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1. Executive Summary

The underlying properties of complex natural, engineered, and social systems are often revealed by
representing them as an interconnected network of nodes. Each node (sometimes referred to as an agent)
interacts directly only with other nodes to which it has a direct connection in the network. The study of the
resulting dynamics give insight into the collective behavior of the system as a whole. A problem of major
interest in network science is the identification of a subgroup of nodes whose interactions with neighbors
will cause information to spread most efficiently throughout the network. This problem has many
applications, from identification of computers through whom viruses will most quickly spread throughout a
communication network to understanding of the social hierarchies in groups of animals.

In this paper we discuss a simplified model of node interaction that is used in the study of both computer
network control as well as the spread of innovation in social networks. We present a set of heuristic
algorithms that identify effective influencers, i.e., nodes whose interactions produce the most rapid approach
to consensus. These algorithms are tailored for use in large real-world networks with so-called heavy-tailed
degree distributions. The execution speed suggests that our approach could be used to investigate networks
with more complex node interactions.

2. Introduction

The identification of nodes in a network that enable the fastest spread of information is an important, if
not fundamental, problem in network control and design. It is applicable to the optimal placement of
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sensors, the design of secure networks and the problem of control when network resources are limited. Our
approach to this problem has its origins in the widely studied consensus models ([1] and references cited
there) and the related models of opinion dynamics and spread of social innovation [2–5]. In these models
each individual node exchanges information with its neighbors and consensus is reached when all nodes
have the same information values. In a modification of the consensus model that highlights the dynamics of
influence, a pre-selected set of nodes guides the evolution of the system to a consensus value that depends
on the values of the set. The effectiveness of these nodes, called leaders or influencers depending on the
application, can be measured by the speed at which consensus is reached. Given a fixed cardinality, we call a
vertex set that maximizes the speed over all sets with the same cardinality, an effective influencer set.

In related work, the mechanisms of social contagion in networks such as epidemics [6, 7] or rumors
have also been the subject of intense research and progress [7]. As in the study of consensus models, the
focus of attention has been on identifying the topological characteristics of nodes that are so-called
superspreaders using measures such as degree, k-core and non-backing centrality of a node. Despite this
effort, the identification of subsets rather than individual spreaders remains a challenge. In this paper we
consider a dramatically simpler model to be able to address this problem. The heuristic approaches
discussed here are potentially relevant to such models of spread.

The consensus process is defined here in terms of a random walk process on the nodes of a network
graph. At each time step information exchange occurs because a random walker situated at a node takes a
step to a neighboring node as in the standard consensus model [8]. In this work, the effectiveness of a subset
of nodes is measured by the maximum expected time it takes a random walker to reach the set for the first
time (first hitting time) [9]. Thus, the subset of most effective influencers among all sets of some given
cardinality minimizes this quantity. This is the same criteria of effectiveness as our original definition. The
reason is that the rate of convergence to consensus for any fixed set is in fact also determined by the first
hitting time to the set. The eigenvalue of the relevant matrix and the first hitting time are related. Thus the
most effective influencer among all sets of some constrained cardinality minimizes this quantity. We pose an
optimization problem for minimizing an equivalent quantity and then we will present an approximate
solution that is suitable for graphs from real-world applications.

The paper is organized as follows: Section 3 discusses the notation and concepts for network graphs and
random walks needed to describe the communication model and the Monte Carlo-based method for solving
the optimization problem. Section 4 discusses the relationship between the rate of convergence to consensus
and the expected first arrival time of a random walker associated with the averaging matrix. We then present
the optimization problem for finding the subset of target nodes that minimizes the first hitting or arrival
times. Our principal contribution, appearing in Sec. 5, is an algorithm for approximating the solution that is
suitable for large scale networks. Validating the results of the algorithm and its heuristic modifications is
quite challenging. Section 6 addresses the adequacy of the Monte Carlo approximation of the first arrival
time and suggests a method for evaluating the results of the algorithm based on the use of Chebyshev’s
inequality ([10, 11] for recent applications). Examples showing implementation of the algorithm and
characteristics of the graphs where it is most effective can be found in Sec. 7. We conclude with a discussion
of directions for future work in Sec. 8.

3. Notation

Our paper concerns random walks on a graph, for which we use the following notation and concepts. An
exposition of Markov chain theory can be found in [12], while random walks on graphs are discussed in
[13, 14]. A graph is denoted by G = (V,E ), with V representing the sets of nodes and E representing its
edges. An individual node is indicated by small roman letters, e.g., i, j. The edges of the graph are assumed
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to be undirected and the graph itself connected. A subset of nodes A⊆V , has a complementary set
Ac .

=V \A. For definitions we use the notation A .
= B to denote ‘A defined as B’.

3.1 Random Walks

The position at any time of a random walker traversing the nodes of a graph in discrete time steps can be
described by a random process known as a Markov chain. Here the states of the Markov chain are nodes of
the graph and the state at any time is the node the random walk occupies at that time. Given an initial
probability distribution on the nodes, the distribution after a single time step can be found in terms of the
transition probability matrix P. Let p be the column vector of size |V |, for which the ith component pi is the
probability that the Markov chain is in state i. In other words, a random walker is situated at node i at a
given time step. The position at the next step is described by the probability distribution pT P. The (i, j) th
entry of P, P(i, j) is the conditional probability that the random walker steps to j given that the walker was
at i in the previous time step. Notions of conditional expectation are also used. The notation for the expected
or mean value of a random variable X is E[X ], while the expected value X given the random walker is
initially at node i is Ei[X ]. More generally if the initial position of the walker is defined by a probability
distribution µ , then the expected value of X given µ is Eµ [X ]. When the Markov chain is irreducible and
aperiodic, the distribution of possible positions of the random walker after a long time is described by the
so-called stationary distribution, denoted by the row vector πT . In addition we will assume the Markov
chain is reversible so that π(i)P(i, j)=π( j)P( j, i). The most common example of such a process is the
simple uniform random walk for which the transition probabilities are

P(i, j) =

{
1

deg(i) , if j ∼ i;
0 otherwise.

(1)

A node j is adjacent to i if and only if (i, j) or ( j, i) ∈ E Here the relation node j is adjacent to i is indicated
by j ∼ i and deg(i) is the total number of nodes adjacent to i. The results described here can apply to any
walk on a directed graph described by a reversible Markov chain by allowing weighted edges, i.e., a
non-symmetric adjacency matrix. In this case the corresponding transition probability would measure the
weighted strength of a node rather than its degree. Although this random walk is not aperiodic the so-called
lazy random walk is aperiodic. The transition matrix of the lazy random walk is (I +P)/2, where I is the
identity matrix. The mean first hitting time to sets is double that of the original random walk, so with this
modification any result that requires the Markov chain to be aperiodic can apply to the periodic chain.

In Sec. 4 we will discuss the random variable that describes the first time a random walker visits a subset
A, i.e., the first hitting time of A, TA

.
= min{t ≥ 0 : Xt ∈ A} , where Xt is the position of the walker at time t.

We will also use the notation T i
A, the first hitting time of A, given the random walk began at node i. The

mean or expected value of T i
A is written as E[T i

A] and because of this, the value is independent of the history
of the walk before it was at i, E[T i

A] = Ei[TA]. The dynamics of the random walk before time TA are
described by the submatrix of P obtained by crossing out the rows and columns of P corresponding to the
nodes of A. We denote this matrix by PA. The formal setting for the random walk is the triple (Ω,B,P)
where Ω, the sample space of the Markov chain, is the set of nodes V , B is the corresponding class of events
or sets of outcomes associated with random walk paths and P is a probability measure on random walk paths
induced by the transition probability. Since the algorithm we present in Sec. 4 involves a Monte Carlo
sample approximation we take the time to present the notation used to describe this approximation.

In this work the mean value of the random variable T i
A is approximated by the average of M observations

of its values during M independent random walk trials. Since the outcome of any of these observations is
random, they will be indexed by an element ω̂ j of the random path sample space. The subscript j = 1, . . . ,M
indexes the jth trial. The M trials are conducted so that the corresponding random variables {T i

A(ω̂ j} j=1,...M}
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are independent with the distribution identical to T i
A for every subset A⊆V and every node i. The Monte

Carlo approximation of E[T i
A] for a given i ∈V , with large enough M and subset A, is expressed as

E[T i
A]≈

1
M

M

∑
j=1

T i
A(ω̂ j). (2)

Since E[T i
A] = E[T i

A(ω̂ j)], the well-known strong law of large numbers [10] states that with probability
one, the sum on the right hand side of (2) converges in the limit as M→ ∞ to the expected value on the left
hand side. Thus for large enough M, the approximation is justified. To clarify the setting for the strong law
of large numbers, assume T i

A(ω̂ j) is calculated for all subsets A and for every i ∈V , with |A| ≤ k in parallel
in a single random trial (T i

A = 0 when i ∈ A). Then, ω̂ j ∈W, where W is defined as P2k
and P = Ω∞ is the

sample space for Markov chain paths. The probability in the strong law of large numbers refers to the
probability measure on W. We will also refer to an individual ω̂ j as a realization.

3.2 Set and Graph Metrics

The distance between two vertices a,b ∈V is denoted d(a,b). N[a] denotes the closed neighborhood of
vertex a, given as N[a] .= {b ∈V |d(a,b)≤ 1}. (Since we are focusing on unweighted graphs, adjacent
nodes are a unit distance apart.) The pth level neighborhood (i.e., the vertices at most distance p away) is
given as N p[a] .

= {b ∈V |d(a,b)≤ p}. These definitions are extended to arbitrary subsets A⊆V as
d(A,b) .

= mina∈A d(a,b) and N p[A] .= ∪a∈AN p[a].
If S is a set, then S|k is the collection of all subsets of S of size k, S|k

.
= {A⊆ S, |A|= k}. If f is a

function that maps domain D to range R, f : D→ R, then it can be applied to any subset of D to generate a
set of values. That is, for S⊆ D, f (S) .

= { f (x),x ∈ S}. For a finite set, maxx∈S f (x) returns the maximum
value of f over domain S, and

argmax
x∈S

f (x) .
= {s ∈ S, f (s) = max f (S)} (3)

denotes the elements of S where the maxima of f occur. This notion can be extended to the top largest k
values of f ,

argmax(k)
x∈S

f (x) .
= {T ⊆ S, |T |= k, ∀x ∈ T,∀s ∈ S\T, f (x)≥ f (s)} (4)

which returns all possible sets ofthe top largest k values. A similar definition can be described for argmin
and argmin(k). Note that max f is a single value, while argmax f is a set of values, and argmax(k) f is a set
of sets of values. Since any x ∈ argmax f is a maximum of f , one can write x← argmax f to select one of its
elements. Similarly, x← argmax(k) f selects a unique group of top-k performers.

To reduce the search for optimal sets, a set function is used as a screen, to eliminate candidate sets that
are too isolated from their complements. The set function C : 2V →R, called the farness metric measures
how well any subset of V covers the graph by taking the sum of the distances between the set and points
outside of the set. Thus given a subset A⊆V ,

C(A) .
= ∑

v∈A\V
d(A,v), d(A,v) = min

x∈A
d(x,v) (5)

Smaller values of C(A) indicate more desirable coverage properties of A. It is not hard to show that
C(A)/(|V |− |A|)≥ 1 with equality when A is a one dominant set, i.e., every element of Ac has a neighbor in
A. If A is abtc dominant set, i.e., if every vertex v is within btc steps of A, then C(A)/(|V |− |A|)≤ t.
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4. Problem Setting

To motivate the optimization problem for which the solution will define an effective influencer, we will
discuss the link between the time to consensus in a network containing a set A of leader (stubborn) agents
that refuse to form consensus, and the mean first hitting time (or arrival time) to A of a random walk on the
underlying graph.

The information state of a network at a discrete time n, where n = 0,1, . . ., is represented by a vector
Un ∈ RN in which the ith component is a real number ui

n that represents the information state of node i at
time n. The dynamics of the consensus process in the network for n≥ 1 are given by

ui
n =

{
c≥ 0, if i ∈ A
∑ j∼i, j/∈A P(i, j)u j

n−1 + c∑ j∼i, j∈A P(i, j) i /∈ A
(6)

The initial value U0 at time n = 0 is,

ui
0 =

{
c if i ∈ A
0 if i /∈ A

(7)

Although these values are assigned for convenience there is no loss of generality in doing so because the
equations are linear.

Equation (6) states that the information value at node i changes to the information value at node j if a
random walker steps from i to j in a single time step. In particular, if j ∈ A, the value at i changes to c and is
unchanged thereafter. Thus ui

n is the expected information value at i at time n after a single random walk
step. From now on, assume that the nodes are ordered so that the elements of A appear first followed by
nodes in Ac.The matrix P can be written as:

P =

(
I O

RA PA

)
(8)

The matrix I is the |A|× |A| identity matrix, and O is an |A|×N−|A| matrix of zeroes. The matrices RA and
PA have dimensions N−|A|× |A| and N−|A|×N−|A|, respectively. Equation 8 then suggests that if,

Un =

(
c1
xn

)
(9)

then xn satisfies the equation,
xn+1 = PAxn + cRA1, x0 = 0 (10)

Here PA(i, j) = P(i, j) when i, j ∈ Ac, and RA(i, j) = P(i, j), when i ∈ Ac and j ∈ A. Since the transition
matrix P (see Sec. 3) is stochastic, RA = I−PA. Here I is the N−|A|×N−|A| identity matrix. From
Eq. (10), it is then clear that x1 = cRA1 = c(I−PA)1, and it is not hard to establish by mathematical
induction that

xn = c(I−Pn
A)1 (11)

so that the substochastic property of PA implies that xn→ x∗ as n→ ∞, with x∗ = c1. In this sense, the
information value common to nodes at A spreads to the rest of the network.

We can define the rate of convergence to consensus to be the rate of convergence of the l1 difference
||x∗− xn||1 to 0. The following equation shows that the rate is controlled by the tail of the distribution of the
first hitting time to A.

||x∗− xn||1 = P[TA > n] (12)
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The proof of Eq. (12) can be found in the Appendix. It uses standard results in the theory of absorbing
Markov chains. For finite irreducible Markov chains, it is known that the right-hand side decays
exponentially in n. For an arbitrary initial distribution µ on states of the chain one can show ([15] Chapter 3
and [13] Chapter 2) that

Pµ [TA > n]≤ exp

(
−

⌊
n
det∗Ae

⌋)
(13)

where t∗A = maxi∈V Ei[TA]. Now note that,

max
i∈V

Ei[TA]≤ F(A) = ∑
i∈V

Ei[TA]≤ (N−|A|)max
i∈V

Ei[TA] (14)

For fixed cardinality |A|, the inequality in Eq. (14) shows that

F(A) = ∑
i∈V

Ei[TA] (15)

lies within the same bounds as the actual rate of convergence to consensus. Thus our strategy for finding the
set that maximizes the rate of convergence to consensus and therefore finding an effective influencer is to
seek the set A that is a solution to the following optimization problem:

min
A⊆V
|A|=k

F(A) (16)

In earlier work [16], a method of solving or approximating the solution of Eq. (16) used the fact that
F(A) can be computed by inverting the matrix PA. Although the method is effective for graphs of smaller
size up to hundreds of nodes, the number of inversions required make it impractical to use for the graphs we
consider in this paper.

5. Multi-stage Approximation Algorithms

The outline of two scalable procedures for solving Eq. (16) is presented below. Since F(A) is a discrete
function, an exact solution to this minimization problem would require

( |V |
k

)
evaluations. For realistic

problem sizes, this is computationally infeasible. For example, to find the best k = 100 influencers in a
million node network would require the examination of

(1,000,000
100

)
≈ 10442 different subsets as possible

solutions. For this reason we present multi-stage heuristics to solve this problem. They reduce the search
space of possible solutions by focusing on candidate sets constructed with vertices of large degree (hubs).
The idea here is that the hubs can act as attractors for hitting sites of random walks.

A Monte Carlo approximation of F is calculated for each such set and minimization over the starter
class produces an offered approximation to the exact solution. Thus, given a network graph G = (V,E) and
an integer k, we approximate the k-element optimal influencer set (target set) with the smallest aggregate
arrival time as follows:

1. From an initial set of h top hubs, b target sets of cardinality k with the largest aggregate
p-neighborhood size are selected.

2. The farness value C(A) of each target set A is computed and is used to refine the class of sets produced
in the previous step. Thus the function C is used as a conservative screen to reduce the number of
feasible sets that must be examined for computing F(A).
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3. The sets are ranked by their respective C values with the top Q target sets having the smallest value of
C.

4. A finite sample approximation of F based on M random walk simulations, FM , is obtained for these
sets. A preliminary ranking of these sets is based on choosing sets with the smallest calculated value.

5. A new ranking based on a finite sample approximation of FM for larger M is produced from the best
sets in the previous step

6. The set Â with the smallest value FM(Â) is offered as the approximate solution of the minimization
problem in Eq. (16).

Remark: Since for any set A, C(A)≤ F(A), C is called a conservative screen.

The number of hubs, h, to consider is the first step in limiting the search space. In practice, h is a small
multiple of k and hence much smaller than |V |. Thus, we reduce a

( |V |
k

)
search into one of size

(h
k

)
. The

evaluation of neighborhoods can be either first generation (i.e., friends) when p = 1 or second generation
(i.e., friends and friends of friends) when p = 2 or higher. Typically we use a p = 1 level neighborhood N[A]
for large networks, although for small networks (|V |< 100) a p = 2 level neighborhood N2[A] calculation
can sometimes yield improved results.

Furthermore, two variations of this algorithm are considered, one for small values of k for which it is
practical to evaluate all

(h
k

)
k-element subsets, and a second semi-greedy algorithm that computes a solution

incrementally. The first version of the algorithm, for small k, requires six parameters

• k the number of elements in target sets to find;

• h the number of top hubs to analyze as candidate vertices;

• p the pth-level neighborhood to consider for maximal aggregate coverage;

• b the number of top k-element subsets with which to compute farness metric;

• q the number of top farness-metric subsets over which to compute random walks; and

• M the number of trials to use when computing the Monte Carlo random walks

The parameter h controls the depth of the search and serves as a rough measure of quality versus time
trade-off for the heuristic. With smaller values of h, the algorithm is faster, while maximizing h to be the
number of vertices in the graph ensures we perform a complete exhaustive search on all

( |V |
k

)
possible target

sets. In practice, h is often a small multiple of k, p = 1, q≤ b, and an approximation for M can be
determined with the analysis in the next section. In the networks presented in Sec. 7, for example, h is
roughly 8 to 10 times the value of k, and b = q = 5.

For large values of k, the second version of the algorithm uses a greedy method to construct A. Rather
than examine all

(h
k

)
possible subsets, we begin with a construction set A′ containing the two-element set

with largest N p[A′] and continually add hubs from the candidate list thatoffer the largest neighborhood
growth to A′. (The motivation for starting with a two-element set is to avoid local minima, which are
potentially created by always starting with the largest hub.) The algorithm terminates with Â = A′ when
|A′|= k, and reports the farness metric C(Â), together with approximation FM(Â). The algorithms are
formally described in Figs. 1 and 2, using notations described in Eq. 3 and Eq. 4 in Sec. 3.2.

To summarize, the algorithms differ only in the first two sections (lines 1-4 in Fig. 1, and lines 1-10 in
Fig. 2). The combinatorial algorithm examines

(h
k

)
candidate sets, while the semi-greedy version examines

roughly
(h

2

)
+hk candidate sets.
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Data: Graph G=(V,E), k, h, p, b, q, M

Result: Near-optimal target set Â

1 compute h top-hubs;
2 H← argmax(h)v∈V degree(v) ;

3 find top b top-hub sets of size k with maximal p-neighborhoods;
4 B← argmax(b)S∈h|k N p(S) ;

5 from B, find q target sets with lowest farness metric;
6 Q← argmin(q)S∈B C(S) ;

7 find a target set with lowest arrival time;
8 Â← argminS∈Q FM(S) ;

Fig. 1. Combinatorial algorithm for evaluation of top-hubs.

6. Stochastic Analysis

To understand what a finite sample approximation of F is, recall from Sec. 3 that for any subset A we
have a finite sample approximation of E[T i

A] for i ∈ Ac, from Eq. (2) Therefore we can define a finite sample
approximation for F as:

FM(ω,A) := ∑
i∈Ac

1
M

M

∑
j=1

T i
A(ω̂ j) (17)

where ω = (ω̂1, . . . , ω̂ j, . . . ω̂M) ∈WM . Note that Eq. (17) implies that E[FM(ω,A)] = F(A). For a fixed ω

(i.e., a realization of the random variable), FM(ω,A) is a non-random real number for each set A. We can
therefore pose the finite sample analogue of the optimization problem Eq. (16) as

min
A⊆V
|A|=k

FM(ω,A) (18)

The problem in Eq. (18) is a Monte Carlo approximation of the original discrete optimization problem and
its solution is a sample average approximation of the solution of (16). The algorithms outlined in Fig. 1 and
Fig. 2 produce approximate solutions of Eq. (18).

To determine the effectiveness of the algorithms, we address two questions

1. Given any set A, how accurately does FM(ω,A) approximate F(A)?

2. Let Â be an offered solution of Eq. (16) obtained by the algorithm. How can its quality be assessed?

There is a body of research devoted to a discussion of methods of solution and relevant convergence theory
for this class of problem for both continuous and discrete optimization problems. References can be found
in the survey by Homem-de Mello and Bayraksan [17]. Kleywegt et al. [18] discussed the convergence of
the approximation in the context of discrete optimization problems. Recently, Lee, Hasenbein and
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Data: Graph G=(V,E), k, h, p, b, q, M

Result: Near-optimal target set Â

1 compute h top-hubs ;
2 H← argmax(h)v∈V degree(v) ;

3 build target set incrementally from hub sets with largest p-neighborhoods;
4 start with best b two-element target sets to avoid local minima;
5 B = {B1,B2, . . .Bb}← argmax(b)S∈H|2 Np(S);
6 for i = 3 to b do
7 for j=1 to k do
8 Bi← argmaxv∈H−Bi

Np(Bi∪{v});
9 end

10 end

11 from B, find q target sets with lowest farness metric;
12 Q← argmin(q)S∈B C(S) ;

13 find target set with lowest arrival time;
14 Â← argminS∈Q FM(S)

Fig. 2. Semi-greedy algorithm for evaluation of top-hubs.

Morton [19] applied the methods of [17] and of Mak et al. [20] to a class of discrete problems arising from
the optimal detection of a virus spreading in a contact network.

For us, the first question can be handled by standard statistical methods. Indeed, since our estimate of F
can be written as a sum of identically distributed random variables, as in Eq. (17), a statistical comparison
with the sample mean ofFM and F can be obtained using normal distribution theory.

In the next section we quote the result of Klewegt et al. [18] to show the convergence of good
approximations to the solution of the problem in Eq. (18) to good approximations of the problem in Eq. (16)
as M→∞, a consequence of the strong law of large numbers. In our situation a “good” approximation of the
problem Eq. (18) is a set A for which finite the sample approximation value FM (ω,A ) is close to the
minimum value of F (ω, ·) in some pre-specified sense. We can judge a set A to be a good solution of the
problem in Eq. (16) in an analogous way. In the stochastic optimization literature the mathematical
definition of good is based on the concept of ε-optimality. We will briefly mention this concept later in our
discussion. Consequently, if it can be demonstrated that our offered solution is an ε-optimal solution of the
problem in Eq. (18), then using Kleywegt’s result, we can establish that it is an ε-optimal solution of
Eq. (16), the original problem.

A standard method for assessing the quality of the approximation, and therefore answering question 2, is
to estimate the so-called optimality gap [21]. Unfortunately, this method requires highly accurate knowledge
of the minimum value in Eq. (18) or reasonable confidence intervals for that value. For large realistic graphs
the amount of calculation needed to obtain this information makes this approach impossible. Even
boot-strapping or other sub-sampling techniques that depend on the ability to evaluate or approximate
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adequate samples of F are ruled out.
Rather than centering our efforts on obtaining a provably good approximate solution of the problem in

Eq. (16), we observe that the repeated ranking of sets in the algorithms can be interpreted as methods of
calculating elements inthe lower tail of the distribution of values of F(A) over all subsets A of fixed
cardinality. Given a small positive η suppose c is defined by the relation Prob[F(A)≤ c] = η . Here “Prob”
refers to the probability distribution generated by the histogram of values of F(A) for |A|= K. The
minimum value of F is of course located in the lower tail. We will arrange the value of c so that the offered
solution and the actual optimal value are both in the interval [min|A|=k F(A),c] (see the Appendix). If a
subset A is just selected at random it will have a larger value of F and thus be a worse performer with
probability 1−η . In other words with high probability, our offered solution of Eq. (16) has an upper bound
of c and ranks in the 100× (1−η)th percentile of sets as ranked by effectiveness of spread. This gives some
precision to the conclusion of the heuristic calculations described in the next section.

Our proposed first step toward answering question 2 then is to provide an estimate and confidence
interval for c. We cannot guarantee that c is arbitrarily close to the minimum of F , but given η , we can
reliably estimate the corresponding c in a statistical sense. The examples in Sec. 6 show that the
semi-greedy algorithm produces a set of high quality target sets (K = 10), from large graphs in a matter of
milliseconds. It is therefore feasible to generate many independent samples from the left tail of the
distribution of {F(A)}|A|=K . A value of η can be selected. If an estimate of c is calculated from these
samples, Chebyshev’s inequality can be used to estimate the probability that the estimate is accurate. A full
development of this idea will be the subject of future work, but some details can be found in the Appendix.
Variants of this approach are standard in the design of randomized algorithms [22], but see also Ref. [11] for
application to bootstrap-type methods.

6.1 Convergence Results

Setting H(ω̂ j,A) = ∑i∈Ac T i
A(ω̂ j), we rewrite Eq. (17) as

FM(ω,A) =
1
M

M

∑
j=1

H(ω̂ j,A) (19)

then one can see that FM(ω,A) is a sum of M independent and identically distributed (i.i.d.) random
variables, {H(ω̂ j,A)} j=1...M , with E[H(ω̂ j,A)] = F(A). Therefore, the sum will converge to F(A) with
probability one as M→ ∞ by the strong law of large numbers. Moreover [18], if we set

v∗ = min
|A|≤k

F(A)

vM(ω) = min
|A|≤k

FM(ω,A) (20)

then vM(ω)→ v∗ with probability 1 as M→ ∞, as a consequence of the finiteness of the class of feasible
sets ([18], Proposition 2.1). The ε-optimal sets for Eq. (16) and Eq. (18) are very closely related. In
particular, if ε > 0 is given, a set A is ε-optimal for Eq. 16) if F(A)≤ v∗+ ε . There is an analogous
definition for the ε-optimal set for Eq. (18). Kleywegt et al. showed that for fixed ε and large enough M, if A
is an ε-optimal solution for Eq. (18), then it is an ε-optimal solution of Eq. (16).

A statistical estimate of the accuracy of the deviation of FM from F is based on a routine application of
the central limit theorem. Equation (17) shows that for each i ∈V and A⊆V , the random variable H(ω,A)
in Eq. (19) has a distribution with exponential tails since it is a sum of random variables T i

A with
exponential tails (see Sec. (4) and note that T i

A = 0 when i ∈V ). Thus, all moments of the distribution for H
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exist and the central limit theorem applies. Asymptotically in the limit of large M, we have the following
Monte Carlo estimate as the answer to question 1:

P {FM(ω,A)− stα√
M
≤ F(A)≤FM(ω,A)+

stα√
M
} ≈ 1−α (21)

The variable s is the sample standard deviation

s2 =
(∑M

j=1[H(ω̂ j,A)− H̄]2)

M−1
(22)

where H̄(= FM(ω,A)) is the sample mean of H, and where tα is the value from the t-distribution with
M−1 degrees of freedom required for a confidence interval at level α . The maximum deviation δ from
F(A) defined in Eq. (21) requires a sample size M = ( stα

δ
)2.

7. Examples and Results

In this section we describe how these optimization algorithms for approximating min|A|=k F(A) are used
in practice. We consider examples based on real networks taken from the application areas of biology,
sociology, chemistry, computer science, and information technology. They include examples of animal
interactions, human connections, co-authorships of technical publications, collaboration in music,
protein-protein interactions, and autonomous systems. Table 1 list the networks used in this study. Unless
otherwise noted, we consider their topology as undirected, connected graphs by treating edges as
bidirectional, utilizing only the largest connected component, and removing any multi-edges or self-loops.
Examples were collected from network databases Konect [23], SNAP [24], and UC Irvine [25]. In addition,
several webgraph topologies were generated from examining public web sites.

Finding the best k-element target set A that minimizes F(A) is computationally challenging, and
examining all

(V
k

)
possible subsets is only feasible for small graphs. In evaluating the quality of the

approximations, we take a two-pronged approach:

1. Compare the approximation to the true optimal by exhaustive search for tiny graphs (V < 50) and
small values of k (Sec. 7.2).

2. For larger V and k, compare the approximate solution to the expected value of F(·) by direct
computation (whenever feasible) or by sampling and use of the central limit theorem (Sec. 7.3).

In these network examples, the approximation algorithms (Sec. 5) were implemented with the following
parameters: p = 1, h = 10K, and b = q = 5. This offered a practical compromise between quality of
solution and reasonable computation time.

7.1 Case Study: Caenorhabditis elegans Neural Network

To illustrate these ideas, consider the neural network of the Caenorhabditis elegans (C. elegans)
microscopic roundworm [23]. For this experiment, the topology of its nervous system is represented as an
undirected, unweighted connected graph of 297 vertices and 2,148 edges. It appears about half-way down
the list of example networks listed in Table 1 and is large enough to be interesting but small enough that we
can find optimal target sets by exhaustive search, for small values of k. For k = 3, there are

(297
3

)
or

4,322,340 possible three-element subsets to evaluate F(A). For clarity, we denote Fk() to the set of all
function values for |A|= k, A∗ to be the true optimal, and Â to be the solution offered by the heuristic.
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Table 1. Application network topologies used in this study (largest connected component of undirected versions). The
average degree is 〈d〉 and the maximum degree is ∆.

Network Application |V | |E| 〈d〉 ∆ ∆/〈d〉

Zebra animal contact network 23 105 9.13 14 1.5
Dolphin animal contact network 62 159 5.13 12 2.3
Terrorist network social network 64 243 7.59 29 3.8
High School social network 70 274 7.83 19 2.4

MIT students mobile social network 96 2,539 52.90 92 1.74
Hypertext 2009 social interaction 113 2,196 38.9 98 2.5
Florida ecosystem wet food network 128 2,075 32.42 110 3.4
PDZBase metabolic network 161 209 2.59 21 8.1
Jazz collaboration network 198 2,742 27.79 100 3.6
GE 200 top-level web graph 200 1,202 12,02 124 10.3
Chevron 200 top-level web graph 200 5.450 54.50 189 3.5
Abilene218 computer network 218 226 2.07 10 4.8
Bethesda top-level web graph 255 422 3.31 81 24.5
C. Elegans neural network 297 2,148 14.46 134 9.3
NetScience co-authorhisp 379 914 4.82 34 7.0
Arenas-email communications network 1,133 5,451 9.62 71 7.4
FAAa air traffic infrastructure 1,226 2,408 3.9 34 8. 6
Human protein protein interaction 2,217 6,418 8.94 314 26.5
ca-GrQc co-authorship 4,158 13,422 6.46 81 12.5
ca-HepTh co-autorship 8,638 24,806 5.74 65 11.3
ca-HepPh co-authorship 11, 204 117,619 23.38 491 21.0

aFAA = Federal Aviation Administration.

Figure 3 illustrates the distribution of these values on a logarithmic x-axis. Most values of F3() fall
between 30×103 and 90×103, with a mean (expected vallue) E[F3()] of 38.9×103. Table 2 lists the top 10
target sets, together with their respective F(A) values. The near-optimal approximation Â ranks third among
4,322,340 possible target sets, representing the top 0.0007 %. and within 5 % of the true optimal solution,
A∗. The remaining target sets in the top 10 list are also excellent candidates, representing an almost
eight-fold improvement over the expected value (E[F3(·)]/F(A∗) = 7.6).

7.2 Comparison to True Optimal (Small Networks)

For tiny graphs and modest target sets (for example, |V | between 10 and 100 and k < 10) it is possible to
compute the optimal target set by exhaustive search. Table 3 shows the relative error of the estimates from
the true optimal, in the form of |F(A∗)−F(Â)|/F(A∗), for k values of 1 through 10. The cases where the
heuristic is exact (F(A∗) = F(Â)) are represented by an asterisk.

In such cases, the heuristics find the true optimal about a third of the time (shown in Table 3 as asterisks)
while they often produce values with 10 % to 20 % relative error from the true optimal. Thus, the heuristics
are a mixed bag for tiny graphs, although they do produce estimates that are significantly smaller than their
expected value (Sec. 7.3). The heuristics perform reasonably well, but they are not optimized for these
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Fig. 3. Distribution of F(·) for all three-element vertex subsets of C. elegans. Optimal value F(A∗) is 4.85×103, mean
is 38.9×103, and a maximum value is 470×103 The semi-greedy algorithm produces a value F(Â) of 5.09×103,
within 5 % of optimal, or ranking in the top 0.00007 %.

graphs because the hubs are very small compared to the average degree and hence are not as distinguishable.
In rare instances, the heuristic methods outlined in Sec 5 perform worse than building an optimal target

set from the top k hubs. For example, in the MIT students network, the top k hubs perform about 15 %
better for target sizes from 1 through 10. Such cases are uncommon, but adding a test for this is
computationally trivial. Thus, the updated heuristic meethod provides a target set that produces the
minimum of the two.

7.3 Comparison to Expected Value (Larger Networks)

The semi-greedy algorithm presented in Fig. 2 is more appropriate for medium and larger-sized graphs
and significant k and h values, as discussed at the end of Sec. 5. For these network sizes, the hubs are more
distinguishable and the heavy-tailed nature of the graph’s degree distribution plays an important part in the
optimization strategy. The true optimal is not available for these larger networks, so we must find other
characteristics to compare our heuristics against. One important attribute is the expected value of F(·),
which gives an indication of what an average random guess might produce.

Given a fixed k, the expected value of F(·), E[Fk()], is the mean value of F(·) for all |A|= k subsets of
V . That is,

E[Fk()] =
1(V
k

) ∑
|A|=k

F(A) (23)
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Table 2. Top three-elment target sets, with their respective F(·) values. The near-optimal approximation A∗ is within
5 % error of true optimal solution, A∗.

A F(A)

A∗ → { 3, 14, 182 } 4.85×103 ← F(A∗)
{ 5, 14, 182 } 5.03×103

Â → { 14, 44, 182 } 5.09×103 ← F(Â)
{ 14, 18, 182 } 5.11×103

{ 4, 14, 182 } 5.11×103

{ 3, 4, 182 } 5.16×103

{ 3, 5, 182 } 5.17×103

{ 3, 18, 182 } 5.18×103

{ 14, 52, 182 } 5.20×103

{ 14, 75, 182 } 5.28×103

Table 3. Quality of near-optimal F(Â) estimtates compared to the true optimal, F(A∗), as a relative precent error.
Asterisk * denotes that exact optimal is achieved: 0.0 % error.

Network k =1 2 3 4 5 6 7 8 9 10

zebra * 8.1 * * 4.4 4.7 2.2 7.5 21.3 36.0
dolphin * * 0.5 1.6 1.6 5.9 5.1 4.3 4.8 6.1
terrorist * * 20.9 26.9 13.1 11.8 9.7 7.6 11.7 7.2
high school * * * * * * 2.7 1.0 0.5 5.2

is a convergent sum, since the domain of Fk() is finite. If we have all values of Fk() then the process is a
simple averaging. For large networks, however, we can approximate the expected value via sampling and an
application of the central limit theorem. With a sample size of L > 30 the approximate expected value of
Fk() is the average of randomly sampled values of Fk(A) (with replacement), and its standard deviation is
scaled by 1/

√
L. That is, if the samples means have an average of µ and a standard deviation of σ , then the

distribution of the sample means will form a normal distribution, with a mean of µ and a standard deviation
of σ/

√
L. Letting Ar(i) denote a randomly indexed vertex set A from all possible

(V
k

)
subsets, and EL[Fk()]

denote the approximate expected value from a large sample size L, we can write

E[Fk()] ≈ EL[Fk()] = µ =
1
L

L

∑
i=1

Fk(Ar(i)) (24)

In our experiments we use L = 1,000 to ensure a reasonably tight bound on the approximation E[Fk()]≈ µ

with standard deviation of σ/
√

L.
For example, in the C. elegans network, a random sampling of 1,000 F(A) values yields an approximate

E[Fk()] value of 38.8×103 with a standard deviation of 0.63×103 or ±1.6 %, compared to the true E[Fk()]

value of 38.9×103. In this case, the quality of the heuristic over the expected value,
E[Fk()]/F(Â)≈ (38.8×103)/(5.09×103) or about 7.6 times smaller.
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Table 4. Improvement of optimal over expected value: E[Fk()]/F(A∗)

Network k =1 2 3 4 5 6 7 8 9 10

zebra 3.5 2.3 2.2 2.0 1.9 1.7 1.6 1.6 1.6 1.6
dolphin 3.6 3.6 3.4 3.2 3.0 3.0 2.8 2.8 2.8 2.8
terrorist 9.2 5.4 5.0 4.2 4.0 3.7 3.6 3.5 3.5 3.5
high school 3.1 2.5 2.5 2.4 2.3 2.3 2.2 2.1 2.0 2.0

Table 4 presents this ratio for the smaller networks, where we compute E[Fk()] directly. In such cases
we see that the ratio of the true optimal Fk(A∗) to the expected value is rather small (< 10) throughout the
various networks and k values. This is largely due to the topology of the networks and their dimunitive size.

Nevertheless, as networks increase in size, this ratio can become significant. Table 5 shows that the
F(Â) estimates generated by the semi-greedy algorithm outperform the approximate expected values,
sometimes by two or three orders of magnitude for the larger networks, so finding good estimates to the
optimal solution can have significant benefits.

Table 5. Improvement of near-optimal over expected values for larger networks: E[Fk()]/F(Â)

Network k =1 2 3 4 5 6 7 8 9 10

MIT students 2.5 2.0 1.8 1.7 1.7 1.7 1.7 1.7 1.6 1.6
Hypertext 2009 5.2 3.8 3.2 3.1 3.1 2.9 2.7 2.7 2.7 2.5
Florida ecosystem wet 4.6 3.0 2.4 2.5 2.4 2.2 2.0 2.0 1.9 1.8
Chevron200 8.1 4.6 3.4 2.7 2.5 2.3 2.0 1.7 1.6 1.6
GE200 19 13 10 7.3 5.9 5.0 7.8 6.6 6.3 7.3
Abilene218 2.8 2.3 2.4 2.3 2.2 2.1 2.1 2.0 1.9 2.0
Bethesda 54 30 22 19 16 14 13 12 12 11
Jazz 9.9 5.0 3.8 3.1 2.9 2.8 2.6 2.4 2.4 2.2
NetScience 4.6 4.6 6.6 6.4 5.5 5.8 5.1 5.2 4.9 4.7
C. elegans 27.4 9.6 7.6 5.9 5.9 5.1 5.1 5.0 4.4 4.4
Arenas Email 19.8 12.1 8.8 6.4 7.1 6.6 5.8 5.9 5.8 5.4
FAA air traffic 16 11 9.2 7.9 6.7 6.1 5.6 5.4 6.0 6.1
Human protein 165 99 78 51 59 59 53 45 46 40
ca-GrQc 37 20 16 12 12 11 9.3 8.6 7.9 7.2
ca-HepTh 34 23 19 17 15 14 13 12 11 11
ca-HepPh 161 108 76 54 46 38 34 23 28 25

One notable pattern for real networks is that the E[Fk]/F(Â) ratio typically decreases monotonically as
k increases. This is understandable, since the individual role of a specific vertex in that set diminishes as the
target set size increases.

Another helpful observation is that the ratio of a network’s maximum degree over its average degree
∆/〈d〉 ( listed in Tbl. 1) is a good indicator of how well the E[Fk()]/F(Â) ratio holds up over the k range.
Indeed, Table 6 reveals the relationship between these two measurements, ordered by largest E[F1()]/F(Â)
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value and the corresponding ∆/〈d〉 ratios, revealing a correlation coefficient of 0.85 between these two
quantities.

Table 6. Ordering of E[F1()]/F(Â) to ∆/〈d〉 for various networks appears to be related to how well the near-optimal
solutions outperform respective expected values.

Network E[F1()]

F(Â)
∆/〈d〉

Human protein 165 26.5
ca-HepPh 161 21.0
Bethesda 54 24.5
ca-GrQc 37 12.5
ca-HepTh 34 11.3
C. elegans 27 9.3
Arenas email 20 7.4
GE200 19 10.3
FAA air traffic 16 8.6
Jazz 9.9 3.6
Chevron200 8.1 3.5
Hypertext 2009 5.2 2.5
NetScience 4.6 7.0
Florida ecosystem wet 4.6 3.4
Abilene218 2.8 4.8
MIT students 2.5 1.7

7.4 Comparison to Best Sampled Values (Larger Networks)

In sampling the L subsets for computing the expected value in the previous section, we can also use these
L samples and choose the best ones (highest percentage ranking) to get an indication how well the heuristics
perform. That is, with finite samples {Ar(1), Ar(2), . . .Ar(L)}, we can define the smallest value encountered

ML[Fk()]
.
= min{Fk(Ar(1)), Fk(Ar(2)), . . . Fk(Ar(L)} (25)

This provides a tigher lower bound, closer to the true optimal. Note that, by definition, F(A∗)≤ F(Â) and
ML[Fk()]≤ EL[Fk()]. The goal is that F(Â) should be less than ML[Fk()], and this occured over 98 % of the
time in our experiments, as described below.

Table 7 lists this potential improvement of the offered solution Fk(Â) over sampled values. In this
experiment, we use L = 1000 to provide an estimate of the top 0.1 % ranking from these L samples. In
nearly all instances of networks and k values, the ratio ML[Fk()]/Fk(Â) is greater than 1.0, demonstrating
that the Fk(Â) solution is not only significantly better than the expected value of EL[Fk()], but it is also
typically superior than the best of 1,000 random samples. For the k = 1 and k = 2 cases, Fk(Â) performs
nearly as well, but for larger k values, the performance typically increases to a factor between 1 and 5 times
better. In only three cases out of 160 (16 networks, with 10 k values each) does this ratio drop below 1.0.
This occurs for the k = 1 or k = 2 examples in the MIT students, Florida ecosystem wet, and Netscience
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networks, which are in the low ∆/〈d〉 ratios, as shown in Table 6, and which show the most limited effect
for potential increase in speed from the original optimization problem. In short, the heuristics work best
where it matters: cases with larger k values, where the problem becomes harder, and networks with high
∆/〈d〉 ratios, where the potential for finding good target sets yields the most benefit (i.e., produces higher
EL[Fk()]/Fk(Â) ratios).

Table 7. Improvement over top 0.1 % ranking from 1,000 samples: M1,000[F3()]/F3(Â)

network k =1 2 3 4 5 6 7 8 9 10

MIT students 0.9 1.0 1.0 1.1 1.1 1.1 1.2 1.1 1.1 1.2
Hypertext 2009 1.3 1.6 1.6 1.6 1.5 1.7 1.7 1.7 1.8 1.5
Florida ecosystem wet 1.0 0.9 1.1 1.1 1.2 1.2 1.0 1.2 1.2 1.1
Chevron 200 1.0 1.5 1.5 1.4 1.3 1.3 1.2 1.1 1.1 1.0
GE200 1.0 1.6 1.2 1.2 1.1 1.2 1.5 2.0 1.5 2.0
Abilene218 1.0 1.0 1.2 1.3 1.2 1.1 . 1.3 1.3 1.2 1.3
Bethesda 1.0 1.2 1.2 1.3 1.8 1.7 1.6 1.9 2.0 1.7
Jazz 1.0 1.2 1.2 1.3 1.4 1.4 1.4 1.4 1.3 1.3
NetScience 1.0 0.8 1.8 1.8 1.7 1.9 2.1 1.9 2.2 2.0
C. elegans neural 1.0 1.5 1.5 1.8 1.4 1.4 1.6 1.6 1.8 1.6
Arenas Email 1.4 1.5 1.6 2.0 1.8 2.1 2.1 1.9 2.2 2.0
FAA air traffic 1.0 1.6 2.4 2.3 2.1 2.0 1.8 2.0 2.4 2.3
Human protein 1.0 1.8 2.3 3.1 3.6 4.0 4.1 4.6 4.7 5.4
ca-GrQc 1.2 1.6 1.7 1.8 2.0 2.3 2.3 2.4 2.1 2.1
ca-HepTh 1.2 2.0 2.5 2.5 2.9 3.7 3.4 3.3 3.5 3.7
ca-HepPh 1.1 1.7 2.6 2.3 2.3 3.2 2.8 3.2 3.8 3.4

7.5 Timing Analysis

Table 8 lists the computation time required to find the larget target size in our test cases (k = 10) for the
various networks. All experiments were conducted on a common desktop workstation, running Ubuntu
Linux 4.15, with an Intel © i7-3770 processor running at 3.4 GHz, and outfitted with 32 MB of RAM. 1

The algorithms were coded in C++, and compiled under GNU g++ 7.4.0 with the following optimization
and standardization flags: [-O3 -funroll-loops -march=native -std="c++11"]. Modules were used
from the NGraph C++ library and Network Tookit [26], as well as optimized C++ implementations of
algorithms noted in the paper.

Timing results are reported in milliseconds (msec) due to the effectiveness of the optimized modules. As
these timing results are rather small, each operation was repeated and their average duration is reported.
Only the larger networks and largest k value are reported, as the smaller cases simply ran too fast to be
captured by the resolution of the system clock.

1Certain commercial products or company names are identified here to describe our study adequately. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products or names
identified are necessarily the best available for the purpose.
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Table 8. Timing analysis of largest networks: computation time to find F10(Â) via semi-greedy algorithm, compared to
time required to find M1,000[F10()], expressed as the ratio of increased speed.

Semi-greedy speed increase
Network (ms)

NetScience 14.4 5.38×104

C. elegans 12.5 2.98×103

Arenas email 51.0 1.23×104

FAA air traffic 24.7 1.90×104

Human protein 14.9 2.18×105

ca-GrQc 40.4 3.90 ×105

ca-HepTh 71.1 1.04×106

ca-HepPh 156.8 9.39×105

The results denote the performance of the semi-greedy algorithm (Fig. 2) with the target set size k = 10,
and the number of hubs to explore h = 100. The main point to illustrate is that these methods yield rather
good near-optimal approximations on graphs having thousands of vertices and edges in a fraction of a
second. (In fact, the time required to solve the problem is often shorter than the time required to read the
network data from disk.) Speed and efficiency are critical, as these network problems may be embedded in a
tight loop within larger time-dependent applications.

8. Conclusion

In Ref. [9], the authors posed the problem of finding a subset of target vertices of fixed cardinality that
minimized the sum of the expected time taken by random walkers in a network to arrive at the set for the
first time. The solution to this problem identifies a set that is an optimal influencer for a consensus process
as modeled by a random walk. This paper presents a methodology for identifying optimal influencers in
graphs with real world applications. Because the size of such networks can range from hundreds to millions
of nodes, brute force evaluation of expected arrival times is unfeasible. Indeed, a simpler variant of this
problem, where the average random-walks of F(·) are replaced with a straightforward graph distance,
results in a case of the k-median problem in a metric space. This problem has been shown to be
computationally difficult [27], belonging to a class of non-deterministic polynomial-time hard (NP-hard)
problems which have eluded efficient solutions. Beginning with [9], research has focused on methods that
exploit the supermodularity property of the arrival times [16, 28, 29] but they have not been applied to the
largest networks, such as those we consider here, and may not be feasible in these cases.

To meet this challenge, we developed heuristics that exploit the heavy-tailed degree distribution found in
many large graphs of importance in real-world applications. The algorithms we discuss in Sec. 5 hinge on
the construction of candidate sets in which the vertices are network hubs. These hubs are selected so that
neighborhoods (pth order neighborhoods) of distinct hubs have minimal overlap, and remote areas of the
network are more likely to be covered. In this setting our algorithms and heuristics rapidly produce a
relatively small set of candidate sets.

The offered solution is then obtained by evaluating a Monte Carlo approximation of the expected arrival
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times to the candidate sets. The implementation performed on larger graphs (algorithm in Fig. 2) took
fractions of seconds to find Â, in our experiments. Evaluating the accuracy of these methods is difficult, but
in Sec. 6, we took the first steps toward this goal. We used existing results on stochastic optimization and
statistics to establish the validity of the Monte Carlo approximation of expected arrival times.

Because of the practical difficulty of directly assessing the accuracy of the offered solution, we propose
instead for future work, to estimate c, using the η th quantile of the cumulative distribution of {F(A)}|A|=K

values for small η . Using independent replication of the algorithm, and Chebyshev’s inequality (see
Appendix) the estimate can be shown to be reliable with high probability given a sufficient number of
repetitions. The value of c provides an upper bound to both the actual solution and the offered solution of
our problem.

We also determined a correlation between the potential increase in speed to near-optimal sets,
E[Fk()]/F(Â), and the ratio of maximum to average degree of the network (∆/〈d〉). This can be used a
guide to help determine how much to expect from near-optimal solutions.

For smaller graphs, it is possible to compute these optimal sets exactly through exhaustive search, and
we did so here to validate the expectation that the heuristics do produce reasonable results. In about a third
of the cases, the algorithms find the true optimal F(A) value, while at worst still remaining within a 1−1/e
bound. For larger graphs (say V & 100) computing the exact optimal is impractical, so we estimated it by
designating the top 0.1 % ranking of 1,000 samples and comparing it to the heuristic solution, expressed as
M1,000[Fk()]/F(Â). In our experiments, this ratio was greater or equal to 1 in 98 % of the cases.

Finally, we demonstrated that the heuristics are computationally efficient. The largest network in our test
cases, ca-HepPh, with k = 10 target sets, took 41 h of computation to find candidate sets in the top 0.1 %
ranking of 1,000 samples, while the heuristics found significantly better solutions in 0.16 s. This near
million-fold increase in speed brings problems that were computationally cumbersome into the nearly
instantaneous regime and opens up new possibilities for researchers and application specialists.

9. Appendix A: Proof of Equation (12)

In this section, we will present a proof of the formula that reveals the relationship between the rate of
convergence to network consensus in a network containing a subset A of leader nodes and the first hitting (or
arrival) time of a random walker in the network graph that begins at a node outside of A.

Lemma 1. Let (V,P) be the sample space and probability measure of an irreducible Markov chain with
transition matrix P and suppose A⊂V is a non-empty subset. If xn is the vector at time n of the consensus
process in Eq. (10), with limiting vector x∗,then

||x∗− xn||1 = P[TA > n] (26)

Proof. From Eq. (11) we know that ||x∗− xn||1 = c||Pn
A1||1. Now the ith component of Pn

A1 is
∑ j∈Ac Pn(i, j) = Pi[TA > n], the probability that starting at i, the random walker has not arrived at A after n
steps. Thus to compute the l1 norm we must have,

||x∗− xn||1 = ∑
i∈Ac

Pi[TA > n] = P[TA > n]

10. Appendix B: Statistical Approach to Validating the Heuristic Methods

We will use the notation introduced in Sec. 6 to give a brief description of an approach for estimating the
value c and associated confidence intervals. In this analysis we assume the sets that appear in the latter
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stages of the heuristic have F values that come from the lower tail of the distribution. Let η be the quantile
level and n the number of sets selected to be in the final random simulation for estimating F(Â). Given η ,we
choose n = bη ·

( |V |
k

)
c. This last collection of sets contains the offered solution corresponding to the

smallest value of the approximate F value. The largest approximate F value is ĉ, an estimate of c. Note that
ĉ depends on η . In addition we make some additional assumptions:

• The tail of the distribution of F values decays rapidly enough so that a second moment is well defined.

• ĉ is a random variable with mean c. In addition to random fluctuations due to errors arising from the
Monte Carlo approximation of F , there are also sampling errors that affect the tail distribution and
thus the value of η .

Suppose we estimate c by averaging the values ĉ obtained by T multiple independent repetitions of the
algorithm. We assume these are done so that the random variables in different trials have the same
distribution but are statistically independent. If XT = ∑

T
i=1 ĉi, where ĉi is calculated in the ith trial, then for

any ε > 0, Chebyshev’s inequality implies that,

P{|XT/T − c|> ε}< Var(XT )

ε2 =
Var(c)
T 2ε2 (27)

The probability measure P refers to the sample space of Monte Carlo simulations. Here the notation
Var(X) denotes the variance of X . The quantity Var(c) can be estimated using the sample variance of the
trial values. The right-hand side of the inequality in Eq. (27) shows that c lies in an interval around XT

T of
length 2ε with degree of confidence given by probability 1− V (c)

T ε2 . Note that a considerable amount of
computation may be needed to attain a high degree of precision in this sense. Further research is needed to
determine if this method is feasible for graphs where the algorithm is very fast.
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