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1. Summary 

We describe the algorithmic foundations of an open-source numerical toolbox, written in the Octave 
language [1], for the creation of computer-generated binary and multi-level holograms used in 
interferometric form error measurements of complex aspheric and free-form precision surfaces and 
wavefronts. In a typical measurement setup for this type of surface, a hologram is used to generate a test 
wavefront that has the design shape of the surface, which is then compared to a fabricated part using an 
imaging laser interferometer. The optical function of the hologram in the measurement is generally modeled 
with optical ray-tracing software and it can be encapsulated by a scalar optical phase function φ : R2 → R. 
The toolbox converts phase functions into equivalent binary holograms that generate the desired test 
wavefronts for an interferometric form error measurement. The algorithms in this toolbox take advantage of 
the relationship between the local properties of phase functions and the local geometry (curvature) of 
isophase lines. It forms the core of an effcient algorithm for the computation of optical holograms. 
Holograms are created in a format that can be processed by most laser- or e-beam lithography systems. 
While the toolbox is chiefy aimed at the creation of hologram layouts needed for measurements of precision 
surfaces and wavefronts, we show that the isophase-following algorithm is easily extended to phase 
functions with singularities and discontinuities. Such phase functions result in holograms with zone 
bifurcation and they can be used to generate helical wavefronts. Light beams with helical wavefronts have 
applications beyond surface and wavefront metrology. The toolbox also includes a family of functions for 
the effcient estimation and evaluation of Zernike polynomials, which are widely used in optical applications. 
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2. Software Specifcations 

NIST Operating Unit Physical Measurement Laboratory, Sensor Science Division, Surfaces 
and Interfaces Group 

Category Computer-generated holograms and diffractive optics 

Targeted Users Researchers in optics and metrologists in the optics industry, who need 
to design and fabricate optical holograms for metrology applications 
and other diffractive optics. 

Operating Systems Cross-platform 

Programming Language GNU Octave 4.4 and above with the Optimization and, optionally, the 
Parallel and Symbolic packages installed [1, 2]. The toolbox requires 
additional open-source toolboxes for Boolean set algebra with planar 
polygons, and for the creation of lithographic layout fles in GDSII for-
mat [3]. 

Inputs/Outputs The user must supply a problem-specifc Octave script that defnes 
one or more optical phase functions and associated parameters needed 
to characterize optical performances and physical shapes of a set of 
diffractive optical elements. The output is a lithographic layout of a 
diffractive optical element, or hologram, capable of generating the de-
sired optical phase distributions, or wavefront, when illuminated with 
coherent light. The layout is generated in a format suitable for submis-
sion to a fabrication facility. Layout fles can be inspected with viewers 
or editors for electronics design layouts, such as the open-source soft-
ware KLayout [4]. 

Documentation The toolbox is accompanied by a user manual and several commented 
example scripts, that illustrate a range of application scenarios. 

Accessibility Provided by the operating system. 

Disclaimer https://www.nist.gov/director/licensing 

3. Background 

Traditional optical manufacturing has perfected the fabrication of imaging systems consisting of optical 
elements with spherical surfaces together with the development of optics design methods that sought to 
wrest excellent imaging performance from optical lenses and systems constructed from spherical optical 
elements with imperfect imaging properties [5, 6]. It has been understood since the construction of early 
telescopes that aspheric lens and mirror surfaces enable imaging system designs with fewer surfaces and yet 
far better performance, but the challenge of fabricating aspheric surfaces has tended to restrict their use to 
high-value applications, for example in astronomical imaging systems (telescopes), or a in certain class of 
earth-observing satellites. The introduction of computer-controlled fabrication systems into the 
manufacturing of precision optics, the availability of ever more processing power to computer-aided optical 
design, and the emergence of digital interferometry has catalyzed rapid advances in the design and 
fabrication of optical elements and imaging systems over the past three decades. Reduced fabrication costs 
have enabled the wide adoption of aspheric, and even free-form [7], optical elements to take advantage of 
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better performance, reduced stray light, and compact lens sizes, of aspheric designs. Aspheric lens designs 
are increasingly found even in consumer optics. A striking example is the remarkable imaging performance 
of cameras in mobile electronic devices, which contain sophisticated aspheric imaging objectives in a 
volume of only about 100 mm3 [8]. 

Computer-generated holograms (CGHs) are an indispensable tool for interferometric form error 
measurements of ultra-precise non-spherical surfaces that require low measurement uncertainty [9–13]. 
CGHs can be used for surface form metrology in several different interferometer confgurations. The 
measurement confguration sketched in Fig. 1 is common because it can be implemented easily with 
unmodifed commercial Fizeau interferometers. In a Fizeau interferometer, coherent light from a nearly 
monochromatic laser is emitted by a point source, P in Fig. 1 (in practice often a slightly extended source to 
reduce the spatial coherence, which attenuates the deleterious effects of coherent stray light), and collimated 
by a lens or mirror (C). The beam is expanded by a lens pair (E), and a Fizeau objective, or transmission 
sphere, creates a converging beam, or sometimes a diverging beam, with a spherical wavefront (F). The 
hologram is placed into this test beam to generate the desired non-spherical test wavefront, typically in the 
frst diffraction order. At the correct distance from the hologram the wavefront matches the surface of the 
part under test (S). All rays impinging on the test surface are normal to the surface, when the test part is free 
of form errors. Light refected by the spherical reference surface of the Fizeau objective (R), and the light 
refected by the test surface (S), is directed by a beam splitter towards a camera (K). An imaging system 
with variable magnifcation (Z) images the test surface onto the camera sensor. The interference fringes 
created by these two beams are recorded by the camera, and phase decoding techniques are used to measure 
their phase difference [14], which can be converted into a distance because the light wavelength is known. 
The measurement result is the difference between the design shape of the surface, which is encoded in the 
hologram, and the actual, fabricated shape of the test surface (S). The type of hologram used in this 
measurement setup is often called a “null-compensator” because no interferometer fringes are visible—the 
interferometer is “nulled”—when the surface under test has the design shape, and the test surface is 
correctly aligned to the hologram. 
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Fig. 1. Schematic of a Fizeau interferometer confgured to measure the shape error of non-spherical surfaces. 
Components of the interferometer setup are point source (P), collimator (C), beam divider (B), beam expander (E), 
Fizeau objective or transmission sphere (F), zoom objective (Z), camera (K), hologram (H), spherical reference surface 
(R), and non-spherical surface under test (S). Illumination rays are shown in green, imaging rays in red. (Distances and 
angles are not drawn to scale.) 
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The lithographic technology needed for CGH fabrication is now widely available at research or 
commercial micro-fabrication foundries. However, many popular optical design software packages do not 
support the design of metrology holograms in lithographic layout formats (GDSII1 [3] or OASIS [15]) that 
can be submitted to an open foundry. In this paper, we describe the algorithms we have developed over the 
past decade for the calculation of surface metrology holograms from the optical prescription of the 
hologram. The optical function of the hologram is calculated with optical modeling software. With the wide 
availability of multi-core computers, the calculation of hologram layouts is no longer the computational 
challenge it was merely a decade ago [16]. While our toolbox was originally developed with the goal to 
create improved metrology holograms at NIST, the publication of our algorithms and toolbox will enable 
computer-savvy optics designers and fabricators to create their own metrology holograms for precision 
surface form measurements. We also hope the toolbox will encourage the wider inclusion of similar 
algorithms and capabilities in commercial optical design software. This would make surface metrology with 
computer-generated holograms more widely available, and the metrology cost would be lowered. 

4. Computer-Generated Holograms 

The simplicity of an interferometer’s (near-) point source illumination system, shown in Fig. 1, ensures 
that the hologram is illuminated with a monochromatic spherical wave of wavelength λ (with some 
spherical aberration resulting from the hologram substrate). The calculation of a hologram layout from frst 
principles remains an enormous computational challenge and it is impractical for the large-area holograms 
required for metrology applications. The algorithms for hologram computation we describe here are instead 
based on the Huygens-Fresnel principle [17–21]. Despite its seeming simplicity, the Huygens-Fresnel 
principle enables the calculation of hologram layouts that generate test wavefronts with suffcient accuracy 
for form error measurements of advanced optical surfaces. The purpose of the hologram in Fig. 1 is to 
transform an incident spherical wave into an outgoing wave that matches the test surface after propagation 
through the space between hologram and test part. At the hologram, the incoming phase front must be 
advanced or retarded by a phase φ (x) (x is a point in the hologram plane), such that the outgoing phase front 
will match the shape of the test part at the correct distance. The domain of the hologram can be partitioned 
into half-period Fresnel zones with constant-phase boundaries that are separated in phase by π (equivalent to 
λ /2): 

φ(x) = kπ, k ∈ Z . (1) 

The shape of the zone boundaries depends on the shape of the test part. In the simplest case, the outgoing 
wave is spherical and the half-period zone boundaries will be circles. When, as in the case of the Fresnel 
zone plate, every other Fresnel zone is made opaque, the Huygens wavelets from the remaining transparent 
zones will interfere constructively to generate the desired test wavefront. Alternatively, a phase difference of 
π (equivalent to λ /2) can be introduced in every other zone which results in a hologram that generates the 
test wavefront without loss of light at the opaque zones. The type of hologram that results from the Fresnel 
construction is called a “binary hologram” due to the alternating zone structure. It can be viewed as a 
generalized Fresnel zone plate [18]. The qualitative summary given here can be put on a sound 
mathematical foundation within the framework of scalar diffraction theory, which also clarifes the 
limitations of the hologram construction outlined here [22–25]. In particular, it can be shown that the width 
of the half-zones must be several times larger than the wavelength of light, a condition that limits the range 
of allowable diffraction angles and can occasionally be diffcult to meet. Computer-generated holograms are 

1Certain commercial equipment, instruments, software, or materials are identifed in this paper to foster understanding. Such identifca-
tion does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the 
materials or equipment identifed are necessarily the best available for the purpose. 
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generally fabricated either in the form of a patterned, opaque chromium layer on a glass substrate, which 
modulates the amplitude of an incoming beam such that transmitted light interferes constructively 
(amplitude hologram). Alternatively the hologram pattern is etched into the glass substrate to cause a phase 
delay of π , corresponding to λ /2, between neighboring half-zones, which enhances constructive 
interference (phase hologram). 

The design of a metrology hologram for interferometric surface shape error measurements requires three 
steps. First, a phase function φ (x) must be found that encodes the test wavefront for a given test part. This 
step is typically performed using optical ray-tracing software. All optical modeling software has the option 
to describe the function of a CGH using an ideal, plane optical element that simply adds a phase φ (x) term 
to the optical system. In most cases, this phase function can be modeled with a suitable bivariate 
polynomial, for example a Zernike polynomial (see Appendix Sec. 9) or a Q-polynomial [26]. The phase 
function resulting from optical modeling can also compensate aberrations, for example those caused by the 
hologram substrate. The second step calculates the Fresnel half-zone boundaries for the phase function with 
the level of accuracy determined by the required form error uncertainty. Finally, the zone boundaries must 
be translated into a description of the zone geometry that can be processed by the fabrication system. 
Metrology holograms are generally fabricated with either photo-lithography or e-beam lithography. In a 
lithographic layout for most modern lithography systems, the Fresnel zone boundaries of a hologram must 
be approximated by closed polygons and stored in a layout format such as GDSII [3] or OASIS [15]. In the 
following sections we describe algorithms suitable for the effcient calculation of approximation polygons 
for phase boundary lines in Fresnel holograms and for the assembly of the boundary lines into closed 
polygons that are needed for the full description of the layout geometry. 

5. Algorithms 

At frst glance, it may seem that the calculation of half-zone boundaries should not pose a problem. An 
effcient algorithm for the calculation of iso-surfaces was described decades ago [27], and its 
two-dimensional sibling, the marching squares algorithm for the calculation of iso-contours for functions 
f : (x,y) 7→ z, is a staple of computer science teaching [28]. Implementations of the marching squares 
algorithm are available for many programming languages, including Octave [contourc]2. A simple 
calculation, however, shows that the marching squares algorithm is not well suited for the calculation of the 
Fresnel half-zone boundaries defned by Eq. (1) in optics. The marching squares algorithm operates on a 
sampled grid of function values. For an optical hologram, the position of the polygon vertices describing 
Fresnel zones must have a position uncertainty well below the resolution of the lithography system. We 
typically use a maximum deviation of 5 nm of the polygon approximation from the isophase curve, but 
10 nm would be acceptable. The spacing of isophase curves in a hologram is generally larger than the 
wavelength of light, usually several µm. For an average-sized circular hologram with 70 mm diameter the 
number of required phase function evaluations is approximately 3.8 × 1013 when the sample spacing is 
10 nm. The goal of the algorithms described in the following sections is to reduce the number of required 
function evaluations as much as possible, because the naive application of the marching squares algorithm 
would result in an exorbitant number of wasted function evaluations far from the isophase curves. An 
additional complication is that the marching squares algorithm, at least in its common implementations, 
assumes the underlying function to be continuous, which is not always the case for optical phase functions. 

Application specifc algorithms for resource-sparing calculations of isophase curves are still required. 
Recently a contouring algorithm, the Pilot Approximation Trajectory (PAT) algorithm, a derivative of the 

2References to the names of toolbox functions and other Octave functions are included in square brackets throughout the paper. The 
Octave help command can be used to display the location of a function in the directory tree, and the help text of the function. 
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marching squares algorithm, was developed for the contouring of functions with very time consuming 
evaluation [29]. Our algorithms similarly address the need to minimize the number of function evaluations, 
but unlike the PAT algorithm, they make use of the local geometry of isophase contours, which can be 
calculated from the local properties of the optical phase function. The algorithms are well suited to the 
calculation of optical holograms because phase functions are generally smooth functions that vary slowly, 
and derivatives can be calculated reliably. We further show in Sec. 5.5 how our geometry based algorithms 
can be extended to work with phase functions that have singularities and discontinuities, which occur for an 
important class of diffractive optics. 

We begin with a brief summary of the relevant geometric relationships that are the foundation of the 
algorithms presented in the following sections. A curve in the plane is a function γ : s 7→ x(s), where s is the 
arc length commonly used to parametrize curves [30], and x(s) = (x(s),y(s)) is a point on the curve in the 
plane. An isophase curve has a constant phase along the curve: 

φ (x(s)) = const . (2) 

Calculating the derivative of Eq. (2) with respect to the arc length parameter yields: 

d ∂φ dx ∂φ dy dx(s)
φ(x(s)) = + = ∇φ · = 0 . (3)

ds ∂ x ds ∂ y ds ds 

The symbol · denotes the scalar (inner) product. The factor dx(s)/ds in Eq. (3) is the unit tangent vector at 
the isophase curve when the curve is parametrized with the arc length [30]. From Eq. (3) follows the simple 
but very useful conclusion that the phase gradient feld, ∇φ(x(s)), is normal to isophase curves. 
Equation (3) implies that a linear approximation to an isophase curve at any point on the curve can be 
obtained from the unit gradient vector feld of the phase feld φ(x): 

∇φ 
n = , (4)

k∇φ k 

because an isophase tangent vector t can always be found for which t · n = 0. In the CGH toolbox the sign of 
n is chosen such that the exterior product t∧ n > 0. The pair of vectors t(s) and n(s) then defnes a local, 
right-handed coordinate system at each point of an isophase curve. A second-order approximation of an 
isophase curve can be obtained by considering the local curvature of the isophase. As in the case of the 
tangent and normal vectors, the isophase curvature κ(s) can be expressed solely through the partial 
derivatives of the phase function, 

φxxφ 2 − 2φxyφxφy + φyyφ 2 

κ(s) = − y � 
x 
, (5)�3/2

φ 2 + φ 2 
x y 

where the abbreviated notation φx denotes the partial derivative ∂φ(x(s))/∂ x, etc. [vphderiv]. Equation (5) 
is central to the algorithms described in the following sections and we provide a derivation in Appendix 
Sec. 8. The inverse of the curvature can be interpreted as the radius R = 1/κ of a circle at a point x(s) of the 
isophase, the osculating circle, that shares tangent and normal vectors with the isophase curve, as shown in 
Fig. 2. 
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Fig. 2. Osculating circle (blue) at a point x = (x,y) on a planar isophase curve (red). Unit tangent and normal vectors, t 
and n, defne local coordinate frames with coordinates (τ,ν) at each point of the isophase. At point x of the curve the 
isophase curvature κ is positive. 

5.1 Domain Tilings 

For the algorithms described here, the frst step is to subdivide the hologram’s domain into a set of 
rectangular tiles [polytile]. This approach has several advantages. Since the hologram in each tile area can 
be calculated independently of other tiles, the hologram’s computation can take advantage of the 
multi-processor hardware that is now commonplace. The fnal layout of a hologram is described by a set of 
closed planar polygons. Subdividing the hologram domain is also an effcient way to ensure that the number 
of polygon vertices does not exceed the maximum number of vertices permitted in the layout fles that are 
used by lithography tools (8192 in the case of GDSII); smaller tiles directly result in shorter polygons. 
Subdividing the hologram’s domain can also be used to avoid exceptional points within a tile, which can 
result in closed or intersecting isophase curves. When an exceptional point of the phase function is detected 
in the interior of a tile, the tile is subdivided such that the exceptional point is located on the dividing line. 
Phase functions with singularities are handled similarly to ensure that phase singularities only occur on the 
edge of a tile. Every isophase curve then has exactly two tile edge intersections. The tiling also permits the 
intersections of the isophase curves with the tile edge to be ordered according to their distance from the tile 
origin along the edge, and isophase approximation polygons can be oriented such that their initial vertices 
are closer to the tile origin than their terminal vertices. Tile intersection ordering and polygon orientation is 
important for the isophase fll algorithms described in Sec. 5.4. 

Figure 3 shows the example of a tiling for a circular hologram domain with a 20 mm diameter and a 
central circular opening with 4 mm diameter. The width of the square tiles shown is 2 mm. The lower left 
corner of a tile is considered the tile origin. Each tile has four edges that circumscribe the tile in 
counter-clockwise direction, where adjacent edges are orthogonal. Once a hologram is calculated for all tile 
areas, any part of the hologram extending beyond the domain boundaries is removed (“clipped”) using 
Boolean set algebra functions [polybool]. 
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Fig. 3. An example of a tiling with square tiles (blue lines) covering the domain of an annular hologram [polytile]. Two 
polygons (red circles) defne the outer and inner boundaries of the domain. Horizontal and vertical dimensions in this 
example are given in µm. 

5.2 Pilot Approximation 

Octave is an environment for numerical computing. It provides several building blocks to implement 
effcient algorithms for calculating optical isophase curves. We frst describe an algorithm we call the pilot 
approximation algorithm [phase2cgh tile pa], that draws on the marching squares contouring algorithm [28] 
[contourc] and on an implementation of an algorithm for fnding roots of continuous functions [vfzero] [31]. 

Our algorithm is similar to the Pilot Approximation Trajectory (PAT) contouring algorithm [29]. It uses 
the marching squares algorithm to frst calculate a coarse approximation, the pilot approximation, of the 
isophase curves on a tile. The phase function is typically sampled on a grid with a resolution between 
100× 100 and 500× 500 samples and the coarse contours are calculated for this grid of phase values using 
the built-in contourc function [isophase approx]. The vertices of the approximate isophase polygons will 
generally not be located on the isophase curve with the desired vertex position tolerance (typically 0.1 nm). 
Improved vertex positions are found by searching for the isophase at each vertex of the approximate 
isophase polygon in a direction normal to the polygon [vfmatch]. The result is a set of isophase polygons Pk 

that have phase values Φk where distances between the vertices and the true isophase curve are less than a 
predefned tolerance. Unless the curvature of the isophase curves is very low, the number of polygon 
vertices in the pilot approximation is not suffcient to represent the isophase without exceeding the 
acceptable deviation of the approximation polygon from the isophase curve, and additional vertices must be 
added to the polygon. The number of additional vertices required between the vertices of the pilot 
approximation polygon can be estimated using the osculating circle approximation of the isophase described 
in Sec. 5. Using Eq. (5) we calculate the isophase curvature κ at the midpoint between two vertices of the 
pilot approximation polygon. From the radius of curvature, R = 1/κ , and the allowable deviation σ of the 
isophase from the polygon segment, an allowable segment length p

S = 2 σ (2R − σ) (6) 

can be calculated by Eq. (6) (see Fig. 2). The number of additional vertices then follows from the ratio of the 
vertex distances in the pilot approximation polygon and the maximum allowable segment lengths. 
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Additional vertices are placed on the line between vertices of the approximation polygon at equal distances 
and the exact positions are calculated by searching for the location with the correct phase value in the 
direction normal to the polygon segment [vfmatch]. In a fnal step, the intersections of the isophase polygons 
with the tile edge are calculated [isophase clip]. The intersections are the initial and terminal vertices of 
isophase polygons traversing a tile. The steps of the pilot approximation algorithm are summarized in 
Alg. 1. In the implementation of the algorithm [isophase refne] the inner loops in Alg. 1 are replaced by 
vectorized expressions to speed up the computation. Once the isophase polygons over a tile are calculated, 
they are assembled into closed polygons using the algorithm described in Sec. 5.4. 

Algorithm 1: Structure of the pilot approximation (pa) algorithm. 
Input : A phase function φ , phase function parameters, phase levels {Φk}, tile defnition, sampling 

grid, CGH tolerances. 
Output: A set of polygons {Pk} approximating isophase curves on a rectangular tile. Each polygon 

is a sequence of vertex points, Pk = {xk,1,xk,2,xk,3, . . .}. � 
1 P̃k,Φk ← contourc #approximate isophase polygons on coarse grid 
2 for k ← 1 to #{P̃k} do 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

for i ← 1 to #P̃k do 
Find xk,i such that x̃k,i → xk,i and φ(x̃k,i) → Φk 

end 
for i ← 1 to #P̃k − 1 do 

Di ← xk,i+1 − xk,i #vertex distance 
1mi ← xk,i + 2 Di #vertex midpointp

Si ← 2 σ (2/κ(mi) − σ) #approximate allowable segment length�   
ni ← kDik/Si − 1 #number of additional vertices 
for j ← 1 to ni do 

x0i, j ← xk,i + j (Di/kDik) 
Find xi, j such that x0i, j → xi, j and φ (x0i, j) → Φk 

end 
end 
Replace xk,1 and xk,end with tile edge intersections 

17 end 

5.3 Isophase Following 

The algorithm described in Sec. 5.2 works well for many phase functions that are encountered in 
precision surface metrology, but the reliance on the marching squares algorithm [contourc] results in 
limitations. One prominent example is the Hilbert phase function � � � ��� 

y − y0
φH(x, p) = arg exp ip arctan , (7)

x − x0 

which has a phase singularity at (x0,y0) and, for p = 1, a phase jump of 2π on the half-line 
{x|x < x0,y = y0}, when it is implemented using the atan2 function [phase hilbert]. The factor p ∈ N, also 
called “topological charge”, determines the angular slope of the phase and the number of lines with 
discontinuous phase [32–34]. The pilot approximation algorithm described in Sec. 5.2 fails with phase 
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Algorithm 2: Structure of the isophase following (f) algorithm. 
Input : A phase function φ , phase function parameters, phase levels {Φk}, tile defnition, CGH 

tolerances. 
Output: A set of polygons {Pk} approximating isophase curves on a rectangular tile. Each polygon 

is a sequence of vertex points, Pk = {xk,1,xk,2,xk,3, . . .}. 

1 for edge ← 1 to 4 do 
edge edge

2 Find all xk such that φ(xk ) → Φk 

3 end � �1−4 1−44 {x }← sort {x }k k 
5 repeat 

1−46 

7 

xcurr ← {xk 
i ← 1 

} #next unconnected edge intersection 

8 repeat 
9 xpred ← xcurr + τt + νn #next predicted vertex 

10 i ← i + 1 
11 Find xi such that xpred → xi, and φ (xi) → Φk #isophase polygon vertex i 
12 xcurr ← xi 

13 until xi is outside the tile 
14 Replace xi with the nearest edge intersection 
15 

16 

Pk ← {xi}
until All edge intersections are connected 

functions containing Hilbert terms shown in Eq. (7). Later in this section we describe an alternative 
algorithm, the isophase following algorithm, that can be extended to work with discontinuous phase 
functions such as those containing Hilbert phase terms. 

Instead of calculating a coarse approximation of the isophase curves, the isophase following algorithm 
proceeds from calculating the isophase curve–tile edge intersections on all four edges of a tile 
[isophase edges]. The intersections can be ordered on the tile edge according to their distance from the tile 
origin (lower left tile corner) [edge sort]. Starting at the frst tile intersection the approximate location of the 
frst isophase polygon vertex inside the tile can be estimated using the osculating circle approximation of the 
isophase curve as shown in Fig. 2 [predict xy]. For a point on the isophase curve, the unit normal vectors t 
and n, and the isophase curvature κ = 1/R can be calculated using Eqs. (3) and (5). For an allowable 
deviation σ of the polygon segment from the isophase curve, the polygon segment length S can be 
calculated with Eq. (6), and the coordinates (τ,ν) of the next polygon vertex (approximating x0 in Fig. 2) in 
the t,n coordinate frame can be estimated as q 

2
τ = S 1− (S/2R)

ν = 
S2 

2R 
. (8) 

The Frenet equations [30] (also see Appendix Sec.9), 

dt 
ds 

= κn , and 
dn 
ds 

= −κt , (9) 

which describe the evolution of the t,n coordinate frame along the curve, can be used to estimate the 
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isophase normal vector np at the predicted vertex. When the osculating circle arc length from x to (τ,ν) � � 
S

L = 2Rarcsin (10)
2R 

is used to estimate the isophase curve length in the second of the Frenet equations in Eq. (9), the normal 
vector n0 at x0 can be approximated by 

np = n− κLt . (11) 

The exact vertex position x0 on the isophase curve (open circle in Fig. 2) is again obtained using a level 
fnding algorithm [vfmatch] in the direction of np. This process is repeated until the isophase polygon exits 
the tile area. The intersection of the last polygon segment with the tile edge is then replaced with the closest 
isophase–tile edge intersections initially calculated. The initial and terminal tile edge intersections are 
removed from the the list of unconnected edge intersections. The calculation of the next isophase polygon 
proceeds from the next available unconnected edge intersection until all intersections are connected by 
isophase polygons [isophase curves]. A summary of the isophase following algorithm is shown in Alg. 2. 

The inner loop of the isophase following algorithm, Alg. 2, is again implemented using the vector idiom 
of the Octave language to achieve adequate processing speed [isophase curves]. This need to “vectorize” 
the computation creates an additional problem. The isophase following procedure must proceed from only 
half of the isophase–tile edge intersections, and the start intersections must be chosen such that no isophase 
curve is traced in duplicate. The algorithm for the selection of start intersections is shown in Alg. 3 
[isophase vertex init]. It is predicated on the assumption that tiles were designed such that all isophase 
curves have two tile edge intersections and isophase curves never cross. 

Algorithm 3: Selection of isophase polygon start vertices. 
Input : Phase levels {Φk} of the ordered isophase–tile edge intersections. 
Output: A set of indices {m} of the selected polygon start intersections. 

1 Partition {Φk} into equivalence classes Φ̌ and Φ̂ containing lower and upper Fresnel zone boundaries 
2 Add intersection k = 1 to start intersections 
3 isi ← true 
4 for k ← 2 to #{Φk} do 
5 if (Φk ∈ Φ̌ ∧ Φk−1 ∈ Φ̌ ) ∨ (Φk ∈ Φ̂ ∧ Φk−1 ∈ Φ̂ ) then 
6 isi ←∼isi 
7 end 
8 if isi then 
9 Add k to start intersections 

10 end 
11 end 

5.4 Isophase Filling 

The geometry of a hologram layout must be described by a set of closed polygons for most common 
fabrication systems that use the GDSII or OASIS [15] layout description standards. Isophase curves must be 
connected into closed polygons that circumscribe areas with phase values corresponding to opaque (or 
phase-retarded) Fresnel zones, as described in Sec. 4. An algorithm for the flling (or shading) of adjacent 
isophase curves [isophase fll] is illustrated in Fig. 4. The polygons approximating isophase curves can be 
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oriented such that their initial vertices are closer to the tile origin than their terminal vertices as shown in 
Fig. 4. The algorithm picks an unconnected polygon (e.g., the polygon that is marked with red arrows and 
starts on edge 1) and then looks up the neighboring isophase intersections of the end vertex of the polygon in 
negative, x−, and positive, x+, edge direction. The phase values on the line between one of the neighbors 
will be in the correct phase range of the Fresnel zone, and the polygon that starts or ends on this neighboring 
intersection must be connected to the frst polygon (see red arrows). The end of the combined polygons 
again has two neighbors. When the neighbor in the negative direction is the start vertex of the original 
polygon, a closed polygon is complete. Otherwise, another polygon needs to be connected to the already 
connected polygons until the condition for a closed polygon is met (see blue arrows in Fig. 4). When a 
polygon traverses a tile corner, it is also possible that the negative neighbor of a polygon is its own start 
vertex and the polygon is then connected to itself when the phase on the edge connection is in the desired 
phase range. This situation is illustrated with the green arrows in Fig. 4. In the CGH toolbox, the loop in 
Alg. 4 is implemented through recursion. 

1

2

3

4

Fig. 4. Polygons approximating isophase curves crossing a tile area. Dashed isophase curves indicate the boundary with 
the lowest phase value in a Fresnel zone, solid lines the boundary with the highest phase value. The frst and last vertices 
of each polygon are tile edge crossings. Green dots indicate the location of the frst (start) vertex of a polygon. The blue 
dot denotes the tile origin. Arrows indicate paths for the assembly of isophase or phase boundary lines into closed 
polygons. 

5.5 Discontinuous Phase Functions 

The isophase following algorithm of Sec. 5.3 can be extended to phase functions with discontinuities 
and phase singularities. Examples are the phase functions with the Hilbert terms of Eq. (7), which will be 
discussed in detail in this section. Hilbert phase terms generate helical optical wavefronts characterized by 
an angular momentum distinct from the spin angular momentum related to polarization [34–36]. Helical 
beams are fnding a growing number of applications in advanced imaging systems [37–39]. 

The isophase following algorithm relies on the derivatives of a phase function to calculate isophase 
normal vectors and isophase curvatures. While the derivatives exist everywhere except at the phase 
singularity in Eq. (7), conventional methods for numerical differentiation fail at the discontinuities. This 
problem can be overcome by considering the complex continuous function 

iφ (x)Z(x) = e = cosφ(x)+ isinφ(x) . (12) 
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Algorithm 4: Structure of the isophase flling algorithm. 
Input : A set of polygons {Pk} approximating isophase curves on a rectangular tile. Each polygon 

is a sequence of vertex points, Pk = {xk,1,xk,2,xk,3, . . .}. 
Output: A set of closed polygons circumscribing Fresnel zones with phase values within the 

specifed phase interval. 

1 repeat 
2 Get next unconnected polygon Pu 

3 loop 
4 Look up tile edge neighbor x− of the terminal vertex xu,end of Pu 

5 if x− = xu,1 then 
6 if Phase of any edge point between xu,end and xu,1 is in phase interval then 
7 Pu ← Connect polygon containing vertex x− to Pu 

8 Connect ends of Pu and add to closed output polygons 
9 Mark polygon Pu as connected 

10 break 
11 end 
12 end 
13 Look up tile edge neighbor x+ of the terminal vertex xu,end of Pu 

14 if Phase of any edge point between xu,end and x− is in phase interval then 
15 Pu ← Connect polygon containing vertex x− to Pu 

16 else if Phase of any edge point between xu,end and x+ is in phase interval then 
17 Pu ← Connect polygon containing vertex x+ to Pu 

18 else 
19 Error condition 
20 end 
21 Mark polygon connected to Pu as connected 
22 end 
23 until All polygons are connected 

Expressions for the derivatives of discontinuous phase functions suitable for numerical differentiation can be 
derived by calculating the partial derivatives of Z(x) in Eq. (12). 

Zx Zy
φx = −i , and φy = −i , (13)

Z Z 

because Z(x) is continuous and its partial derivatives can be calculated at or near the discontinuities of φ (x) 
using standard methods for numerical differentiation (the abbreviated notation for partial derivatives 
introduced for Eq. (5) is also used in this section). The second numerical derivatives of φ(x) can similarly be 
calculated by using the derivatives of Z(x) [vwphderiv], � � � � � � 

Zxx Zxy Zyy
φxx = −i + φx 

2 , φxy = −i + φxφy , and φyy = −i + φy 
2 , (14)

Z Z Z 

where φx and φy are calculated using Eq. (13). Using Eqs. (13) and (14) the isophase following algorithm in 
Sec. 5.3 can be adapted for the calculation of holograms with discontinuous phase functions simply by 
replacing the method of numerical differentiation. Only one additional change is required. Fresnel zone 
boundaries are no longer lines of constant phase because the phase changes by 2π every time a zone 
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boundary crosses a discontinuity. The implementation of the boundary following algorithm 
[boundary curves] must test for the presence of discontinuities and adjust the phase whenever a zone 
boundary is crossed. The algorithm for determining the boundary polygon start vertices 
[boundary vertex init] takes into account that a phase singularity with undefned phase may be present on 
one of the tile edges. Similarly the boundary flling algorithm [boundary fll] is expanded to handle the 2p 
zone boundaries that meet at a singularity. First, boundaries are connected at the singularity, then boundary 
flling proceeds as usual with the algorithm described in Sec. 5.4. 

6. Methods for Validation 

The functionality of the toolbox was validated in several ways. For elementary cases, such as a 
rotationally symmetric Fresnel zone lens illuminated by a collimated beam, the hologram zone radii can be 
derived analytically [17, 19] and can be used to confrm the zone radii calculated by the toolbox from the 
phase function of the Fresnel lens. Holograms can be validated locally because the gradient of a phase 
function, ∇φ(x), is related to the local grating pitch p(x), the width of a Fresnel zone pair at x, 

2π k∇φ (x)k ∼= , (15)
p(x) 

because the phase change corresponding to the zone pair is 2π . The relationship in Eq. (15) was used for 
spot checks of holograms either after the layout is calculated or after fabrication of the hologram by 
comparing the zone widths to the width that is expected from the phase gradient. Zone widths of fnished 
holograms can be measured with a microscope. Finally, the toolbox was validated through the use of 
holograms that were made with the toolbox in a variety of interferometric tests and measurements. Some of 
these measurements are described in Refs. [40–45]. 

7. An Example 

The user manual for the toolbox [46] describes several applications of varying complexity. Here we 
illustrate the toolbox with the example of a Fresnel zone lens with an additional Hilbert phase term. A 
Fresnel zone lens that brings a collimated beam of light with wavelength λ to a focus at a distance f from 
the zone lens (in frst diffraction order) has the spherical phase function �q � 

4π
φF (x) = f 2 + kx − x0k2 − f . (16)

λ 

x0 is the center coordinate of the phase function. In this example we place the Fresnel phase function at the 
coordinate origin, x0 = 0, and assume a focal distance f of 100 mm and a wavelength of 0.63282 µm. The 
phase distribution of φF + φH with an added Hilbert term φH in Eq. (7) with topological charge p = 2 at an 
offset (0 mm, 0.8 mm) is shown in Fig. 5(a). The binary hologram that generates this phase front when 
illuminated with collimated light is shown in Fig. 5(b). The boundaries between dark and light zones are 
lines with phase values 3π/4 + kπ, k ∈ Z. Fig. 5 illustrates the characteristic forking of Fresnel zones into 
p+ 1 zones at the singularity of a Hilbert phase term. 
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(a) (b)

Fig. 5. (a) Central 3 mm × 3 mm domain of a phase function consisting of a Fresnel term centered at (0 mm, 0 mm) and 
a Hilbert term with topological charge p = 2 centered at (0 mm, 0.8 mm). The inset shows a 3 µm × 3 µm patch centered 
at the singularity of the Hilbert term. (b) The resulting binary hologram calculated with the phase boundary following 
algorithm described in Sec. 5.5. The hologram shows the zone forking characteristic of phase functions with Hilbert 
phase terms. 

8. Appendix: Isophase Curvature 

Equation (5) relates the isophase curvature to the partial derivatives of a scalar phase feld. In this section 
we give an elementary derivation of this connection, because it is central to the algorithms described in this 
paper. Consider a circle that tangentially touches an isophase curve at a location x(s) on the curve and 
intersects the curve at x0(s0) (also see Fig. 2). Two lines normal to the isophase curve can be defned at x and 
x0 , 

λ 7→ x+ λ n 
0 0

µ 7→ x + µn , (17) 

where λ , µ ∈ R. n is the unit normal vector at x, and n0 the unit normal vector at x0 . The two lines intersect 
where 

0 0x + λ n = x + µn . (18) 

A solution for the parameter µ is found when Eq. (18) is multiplied by t, the unit tangent vector at x, 

t · (x0 − x)
µ = − , (19)

t · n0 

because t · n = 0. When x0 is moved along the isophase curve towards x, the circle becomes the osculating 
circle of the isophase curve, shown in Fig. 2, at position x in the limit x0 → x. In the limit, the lines in 
Eq. (17) intersect at the center of the circle. Since n is a unit vector, µ must be the radius, R, of the circle. x0 

and n0 in Eq. (19) can be linearized in the vicinity of x. For a small arc distance δ s from x, x0 and n0 can be 
written as linear expressions in δ s, 

0x = x + tδ s + O(δ s2) 

0 dn 
n = n+ δ s+ O(δ s2) . (20)

ds 

Replacing x0 and n0 in Eq. (19) with their linearized forms in Eqs. (20), and taking the limit δ s → 0, results 
in an equation for the curvature κ = 1/R of the osculating circle (and the isophase curve) at x: 

dn
κ = − · t .

ds 
(21) 
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Equation (21) also follows from the second of the Frenet equations in Eqs. (9) when it is multiplied with t. 
The derivative of the normal vector along a curve in Eq. (21), 

dn ∂ n dx ∂ n dy 
= + , (22)

ds ∂ x ds ∂ y ds 

can be related to a phase function φ through the defnition of the unit normal vector in Eq. (4), 

∇φ � �− 12n = = N ∇φ , where N = φ
2 + φ 2 . (23)x yk∇φk 

For both components nk (k = 1,2) of n, Eq. (22) has the form 

dnk dx 
= ∇nk · = ∇nk · t (24)

ds ds 

(numerical indices are used to distinguish the normal vector components from derivatives). Applying ∇ to 
each of the components nk produces 

∇n1 = ∇(N φx) = N ∇φx + φx∇N 

∇n2 = ∇(N φy) = N ∇φy + φy∇N , (25) 

which, when multiplied with t according to Eq. (24), and written in vectorial form again, gives � � � � � �
∇n1 · t ∇φx · t φx = N +(∇N · t) . (26)
∇n2 · t ∇φy · t φy 

The curvature κ is fnally obtained, when this expression for dn/ds is applied in Eq. (21): � �
∇φx · t

κ = −N · t . (27)
∇φy · t 

The second term in Eq. (26) does not contribute to the curvature because it is a vector proportional to ∇φ 
and thus orthogonal to t (Eq. 3). From the orthogonality of t and n it follows further that the unit tangent 
vector t can be written as � �

φyt = N , (28)−φx 

where N is the same normalization factor defned in Eq. (23) for the normal vector n. With Eq. (28) the 
sought after expression for the isophase curvature κ in Eq. (5) is obtained � �

φxxφy − φxyφx
κ = −N 2 · t

φxyφy − φyyφx 

= −N 3 � 
φxxφy 

2 − 2φxyφxφy + φyyφx 
2� 

φxxφy 
2 − 2φxyφxφy + φyyφx 

2 

= − � . (29)�3/2
φ 2 + φ 2 

x y 

Interested readers can fnd a less pedestrian derivation by Goldman [47], that places Eq. (29) in the context 
of differential geometry. 
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9. Appendix: Zernike Polynomials 

The CGH toolbox includes a suite of functions for the evaluation, estimation, conversion, and 
transformation of Zernike polynomials. Zernike polynomials are a complete set of orthogonal polynomials 
on a circular disk. They provide an effcient representation of arbitrary wavefront aberrations over a circular 
pupil. Various defnitions exist for Zernike polynomials that differ in the coordinate system used, parameter 
numbering scheme, and normalization. Our implementation of Zernike polynomials is based on the 
defnition described in the ANSI Z80.28-2017 standard [48, 49], which has the following elements: 

• The Zernike polynomials are defned in terms of polar coordinates (ρ,θ) in the XY plane of a 
right-handed coordinate system. The normalized radial coordinate ρ ranges from 0 to 1, although the 
implementation in the toolbox permits values ρ > 1. The azimuth angle θ is defned relative to the 
positive X-axis and increases in counter-clockwise direction. Each Zernike term is the product of 
three components: a normalization factor, a polynomial defned on the radius ρ , and a sinusoid 
defned on the azimuth angle θ . 

• Each Zernike term, except the offset (piston) term, is normalized so that its variance equals 1 on the 
unit disk. The Zernike terms are orthonormal. 

• Each Zernike term is identifed by two indices n and m. The radial order n is the degree (highest 
power) of the radial polynomial. The angular order m is the azimuthal frequency of the angular term. 
The latter term equals sin(|m|θ) for m < 0 and cos(mθ ) for m >= 0. For each radial order n, the valid 
values for m equal −n,−n + 2, · · · ,n − 2,n. A Zernike term can also be identifed by a single index 
j = (n(n + 2)+ m)/2. 

Following this convention, a Zernike polynomial with coeffcients am is defned as: n 

k n 
Z(ρ,θ) = ∑∑

ma Zm(ρ,θ ) , (30)n n 
n=0 m=−n 

with Zernike terms (
sin(|m|θ ) if m < 0 

Zm(ρ, θ) = Nm Rm(ρ) . (31)n n n 
cos(mθ) if m > 0 

The radial polynomial term Rm(ρ) is given by: n ⎧ 
∑
(n−|m|)/2 (−1)k(n−k)! 

ρn−2k⎨ 
k=0 

� 
n+|m| 

� � 
n−|m| 

� if n−|m| is even 
k! −k ! −k !Rm(ρ) = 2 2 , (32)n ⎩0 if n−|m| is odd 

and the normalization factor s 
2(n+ 1)

Nm = , (33)n 1 + δm 

where δm is 1 for m = 0, and 0 otherwise. The frst ffteen Zernike polynomial terms are summarized in 
Tables 1 and 2. 
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Table 1. Zernike indices j for the frst ffteen Zernike terms according to the ANSI, Optical Shop Testing 2nd edition 
(OST), Noll, and Fringe or University of Arizona (UoA) term ordering conventions [zern index trans]. The symbol (−) 
indicates that the respective Zernike term is negated. The normalized terms Zm in column 7 and their names are thosen 
found in the ANSI standard. Note that the OST and Fringe Zernike terms are not normalized. 

n m ANSI [48] OST [50] Noll [51] Fringe [52] Zm 
n , see Eq. (31) Common name [48] 

0 0 0 1 1 0 1 piston 

1 −1 1 3 3 2 2ρ sin(θ) vertical tilt 

1 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

4 

1 

−2 

0 

2 

−3 

−1 

1 

3 

−4 

−2 

0 

2 

4 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

2 

4 

5 

(−)6 

(−)10 

9 

8 

(−)7 

(−)11 

12 

13 

(−)14 

15 

2 

5 

4 

6 

9 

7 

8 

10 

15 

13 

11 

12 

14 

1 

5 

3 

4 

10 

7 

6 

9 

17 

12 

8 

11 

16 

2ρ cos(θ )
√ 

6ρ2 sin(2θ )
√ 

3(2ρ2 − 1)
√ 

6ρ2 cos(2θ )
√ 

8ρ3 sin(3θ )
√ 

8(3ρ3 − 2ρ)sin(θ )
√ 

8(3ρ3 − 2ρ)cos(θ)
√ 

8ρ3 cos(3θ )
√ 

10ρ4 sin(4θ )
√ 

10(4ρ4 − 3ρ2)sin(2θ )
√ 

5(6ρ4 − 6ρ2 + 1)
√ 

10(4ρ4 − 3ρ2)cos(2θ)
√ 

10ρ4 cos(4θ) 

horizontal tilt 

oblique astigmatism 

defocus (power) 

astigmatism 

oblique trefoil 

vertical coma 

horizontal coma 

horizontal trefoil 

secondary oblique ast. 

primary spherical 

secondary astigmatism 

Table 2. The frst sixteen Zernike terms Zm and their index values j according to ANSI, Optical Shop Testing 2nd n 
edition (OST), Noll, and Fringe (UoA) term ordering conventions. Note that the OST and Fringe (UoA) Zernike terms 
are not normalized. 

j ANSI [48] OST [50] Noll [51] Fringe [52] 

0 Z0 
0 Z0 

0 

1 Z−1 
1 Z0 

0 Z0 
0 Z1 

1 

2 Z1 
1 Z1 

1 Z1 
1 Z−1 

1 

3 Z−2 
2 Z−1 

1 Z−1 
1 Z0 

2 

4 Z0 
2 Z−2 

2 Z0 
2 Z2 

2 

5 Z2 
2 Z0 

2 Z−2 
2 Z−2 

2 

6 Z−3 
3 −Z2 

2 Z2 
2 Z1 

3 

7 Z−1 
3 −Z3 

3 Z−1 
3 Z−1 

3 

8 Z1 
3 Z1 

3 Z1 
3 Z0 

4 

9 Z3 
3 Z−1 

3 Z−3 
3 Z3 

3 

10 Z−4 
4 −Z−3 

3 Z3 
3 Z−3 

3 

11 Z−2 
4 −Z−4 

4 Z0 
4 Z2 

4 

12 Z0 
4 Z−2 

4 Z2 
4 Z−2 

4 

13 Z2 
4 Z0 

4 Z−2 
4 Z1 

5 

14 Z4 
4 −Z2 

4 Z4 
4 Z−1 

5 

15 Z−5 
5 Z4 

4 Z−4 
4 Z0 

6 
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The Zernike polynomial related functions of the CGH toolbox can be grouped into the following 
categories: 

• Evaluation of a Zernike polynomial [zern eval]. In our implementation, we use the modifed Kintner 
method [53, 54] for the fast and stable evaluation of the radial polynomial terms Rm(ρ) using an 
recursion relation. Zernike terms can be calculated and evaluated in their symbolic form in both polar 
and cartesian coordinates [zern symbolic]. This functionality requires installation of Octave’s 
Symbolic package [2]. 

• Estimation of a Zernike coeffcient vector from wavefront aberration data [zern estim]. The 
estimation minimizes the least squares error and can be performed with or without the assumption of 
orthogonality. 

• Conversion of a Zernike coeffcient vector from one defnition to another [zern index trans]. The 
implemented defnitions are 

– (n,m) index pairs defned in the ANSI Z80.28-2017 standard. 

– Zernike term index j defned in the ANSI Z80.28-2017 standard. Starting with an index value of 
0, a polynomial with a lower value of n is ordered frst. For equal values of n, a polynomial with 
a lower value of m is ordered frst. 

– Zernike indices and Zernike polynomials defned in the second edition of Optical Shop Testing 
[50]. This publication uses a similar index numbering approach to the ANSI Z80.28-2017 
standard. However, the Zernike terms are not normalized, i.e., their values on the unit circle are 
in the interval [−1,1]. The lowest index value for j is 1. Furthermore, the azimuth angle θ 0 is 
defned relative to the positive Y -axis and increases in the clockwise direction. The sinusoidal 
term for an angular order l is sin(lθ 0) for l > 0 and cos(lθ 0) for l <= 0. Finally, for the same 
radial order n, cos terms have a lower Zernike index number than sin terms. 

– indices and Zernike polynomials defned by Noll [51] and also described in the third edition of 
Optical Shop Testing [55]. Here polynomials are defned using the same normalization and 
azimuth angle as the ANSI Z80.28-2017 standard. However, for a given Zm term, the equivalent n 
index j is defned in a different manner. Starting with j = 1, a polynomial with a lower value of 
n is ordered frst. For equal values of n, a polynomial with a lower value of the azimuthal 
frequency |m| is ordered frst. An even j corresponds to a cos(mθ ) angular term whereas an odd 
j corresponds to a sin(|m|θ) angular term. 

– “Fringe” indices and Zernike polynomials as defned by Loomis [52, 56]. Here the azimuth 
angle defnition is the same as that of the ANSI Z80.28-2017 standard. The Zernike terms are 
not normalized. This term ordering scheme is inspired by the needs of optics fabricators and 
groups terms according to their n + |m| values. Thus, the frst group n+ |m| = 2 contains the 
paraxial wavefront properties. The second group n+ |m| = 4 contains the third order aberrations. 
The third group n+ |m| = 6 contains the ffth order aberrations, etc. Starting with j = 0, a 
polynomial with a lower value of n+ |m| is ordered frst. For polynomials with the same n+ |m|
value, a polynomial with a higher value of the azimuthal frequency |m| is ordered frst. Finally, 
cos(mθ ) terms are ordered before sin(|m|θ). The toolbox also contains a conversion for Zernike 
coeffcient vectors that follow this defnition, but where the angle is defned relative to the 
positive Y -axis in clockwise direction. 

• Transformation of a Zernike coeffcient vector to describe a mirror operation, scaling, rotation, or 
translation [57] [zern transform]. These functions can also be used to obtain the Zernike coeffcient 
vector of a circular sub-aperture. 
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