.57, 67.16, 68.3, 

67.01, 67.07, 67.23, 66.51, 66.46, 67.54, 67.09, 66.77) 
normtol.int(w, alpha=0.05, P=0.9, side=2, method="EXACT") 
nptol.int(w, alpha=0.05, P=0.9, side=2, method="YM") 

Bayes.tol.lb = quantile(w.post$omega - qnorm(0.95) * w.post$sigma, 0.025) 
Bayes.tol.ub = quantile(w.post$omega + qnorm(0.95) * w.post$sigma, 0.975) 
print(round(100 * c(Bayes.tol.lb, Bayes.tol.ub), 2)) 

Fig. 4. R code to compute three kinds of tolerance intervals: normtol.int and the Bayesian interval require that the 
replicated determinations of the mass fraction of iron in NIST SRM 690 must be a sample from a Gaussian distribution, 
while nptol.int involves no such assumption. 

3.4 Comparing Probabilistic Intervals 

Table 1 lists estimates, standard uncertainties, and probabilistic intervals (confdence, credible, 
prediction, predictive, and tolerance) produced by different statistical procedures, which make different 
assumptions about the data, or use different models for the same data, and express knowledge either of the 
reference material as a whole, or of individual units. 

The entries are classifed according to whether the interval aims to capture the average mass fraction of 
iron over all the units of NIST SRM 690, or the mass fraction of iron in the single, particular unit that a 
customer has received. The intervals produced using methods based on the Monte Carlo method of the 
GUM-S1 are discussed below. Figure 5 depicts all of these intervals. 
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Mean mass fraction over all units of NIST SRM 690 
METHOD ESTIMATE STD. UNC. PROB. INTERVAL 

Confdence or Credible Intervals 

ST (GUM) 67.10 0.12 (66.85,67.35) 
BAYES 67.10 0.12 (66.86,67.35) 
HL 67.06 0.11 (66.83,67.33) 
MM 67.06 0.11 (66.82,67.30) 
PL 67.10 0.11 (66.87,67.34) 

GUM-S1 Interval 

67.10 0.13 (66.85,67.35) 

/(cg/g) 

Mass fraction in individual unit of NIST SRM 690 
METHOD ESTIMATE STD. UNC. PROB. INTERVAL 

Prediction Intervals 

ST 67.10 0.47 (66.07,68.14) 
BAYES 67.10 0.52 (66.08,68.13) 
MM 67.06 0.11 (66.12,68.00) 

GUM-S1 Interval 

67.10 0.47 (66.10,68.10) 

Tolerance Intervals 

TOL-ST 67.10 (65.95,68.25) 
BAYES (65.84,68.37) 
TOL-NP (66.38,69.40) 

/(cg/g) 

Table 1. TOP: Estimates and standard uncertainties (when applicable), and probabilistic intervals for the mean mass 
fraction of iron in NIST SRM 690 across all units. ST (GUM): conventional Student’s t. BAYES: Bayes estimate and 
credible interval corresponding to the model defned in Fig. 2. HL: Hodges-Lehmann and inversion of Wilcoxon’s 
signed rank test. MM: MM-estimator implemented in R function lmrob. PL: Profle likelihood (Gaussian model). 
GUM-S1: same as ST (GUM). BOTTOM: Same summaries for a single unit, and for a proportion of the units. ST: 
Student’s t prediction. BAYES: Bayesian prediction corresponding to the same model underlying the credible interval. 
MM: MM-estimator implemented in R function lmrob. NP∗: non-parametric prediction. GUM-S1: Prediction. 
TOL-ST, BAYES, and TOL-NP are tolerance intervals with 90 % content (that is, aiming to include 90 % of the values 
of the mass fraction in individual units of the material), where the frst is based on Student t, the second is Bayesian, and 
the third is non-parametric. All intervals have 95 % confdence, except NP∗, whose actual confdence is 0.8824. 
Section 4 explains why this happens to be 15/17. These intervals are depicted in Fig. 5. 
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Fig. 5. Graphical comparison of the probabilistic intervals listed in Table 1. The different colors indicate their targets: 
average mass fraction of iron across all units of NIST SRM 690 (blue); mass fraction of iron in a particular unit of the 
material (orange); mass fraction in 90 % of the units (green). The labels are as explained in the caption of Table 1. All 
these intervals have 95 % confdence, except the prediction interval NP∗, whose actual confdence, 0.8824, is discussed 
in Sec. 4. The red, small open circles immediately above the horizontal axis indicate the observations. 

The intervals for the mean mass fraction (depicted in blue) are all fairly similar to one another, including 
the credible interval (BAYES) because the prior distributions used, although proper, are rather 
uninformative. The prediction intervals (depicted in orange) and the tolerance intervals (depicted in green) 
also are quite similar to one another within the same type of interval. Both non-parametric intervals, one for 
prediction (NP∗) and the other tolerance (TOL-NP), are perceptibly shifted to the right relative to the others, 
because they track the largest determination, owing to the fairly small number of determinations. 

The endpoints of the GUM-S1 coverage interval are the 2.5th and 97.5th percentiles of a large sample 
drawn as described in the GUM-S1 (6.4.9.5). However, no sampling would have been needed considering 
that the modeling choices in 6.4.9.2 of the GUM-S1 imply that the interval should be exactly the same as the 
Student’s t interval, ST (GUM). 

The endpoints of the non-parametric prediction interval produced by predIntNpar are the extremes 
(smallest and largest) of the 16 determinations of the mass fraction of iron. The same function also outputs 
the actual confdence that this interval achieves, 0.8824, which happens to be 15/17. In Sec. 4 we will 
explain how this fraction arises. 

The endpoints of the GUM-S1 prediction interval are the 2.5th and 97.5th percentiles of a sample drawn 
from a rescaled and shifted Student’s t distribution with 16 degrees of freedom. The scale factor is the 
sample standard deviation, s = 0.47cg/g, and the shift centers the distribution at the sample average, 
67.10 cg/g. 

With all of these options for intervals that express uncertainty, where does the GUM stand? The GUM 
leans toward an interpretation of coverage intervals that conveys the state of incomplete knowledge about 
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the measurand. In this interpretation the coverage probability quantifes incompleteness of knowledge, thus 
suggesting that coverage intervals are closest in spirit to credible intervals. However, the GUM does not 
describe Bayesian procedures, nor does it present a single instance of a Bayesian credible interval. 

The GUM-S1 does produce a Bayesian credible interval for the mean mass fraction following its 6.4.9, 
but at the cost of making assumptions that are unrealistic and defy common sense. However, these efforts 
are inconsequential because the interval it produces as a result, is none other than the conventional, Student t 
interval we have had all along and that the GUM promotes. Its predictive counterpart can also, in this 
particular case, and just as easily, be computed in closed form, without any Monte Carlo sampling. 

In this particular situation, involving an average of a sample from a Gaussian distribution, the GUM-S1 √ 
leverages the magic surrounding the pivot (w − ω)/(s/ m), where ω represents the true mean and m is the 
number of observations. This pivot’s probability distribution is known in closed form (Student’s t), and does 
not involve the unknown standard deviation σ of the underlying Gaussian distribution that the observations 
have been drawn from. 

All of the parametric intervals from Table 1, which are depicted in Fig. 5, assume that the dispersion of 
the 16 determinations of the mass fraction of iron in SRM 690 are well described by a Gaussian distribution. 
It just so happens that a lognormal distribution fts the 16 observations of mass fraction even better than a 
Gaussian distribution does. Had we used the lognormal model instead, then the GUM-S1 would have had to 
follow the usual route, and actually draw samples from the distribution of the output quantity. In addition, 
with the lognormal model the focus on the average would no longer be as natural a choice as it is for the 
Gaussian model. 

Another peculiarity of this example is the fact that we have replicated observations of the quantity of 
interest itself, which is the mass fraction of iron in this reference material. We can then focus either on the 
mean value of the distribution the observations come from, or on individual, “future” observations. 

In general, however, we do not have replicates of the quantity of interest, which is the output quantity 
from the measurement model in the GUM, y = f (x1, . . . ,xn): instead, we have but a single value of the 
output quantity. In this more general setting, which we will pursue in the next section, all that the GUM-S1 
interval can do is capture a specifed proportion of the distribution of the output quantity, rather than aim to 
capture a particular characteristic of the distribution of y, like its mean, which is the target of confdence or 
credible intervals. In due course, we will conclude that the GUM-S1 interval is a hybrid interval, combining 
parametric and non-parametric features, and in fact delivering a prediction interval for “future” values of the 
output quantity. 

4. Interpreting Monte Carlo Coverage Intervals

The meaning of coverage interval is important: frst, because the GUM gives it pride of place, and
second because Monte Carlo methods of the kinds described in the GUM Supplements 1 and 2 [6, 38] are 
being used increasingly often to produce such intervals. Every time the NIST Uncertainty Machine 
(https://uncertainty.nist.gov) is invoked to perform uncertainty propagation, it always provides the results of 
the Monte Carlo method alongside the results obtained using the conventional techniques of the GUM. 

Possolo and Iyer [4, Sec. VII.A.4] devised a realistic example involving the Pareto distribution where, in 
the absence of clairvoyance, it is impossible to produce a non-trivial interval that includes the true mean 
value of the measurand with specifed probability. However, they also open a door toward a better 
understanding of the meaning of coverage intervals derived from Monte Carlo samples. Since this 
understanding may be the key to resolving several of the issues that have been raised about intervals 
produced in this way [8, 39, 40], it is worth exploring the landscape that open door reveals, which we will 
pursue next. 
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Consider the measurement model proposed in the GUM once again, which expresses the measurand as a 
known function of several input quantities and models the uncertainty surrounding the input quantities by 
assigning probability distributions to these quantities, in effect rendering them as random variables. 

In consequence, the output quantity, y = f (x1, . . . ,xn), becomes a random variable itself, whose 
probability distribution is fully determined by f and by the joint probability distribution of x1, . . . ,xn. If the 
function f is suitably smooth, then it is possible to write down a formula for y’s probability density in terms 
of the probability density of the inputs: the so-called change-of-variable formula [41]. 

However, in most instances of application it is impractical to use this formula to carry out computations 
involving the probability distribution of y. The Monte Carlo method circumvents this diffculty by drawing 
samples from y’s distribution without computing this distribution frst. It does this by repeatedly making 
drawings (each of which is an n-dimensional vector of values of the n input quantities) from the joint 
probability distribution of the input quantities, and for each such drawing computes a value of the output 
quantity. 

Let y1,y2, . . . ,yK denote the results of such a procedure, which are a sample, typically of a large size K, 
from the distribution of the output quantity. Sort these values from smallest to largest, and denote the result 
y(1), y(2), . . . ,y(K). That is, y(1) is the smallest of the {yk}, y(2) is the second smallest, and so on, with y(K)

being the largest. The {y(k)} are called the order statistics of the sample {yk}. 
The differences between successive order statistics, sk = y(k+1) − y(k), for k = 1, . . . ,K − 1, are the 

spacings. We will refer to the corresponding sub-intervals (−∞,y(1)), (y(1),y(2)), . . . , (y(K−1),y(K)), 
(y(K),+∞) as the slots. Since we assume that y has a continuous distribution, it makes no difference whether 
the slots are defned as open or semi-closed intervals. 

To make these quantities concrete, and as preparation for what will come next, let us consider a toy 
example where, unbeknownst to us, the output quantity has a Weibull probability distribution with shape 1.5 
and scale 1. Best to visualize the features we wish to highlight, we will do something that is never done 
when the Monte Carlo method is used in practice: we will draw only K = 7 values from this Weibull 
distribution that we assume is the distribution of the output quantity. (In practice, K is typically around 1 
million.) 

The following toy example involves neither classical confdence intervals nor (Bayesian) credible 
intervals. Its sole purpose is to exploit basic facts about the probabilistic structure of samples drawn from 
any probability distribution and to produce a simple interpretation of coverage intervals derived from a 
sample drawn from a probability distribution for the output quantity, y, in a conventional measurement 
model, according to the GUM Supplement 1 [6]. 

Let us then begin by supposing that our tiny sample drawn from the distribution of y comprises these 
values: 0.1258, 0.8234, 2.6557, 0.5563, 1.1503, 0.3284, and 0.4660. The corresponding order statistics are 
0.1258, 0.3284, 0.4660, 0.5563, 0.8234, 1.1503, and 2.6557. The frst spacing is 0.3284 − 0.1258 = 0.2026, 
and the others are 0.1376, 0.0903, 0.2671, 0.3269, and 1.5054, respectively. The order statistics, and the 
slots they defne, are depicted in Fig. 6. 
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Fig. 6. The (blue) curve represents the true probability density of the output quantity, the (red) dots represent a sample of 
size K = 7 drawn from this distribution, and the (dark green) horizontal segments, in alternating lines for better 
visibility, indicate the slots: their lengths are the spacings. Note that, in this case, because the output quantity is positive, 
the frst slot is an interval of fnite length, extending from 0 to the frst order statistic. Note that the K + 1st slot is a 
half-line of infnite length (suggested by the arrowhead) starting at the Kth order statistic, because the output quantity 
may take arbitrarily large values. 

Now, consider this question: what is the probability that the next drawing we will make from the 
probability distribution of the output quantity, will land in any particular one of these slots? If we knew the 
actual distribution (we are acting on the pretense that we do not know it), we could answer readily that the 
probabilities are 0.044, 0.128, 0.101, 0.067, 0.187, 0.183, 0.278, 0.013, for the frst, second, etc. slots, 
respectively. For example, 0.044 = Pr{y < 0.1258}, 0.128 = Pr{0.1258 < y < 0.3284}, and similarly for 
the others, except for the last, which is 0.013 = Pr{y > 2.6557}. These probabilities can all be computed 
using the cumulative distribution function of the Weibull distribution with shape 1.5 and scale 1. 

The probabilities associated with these slots are obviously different, which, in light of Fig. 6, is not 
surprising. However, if we reformulate the question ever so slightly, we will get a very surprising answer. 
The reformulated question is this: what is the probability that the K + 1st drawing from the probability 
distribution of the output quantity will land in any particular one of the slots corresponding to the order 
statistics of the frst K drawings? 

The original question referred specifcally to the drawings we had already made, which happened to 
have had the values that we listed. The reformulated question refers not to any particular set of K = 7 values 
drawn from the distribution of y, but to any and all hypothetical sets of K = 7 values that may be drawn from 
the same distribution. The original question is the kind of question that a Bayesian predictive distribution 
would answer. The reformulated question is the kind of question that the Monte Carlo method answers. 

The surprising answer, which is validated in Appendix A, is that all slots have the same probability of 
containing the value produced in the next draw, 1/(K + 1), which in this case is 1/(7+ 1) = 0.125. 
Appendix A (Sec. 6) shows that this can be verifed empirically by carrying out a computer experiment, and 
it can also be proved with great generality. 

The foregoing considerations imply that the union of any M 6 K − 1 of the slots {(y(k−1),y(k))} (which 
can be chosen so that their union is an interval) is a probability interval for y with coverage approximately 
M/(K + 1). However, this interval can say nothing about the mean, or about the median, or any other similar 
attribute of the distribution of y. Failure to recognize this fact is the cause of much of the criticism leveled 
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against intervals derived from Monte Carlo samples. Anyone who expects these intervals to deliver more 
than they are capable of delivering inevitably will be disappointed. 

It is worth comparing a coverage interval produced following the GUM-S1 prescription with an 
alternative probabilistic interval. Since the coverage probability associated with each slot (little interval 
between successive, ordered sample values) is 0.125, by gluing together the frst seven slots we achieve 
87.5 % coverage. (Note that the very frst slot goes from 0 to the smallest sample value.) This will then be 
the GUM-S1 interval. The interval ranges from 0 to 2.6557 (the largest value in the sample). 
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Fig. 7. Toy example involving a Monte Carlo sample of size K = 7, represented by the open black circles under their 
probability histogram (gray rectangles). The output quantity is assumed to have a Weibull distribution with true mean 
0.9027, indicated by the black, solid diamond. The skewed (black) curve is the probability density of the posterior 
distribution of the Weibull mean given the sample of size 7 drawn from it. The dark blue horizontal line segments are 
87.5 % probability intervals: one is the GUM (Student’s t) interval; the other is a credible interval. The solid blue 
diamonds indicate the corresponding estimates of the Weibull mean. The dark orange line segments are 87.5 % 
probability intervals for a single, “future” drawing of the output quantity: one is a predictive interval, the other is an 
interval built according to the GUM-S1. The latter is the union of seven slots each of probability 1/(K + 1) = 1/8, 
therefore with coverage probability 7/8 = 87.5%. 

Figure 7 shows a probability histogram of the K = 7 values we sampled from the probability distribution 
of the output quantity. It also shows an estimate of the posterior probability density of µ derived from this 
sample, and four probability intervals that one might have hoped would capture the true mean, and that, in 
this case, actually do. The interval labeled GUM is not appropriate here because it assumes that the output 
quantity has a Gaussian distribution while we know that the output quantity has a Weibull distribution. 

In this example, which is more typical of the application of the Monte Carlo method than the example 
used in Sec. 3, the GUM-S1 interval is nothing like either the conventional GUM interval or the credible 
interval. The reason is that both these intervals deliberately target the mean of the distribution of y for 
coverage, while the GUM-S1 interval does all that it can do, which is to capture a specifed portion of the 
unit of probability of the distribution of the output quantity. 
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These facts support the suggestion made near the end of Sec. 3, to the effect that the GUM-S1 interval 
has a hybrid character, combining parametric and non-parametric traits: (1) the parametric trait involves 
making draws from a probability distribution determined by the distributions of the inputs, which in most 
cases are parametric distributions like the Gaussian, rectangular, triangular, etc.; (2) the non-parametric trait 
is the way in which the interval is built, by selecting percentiles of the Monte Carlo sample for its endpoints, 
which is tantamount to gluing together equal-probability slots between consecutive order statistics. 

At this juncture we are ready to explain why the non-parametric prediction interval depicted in Fig. 5, 
labeled NP∗ (orange), has the peculiar probability of 0.8824, which happens to be 15/17, instead of the 0.95 
that was requested when function predIntNpar was invoked. The reason is that the interval results from 
gluing the 15 slots together that lie between the smallest and largest value of the sample, each of which has 
probability 1/17 of containing the “next” draw from the distribution of y. 

No probabilistic interval is assured to cover any particular characteristic of the probability distribution of 
the output quantity, be it the mean, the median, or any other. However, intervals like the GUM’s, as well as 
credible intervals, target specifc characteristics by design (in the foregoing example both target the mean of 
the distribution of the output quantity), and will achieve their nominal coverage provided all the assumptions 
that validate them are satisfed. 

Not so with the GUM-S1 intervals, for the simple reason that their target is elusive: it is the “next” 
drawing, any value that shall be drawn at random from the probability distribution of the output quantity. 
The coverage the GUM-S1 intervals achieve, by construction, is of a proportion of the unit of probability of 
the distribution of the output quantity, not of any particular characteristic of this distribution. Appendix B 
describes an extreme example that exposes the fckleness of the GUM-S1 intervals. 

This section sought to clarify the true nature of the GUM-S1 intervals, attempted to explain the 
information they provide reliably, and dispelled misplaced hopes that have motivated complaints against 
their performance. In particular, complaints were addressed that relate to these intervals not achieving their 
nominal coverage when effective coverage is gauged in terms of their covering specifc targets like the mean 
or the median of the probability distribution of the output quantity. 

5. Summary and Recommendations

We have reviewed and compared a wide variety of probabilistic intervals with coverage intervals as
defned and illustrated in the GUM. The formal construction of coverage intervals in the GUM is the same 
as the construction of classical confdence intervals, even if the interpretation that the GUM gives of them is 
more akin to the meaning of Bayesian credible intervals, or of tolerance intervals, as these are defned and 
used in the practice of statistics. 

We have focused in particular on intervals based on samples drawn from the probability distribution of 
the measurand by application of the Monte Carlo method of the GUM-S1. In some cases, the actual 
coverage of particular characteristics of the distribution of the output quantity, like the mean, that these 
intervals achieve is strikingly different from their nominal coverage probability. 

We explain this discrepancy by showing that, in general, the GUM-S1 intervals aim to cover a specifed 
proportion of the distribution of the output quantity, and so they are rather different from confdence 
intervals for a particular parameter of the distribution of this quantity. In some particular cases, for example 
when the focus is on the average of a Gaussian sample, the GUM-S1 intervals achieve nominal coverage 
because sampling is from the distribution of the average. 

The GUM-S1 intervals aim to capture a “typical” value of the output quantity, with specifed probability, 
not necessarily to capture the mean, or the median, or any other similar attribute of the distribution of this 
quantity. Realizing this fact should help tune expectations about what these GUM-S1 intervals actually can 
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deliver in practice. 

6. Appendix A: Probabilities for Slots Between Order Statistics

In Sec. 4 we provided a surprising answer to a question about the probability with which a “future”
observation will land in a particular slot between consecutive order statistics. Here we explain how to verify 
this answer empirically, and justify it rigorously. 

First, select a large integer N and choose a value for K, which may be the same as we chose above, 
K = 7, or any other. Set the counters C1, . . . ,CK+1 all equal to 0 at the outset. Then repeat the following 
steps for n = 1, . . . ,N: 

(a) Draw a sample of size K from the probability distribution of the output quantity;

(b) Compute the order statistics of this sample, which partition the range of y into K + 1 slots;

(c) Make the “next” drawing, yK+1, from the probability distribution of the output quantity;

(d) Determine the slot where yK+1 landed. If it was slot j, then increase the corresponding counter by 1:
that is, replace Cj with Cj + 1.

Each counter Cj has a binomial distribution based on N trials, and one can then perform a statistical test of 
whether the corresponding probability of “success” is 1/(K + 1) — and it will be. Next, we will explain 
why. 

Let G denote y’s cumulative distribution function. That is, G(s) is the probability that y 6 s for any 
possible value s that y can take. Let r1,r2, . . . ,rK denote independent random variables with rectangular (that 
is, uniform) distributions concentrated on the interval (0,1). 

In these circumstances, G−1(r(1)), G−1(r(2)), . . . , G−1(r(K)) have the same joint distribution as y(1), y(2), 
. . . , y(K), where G−1 is the mathematical inverse (not the arithmetic reciprocal) of G. Note that 
r(1) 6 r(2) 6 · · · 6 r(K) are the order statistics corresponding to the {ri}. 

The probability of y being in the interval (y(k−1),y(k)) is oR 1 
nR r(k) � � 

πk = G(G−1(r(k))) − G(G−1(r(k−1))) p(r(k),r(k−1))dr(k−1) dr(k),0 0 

where p(r(k),r(k−1)) is the joint probability density of (r(k),r(k−1)). Since the (unordered) {rk} follow a 
standard uniform distribution, πk reduces to �Z �Z 1K! r(k) 1k−2(r(k) − r(k−1))r (1− r(k))

K−kdr(k−1) dr(k) = .(k−1)(k − 2)!(K − k)! 0 0 K + 1 

7. Appendix B: Nemesis

Here we present an example that illustrates, in an artifcial but particularly cogent way, how a coverage
interval built according to the GUM-S1 may have zero effective coverage frequency for the mean of a 
distribution, regardless of how high the specifed coverage probability may be. Think of it as a game that the 
metrologist plays against the Greek goddess Nemesis (who exacts retribution against pride and arrogance), 
involving a measurand whose true value is positive. 

The metrologist seeks an interval of the form (A,B) that, with specifed probability 0 < γ < 1, will 
include the true mean of a probability distribution for the measurand, and the metrologist has resolved to 
employ the Monte Carlo method of the GUM-S1 to build it, by setting A and B equal to the 100(1 − γ)/2 
and 100(1+ γ)/2 percentiles of the Monte Carlo sample. 
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Learning of this desire, and being told the confdence level γ the metrologist requires, Nemesis then 
produces a probability distribution that the metrologist can sample at will, using the Monte Carlo method, to 
determine A and B. Much to the metrologist’s chagrin, no matter what value the metrologist will have 
chosen for γ , and regardless of how large a sample the Monte Carlo method will draw from the distribution 
that Nemesis concocted, the interval (A,B) never includes the mean the metrologist seeks to bracket. 

The Nemesis probability distribution, depicted in Fig. 8 for one particular case, assigns probabilities 
π1 = 1/ν , π2 = 1 − 1/ν − 1/ν3, and π3 = 1/ν3 to ξ1 = 1/ν2, ξ2 = 1/ν , and ξ3 = ν3, respectively, where ν
is the smallest positive integer such that π1 + π2 > (1 + γ)/2 and µν > F−1((1+ γ)/2), with F−1 denotingν 

the quantile function (mathematical inverse of the cumulative distribution function) of the Nemesis 
distribution, whose mean is µν = 1 +(ν2 + 1)(ν − 1)/ν4. 

1 3

1 − 1 3 − 1 33

1 33

0.1 0.5 1 5 20 30

Fig. 8. The Nemesis probability distribution for 75 % coverage has ν = 3. The values to which it assigns positive 
probability, 1/32, 1/3, and 33, are located where the vertical, solid (blue) bars stand, and the heights of these bars 
represent the probabilities assigned to those values. The solid (red) dot indicates the mean of the distribution. Note that 
the horizontal axis has a logarithmic scale. Since 1/3 + 1 − 1/3 − 1/33 = 26/27 is suffciently greater than 75 %, the 
upper endpoint of the interval will always be the middlemost point, which lies to the left of the mean. 

However, it is possible to choose a prior distribution for µν that, together with the likelihood function 
corresponding to the Nemesis distribution, produces credible intervals whose actual, frequentist coverage of 
the true value of µν is approximately equal to the nominal confdence γ . 

This is yet another illustration of the fact, already pointed out in the foregoing, that while the GUM-S1 
interval is blind to the whereabouts of µν , the credible interval derived from the posterior distribution of µν

does have the true value of µν as its target, and does “catch” it under repeated sampling with frequency close 
to the nominal coverage probability. 

Assign a Dirichlet prior distribution to (π1,π2,π3), with parameters (1,1,1), which renders (π1,π2,π3) 
uniformly distributed inside the two-dimensional simplex [42, Chapter 49]. This induces a prior distribution 
for µν = ξ1π1 + ξ2π2 + ξ3π3 (whose density is depicted in the rightmost panel of Fig. 9). 
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Fig. 9. Sample of size 1000 drawn from the Dirichlet(1,1, 1) prior distribution for (π1,π2, π3) (three leftmost panels), 
and corresponding prior density for µν (rightmost panel). The red diamond indicates the prior mean of µν . 

If n denotes the size of a sample drawn from the Nemesis distribution, and N1, N2, and N3 are the 
numbers of observations in this sample that are equal to ξ1, ξ2, and ξ3, respectively, then (N1,N2, N3) has a 
multinomial distribution, whose conjugate distribution is the Dirichlet distribution [43, Appendix A]. 

R function MCmultinomdirichlet, which is defned in package MCMCpack [44], may then be used to 
sample the corresponding posterior distribution of (π1, π2,π3), from which a sample from the posterior 
distribution of µν can be computed, and a credible interval for µν found that has the specifed coverage 
probability, γ . 

Provided the sample size, n, is suffciently large (say, n = 53 when ν = 3) so that all three values in the 
support of the Nemesis distribution are expected to occur at least once in the sample, such credible intervals, 
under repeated sampling (from the Nemesis distribution), cover the true value of µν with frequency close to 
the nominal coverage probability γ . 
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ISO, IUPAC, IUPAP and OIML, JCGM 100:2008, GUM 1995 with minor corrections Available at 
www.bipm.org/en/publications/guides/gum.html. 

[4] Possolo A, Iyer HK (2017) Concepts and tools for the evaluation of measurement uncertainty. Review of Scientifc Instruments 
88(1):011301. https://doi.org/10.1063/1.4974274 

[5] Atkins P, de Paula J, Keeler J (2018) Physical Chemistry (Oxford University Press, Oxford, UK), 11th Ed. 
[6] Joint Committee for Guides in Metrology (2008) Evaluation of measurement data — Supplement 1 to the “Guide to the 

expression of uncertainty in measurement” — Propagation of distributions using a Monte Carlo method (International Bureau of 
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