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We present a method to calculate dielectric and refractivity virial coefficients using the path-integral Monte Carlo formulation of
quantum statistical mechanics and validate it by comparing our results with equivalent calculations in the literature and with more
traditional quantum calculations based on wavefunctions. We use state-of-the-art pair potentials and polarizabilities to calculate the
second dielectric and refractivity virial coefficients of helium (both 3He and 4He), neon (both 20Ne and 22Ne), and argon. Our
calculations extend to temperatures as low as 1 K for helium, 4 K for neon, and 50 K for argon. We estimate the contributions to the
uncertainty of the calculated dielectric virial coefficients for helium and argon, finding that the uncertainty of the pair polarizability is
by far the greatest contribution. Agreement with the limited experimental data available is generally good, but our results have smaller
uncertainties, especially for helium. Our approach can be generalized in a straightforward manner to higher-order coefficients.
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1. Introduction

Capacitance-based measurements that employ noble gases have several applications (and potential
applications) in metrology. Dielectric-constant gas thermometry [1] has been used for primary temperature
measurement [2], and it provided a key input for the recent redefinition of the Boltzmann constant [3, 4]. A
proposal for basing pressure standards on capacitance measurements was first made over 20 years ago [5],
and primary pressure measurement up to 7 MPa has recently been demonstrated based on measuring the
static dielectric constant (relative permittivity) of helium [6]. While most such metrology is performed with
helium, neon and argon may also be used because their larger polarizabilities increase the sensitivity of
apparatus [6, 7].
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Measurements of the refractive index of noble gases also have applications in metrology. A recent
review article [7] described refractive-index gas thermometry, and work is ongoing to develop a primary
pressure standard based on the refractivity of helium [8, 9].

In the applications based on capacitance, the static dielectric constant ε is related to the molar density ρ

by the virial expansion of the Clausius–Mossotti function:

ε−1
ε +2

= ρ
(
Aε +Bε ρ +Cε ρ

2 + . . .
)
= ρAε

(
1+bρ + cρ

2 + . . .
)
, (1)

where Aε is proportional to the mean static polarizability of the isolated molecule. The term “second
dielectric virial coefficient” is used in the literature sometimes for Bε and sometimes for b; the two are
related by Bε = Aε b. Similarly, the third dielectric virial coefficient is sometimes defined as c and
sometimes as Cε = Aε c; we will use Bε and Cε in this work. For a given species, these virial coefficients are
functions only of temperature. Bε depends on interactions between two molecules, Cε depends on
interactions among three molecules, and so forth. For nonpolar species such as noble gases, the Aε term
dominates in Eq. (1), and the virial terms are only significant for precise work.

For the refractive index n, a parallel expansion exists for the Lorentz–Lorenz function:

n2−1
n2 +2

= ρ
(
AR +BRρ +CRρ

2 + . . .
)
, (2)

where AR, BR, and CR are analogous refractivity virial coefficients that depend on temperature and
frequency. In the limit of zero frequency, the refractivity virial coefficients are equal to their dielectric
counterparts (with the exception of a small term involving the magnetic permeability, which is known
approximately for AR and is negligible for the higher coefficients [10]), but at finite frequencies a correction
for dispersion is needed. The dispersion correction at optical frequencies is quite small for the noble gases
because there is negligible absorption between optical frequencies and the static limit. The dispersion
correction for BR is given to lowest order as

BR = Bε +ω
2B(2)

R , (3)

where ω is the angular frequency. The expansion coefficient B(2)
R depends on an interaction-induced Cauchy

moment, ∆S(−4), corresponding to the pair interaction, as described by Koch et al. [11].
In parallel with Eq. (1) and Eq. (2), dielectric and refractivity measurements in metrology employ the

more familiar thermodynamic virial expansion for the pressure p, which is a systematic series of corrections
to the ideal-gas law:

p
ρRT

= 1+Bρ +Cρ
2 + . . . , (4)

where T is the absolute temperature and R is the molar gas constant. The second virial coefficient B depends
only on the interaction between two molecules, the third virial coefficient C includes three-body
interactions, etc.; these coefficients are only functions of temperature for a given species. Equations (1) and
(4) are combined to fully describe the deviation of gas-phase dielectric-constant measurements from
ideal-gas behavior; see Refs. [1] and [6] for details. An analogous combination of Eq. (2) and Eq. (4) is
performed to describe gas-phase refractivity measurements [7].

For helium, it is possible to construct capacitance-based and refractivity-based primary standards of
temperature and pressure due to the availability of highly accurate ab initio calculations. The static
polarizability of an isolated helium atom (and therefore Aε ) is now known with a relative standard
uncertainty of 0.1×10−6 (0.1 ppm) [10, 12, 13], and the frequency-dependent polarizability (and therefore
AR) is known at optical frequencies with a similarly small uncertainty [10]. The availability of a highly
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accurate ab initio pair potential, and a fairly accurate three-body potential, enables accurate calculation of B
[14] and C [15] as functions of temperature.

The dielectric and refractivity virial coefficients beyond the first, however, are much less well known,
both from experiment and theory, and they can contribute significantly to metrological uncertainty
budgets [6, 7]. We will defer discussion of the experimental situation until later sections; in the following we
discuss theoretical calculation of Bε and BR for noble gases.

The theoretical formulae for the dielectric virial coefficients were derived by Moszynski et al. [16], who
showed that the dielectric virial of order n requires knowledge of the interaction potential of n molecules, Vn,
as well as the interaction-induced polarizability of the same n particles, αn, which, in general, is a 3×3
matrix. All of these quantities can in principle be calculated using ab initio electronic structure methods.

Since the computational effort required to obtain potentials and polarizabilities is quite significant, this
task has been undertaken up to now only for a few monatomic gases and limited to the second dielectric
virial coefficient, Bε(T ), which is given by

Bε(T ) =
2πN2

A
3V

Λ
6
m

∫
d3r(1)1 d3r(1)2

[
〈r(1)1 ,r(1)2 |∆α2(r)e−βH |r(1)1 ,r(1)2 〉+

(−1)2I

2I +1
〈r(1)1 ,r(1)2 |∆α2(r)e−βH |r(1)2 ,r(1)1 〉

]
, (5)

where r(1)1 and r(1)2 denote the positions of the two atoms (and the superscript (1) is introduced for later

convenience), r =
∣∣∣r(1)2 − r(1)1

∣∣∣ is their distance, H = K1 +K2 +V2(r) is the Hamiltonian describing the
interaction between two atoms (with K j being the kinetic energy operator for atom j), ∆α2(r) is one third of
the trace of the interaction-induced pair polarizability α2, kB is the Boltzmann constant (we use this symbol
to avoid confusion with the use of k for wavevectors in Sec. 2), β = (kBT )−1, and NA is the Avogadro
constant. In Eq. (5), V is the volume of the box enclosing the two atoms, with the understanding that the
actual value is obtained in the V → ∞ limit, and Λm = h/

√
2πmkBT is the thermal de Broglie wavelength of

an atom whose mass is denoted by m. The first term in square brackets in Eq. (5) is called the direct term,
whereas the second term takes into account quantum statistics; bosons have integer nuclear spin I, whereas
fermions have half-integer nuclear spin.

Values of Bε(T ) for 4He were computed by Moszynski and collaborators using an empirical pair
potential together with a first-principles calculation of ∆α2(r) [16, 17]. Quantum effects were taken into
account either with a semiclassical expansion up to O(h̄4), or with a fully quantum approach described in
Sec. 2 below.

Subsequently, Rizzo et al. recalculated Bε(T ) for helium using a fully ab initio pair potential and
polarizabilities, obtained at the FCI (Full Configuration Interaction) level with large basis sets [18]. These
new calculations showed a significant difference in the values of the second dielectric virial coefficient,
especially at the lowest temperature, and this disagreement was attributed to improved accuracy in the
interaction-induced polarizability ∆α2.

Recently, further advances in ab initio calculations have provided a more accurate pair potential for the
helium dimer [19] as well as an improved interaction-induced polarizability [20]. Additionally, the
developers of these values provided accuracy estimates, enabling estimation of the uncertainty in the
calculated dielectric virial coefficient. In previous works, the overall uncertainty of Bε(T ) was never
estimated in a rigorous way; the first paper to present a rigorous uncertainty analysis, albeit in a
semiclassical framework, appeared while this manuscript was being finalized [21].

Ab initio pair potentials and polarizabilities are also available for neon and argon. In the case of neon,
we used the pair potential calculated by Hellmann et al. [22] together with the pair polarizability by Hättig
et al. [23]. Much effort has been devoted to argon, given its importance in many metrological applications.
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We used the ab initio pair potential of Patkowski and Szalewicz [24], who also estimated its uncertainty. In
addition, we used the pair polarizability of Vogel et al. [25].

In this study, we developed an alternative way of calculating Bε(T ) using the path-integral Monte Carlo
(PIMC) approach. This method has been proven to provide accurate fully quantum results for the density
virial coefficients of atoms and molecules [26–28], and it can be used to calculate virials of any order in a
straightforward manner [15, 29, 30]. Following Cencek et al. [20], we evaluated the uncertainty of Bε(T ) as
a function of the uncertainties of V2(r) and ∆α2(r).

We also made use of our values of Bε to calculate the second refractivity virial coefficient BR from
Eq. (3). This requires computing B(2)

R , for which the expression [11] is analogous to Eq. (5), provided that
the Cauchy moment, ∆S(−4), is used instead of ∆α2. These Cauchy moments are given as a function of
radial distance by Hättig et al. [31] for helium, Hättig et al. [23] for neon, and Fernández et al. [32] for
argon. In the case of argon, only tabular values were given, so we fitted those values to the same functional
form used for neon in Ref. [23].

2. The Wavefunction Approach

The usual way [17, 18] to calculate Bε(T ) starting from Eq. (5) is to first introduce the center of mass
and relative coordinates, that is, R = (r(1)1 + r(1)2 )/2 and r = r(1)2 − r(1)1 , respectively. Using these variables,
the Hamiltonian H separates into a trivial center-of-mass component and a part involving only the relative
coordinates. One can then insert a completeness relation of the form

1 = ∑
l
(2l +1)

(
∑
n
|ψnl〉〈ψnl |+

∫
∞

0
dk |ψkl〉〈ψkl |

)
, (6)

where l denotes the angular momentum, |ψnl〉 are the bound states of the pair potential (for which energies
will be denoted by Enl), and |ψkl〉 are the solutions of the radial Schrödinger equation with energy
Ek = h̄2k2/(2µ), where µ is the reduced mass of the atomic pair. Apart from the usual condition
〈ψnl |ψn′l′〉= 1, Eq. (6) implies that the normalization of the radial part of the continuum wavefunctions
|ψkl〉 is

〈ψkl |ψk′l′〉= δ (k− k′)δll′ , (7)

which is in turn a condition on the amplitude of their oscillation at distances r such that V (r) is negligible.
As is well known, in this region, one has the asymptotic expansion [33]

ψkl(r) = A(cosδl(k) jl(kr)− sinδl(k)yl(kr)) , (8)

where jl(kr) and yl(kr) are the spherical Bessel functions (that is, the radial eigenfunctions of the free
particle motion), and δl(k) are the phase shifts. Equation (7) implies that

A =

√
2
π

k. (9)

Substituting Eq. (6) in Eq. (5), one obtains the expression [16]

Bε(T ) =
2πΛ3

µ N2
A

3 ∑
l

(
1+

(−1)l+2I

2I +1

)
(2l +1)

[
∑
n

e−βEnl

∫
∞

0
r2dr ∆α2(r)|ψnl(r)|2+∫

∞

0
dke−βEk

∫
∞

0
r2dr ∆α2(r)|ψkl(r)|2

]
, (10)

for which evaluation is straightforward. The bound states can be obtained by numerical diagonalization of
the Hamiltonian, whereas the continuum states can be obtained by Numerov integration with a step size d.
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In this last case, the initial conditions can be set as ψkl(r0) = 0 and ψkl(r0 +d) = 1, starting from a point
where V (r0)� Ekl and integrating forwards. With this choice of boundary condition, ψkl(r) tends to
diverge, so it is convenient to renormalize its values as the integration proceeds and finally impose the
condition of Eq. (9) in the region where V (r)∼ 0. Convergence in Eq. (10) depends on the choice of the step
size d for the numerical evaluation of the wavefunctions (for either bound or scattering states), as well as the
number of angular momenta and the number of wavevectors k used to perform the integration. In general,
the number of angular momenta increases with the cutoff on the wavevector, which in turn depends on the
temperature T . In the case of helium, we found it convenient to follow the indications in Ref. [34].

2.1 Alternative Diagonalization Approach

The procedure outlined above works well for helium and neon, and we obtained good agreement with
the results of the path-integral method described below. In the case of argon, however, we noticed a
systematic difference between the two approaches. As noted in Ref. [18], one has to be careful in dealing
with the many resonances that are present in this system, which result in sharp peaks appearing in the
function to be integrated with respect to the wavevector in Eq. (10). However, even inserting more than
10 000 wavevectors in the resonance region, and thus obtaining well-resolved peaks, we noticed a persistent
deviation between this method and the classical or the path-integral calculations (on the order of 10 % at
T = 100 K), for which we were unable to pinpoint its origin. We surmise it to be due to a zero-energy
resonant state in the l = 0 angular momentum sector; its presence is apparent by the fact that the s-wave
phase shift tends to an odd integer multiple of π/2 for k→ 0 [35], but this exotic state (for which the
wavefunction has a formal exponential divergence at large distances) is not taken into account in Eq. (6).

We decided to resort to an alternative method to calculate Eq. (5) by noting that it is expressed in the
form of a trace. We then evaluated it by putting the system inside a large sphere of radius R and
diagonalizing the Hamiltonian. Denoting the eigenstates of H in this geometry by |El,n〉, the expression of
the second dielectric virial coefficient becomes simply

Bε(T ) =
2πN2

A
3 ∑

l

(
1+

(−1)l+2I

2I +1

)
(2l +1)∑

n
e−βEl,n〈El,n|∆α2(r)|El,n〉. (11)

We found that using R = 4 nm, with a discretization step of d = 10−3 nm and including 1000 angular
momenta, was sufficient to achieve well-converged results. In this way, we were able to confirm the values
of Bε(T ) obtained for helium and neon using both the approach outlined in the previous sections and the
PIMC approach described below, as well as cure the discrepancy observed in the case of argon. The fact that
we were able to obtain very similar results (to four significant figures) for the second dielectric virial
coefficient using two independent methods that take into account quantum effects with no uncontrolled
approximations bolsters our confidence in the accuracy of the values of Bε(T ) reported in this paper.

2.2 Classical Limit

The classical (large-temperature) limit of Eq. (5) can be obtained by assuming that [Ki,V ] = 0. In this
case, the term proportional to (2I +1)−1 tends to zero (which is tantamount to saying that both bosonic and
fermionic quantum statistics tend to classical statistics in the classical limit), and the matrix elements of the
kinetic energy operators are constant, that is,

〈r(1)i |e
−βKi |r(1)i 〉=

1
Λ3

m
, (12)
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so that the second dielectric virial coefficient becomes

Bcl
ε (T ) =

8π3N2
A

3

∫
r2

∆α2(r)e−βV (r) dr, (13)

which matches the classical result derived by Buckingham [36, 37].

3. The Path-Integral Approach

In this section, we show how to evaluate Eq. (5) using the path-integral approach to quantum statistical
mechanics [38]. In this way, we will derive a numerical approach equivalent to the wavefunction-based
method described in Sec. 2, which will be shown to be more computationally efficient. We also plan to
extend it to higher-order coefficients.

In the path-integral approach, one rewrites Eq. (5) using a Trotter expansion for the exponential. That is,

e−βH =
P

∏
i=1

e−βH/P '
P

∏
i=1

e−βK1/Pe−βK2/Pe−βV2/P, (14)

where the last equality is exact in the limit P→ ∞. Additionally, we insert in Eq. (5) P−1 completeness
relations of the form

1 =
P

∏
i=2

∫
d3r(i)1 d3r(i)2 |r

(i)
1 ,r(i)2 〉〈r

(i)
1 ,r(i)2 |, (15)

thus expressing the second dielectric virial coefficient as a large multidimensional integral.
Acting on the position eigenstates, all the exponentials involving the potential become numbers so that

they can be collected, resulting in a term of the form

exp

[
−β

P

P

∑
i=1

V2

(∣∣∣r(i)2 − r(i)1

∣∣∣)] , (16)

whereas the matrix elements of the exponential of the kinetic energy operators K1 and K2 can be evaluated
exactly [15, 26]. In the first (direct) term in Eq. (5), these matrix elements, together with the Λ6

m factor,
result in appearance of the so-called P-bead ring-polymer probability distribution for each of the two
atoms [39]. This quantity corresponding to atom j is given by

Π j = Λ
3
m

(
P3/2

Λ3
m

)P

exp

[
−πP

Λ2
m

P

∑
i=1

∣∣∣r(i+1)
j − r(i)j

∣∣∣2] , (17)

where we have denoted r(P+1)
j = r(1)j . Since we arbitrarily assigned the indices in the superscripts, the

integral providing Bε(T ) is invariant when we substitute in the polarizability

∆α2

(∣∣∣r(1)2 − r(1)1

∣∣∣)→ ∆α2

(∣∣∣r(i)2 − r(i)1

∣∣∣) , (18)

for each value of the index i, and hence we can replace ∆α2

(∣∣∣r(1)2 − r(1)1

∣∣∣) with

∆α2 ≡
1
P

P

∑
i=1

∆α2

(∣∣∣r(i)2 − r(i)1

∣∣∣) . (19)

Finally, the direct term can then be written as

Bdir
ε (T ) =

2πN2
A

3V

∫ 2

∏
j=1

P

∏
i=1

d3r(i)j ∆α2 Π1Π2 exp

[
−β

P

P

∑
i=1

V2

(∣∣∣r(i)2 − r(i)1

∣∣∣)] , (20)
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which can be further simplified using the following considerations. First of all, the integrand is invariant
under a translation of all the coordinates, and so it is proportional to the volume V (which cancels the
volume in the denominator), and we can fix one of the coordinates (r(1)1 , say) at the origin of the coordinate
system. Among the remaining 2P−1 coordinates, 2(P−1) are relative coordinates appearing in the
functions Π j, that is, the coordinates ∆x(i)j = r(i+1)

j − r(i)j for i = 2, . . . ,P, and the last coordinate r(1)2 can be
renamed as r. A pictorial representation of these coordinates is provided in Fig. 1.

r

Δx₁

Δx₂

Fig. 1. Representation of the coordinates of the ring polymers of the direct term in Eq. (5). Only two representatives of
the set of coordinates ∆x(i)j are shown for j = 1 and j = 2.

Defining the average pair potential, analogous to ∆α2 in Eq. (19), as

V2 =
1
P

P

∑
i=1

V2

(∣∣∣r(i)2 − r(i)1

∣∣∣) , (21)

and denoting by 〈· · · 〉 the integral over the ∆x(i)j variables weighted with Π1Π2, the path-integral expression
for the direct contribution to Bε(T ) becomes

Bdir
ε (T ) =

2πN2
A

3

∫
d3r 〈∆α2 exp

(
−βV2

)
〉. (22)

At high temperatures, the probability distributions Π j shrink to a point, and hence we recover the classical
expression given by Eq. (13) for Bε , since

∆α2 → ∆α2

V2 → V2.

We can apply the same procedure to evaluate the exchange term. In this case, however, the presence of
the exchanged coordinates implies that r(P+1)

1 = r(1)2 and r(P+1)
2 = r(1)1 . It is then useful to define 2P

coordinates yi as yi = r(i)1 for i = 1, . . . ,P and yi = r(i−P)
2 for i = P+1, . . . ,2P, so that the exchange

condition implies that y2P+1 = y1. Analogous to the case of the direct term, we can then define

7 https://doi.org/10.6028/jres.125.022

https://doi.org/10.6028/jres.125.022
https://doi.org/10.6028/jres.125.022


Volume 125, Article No. 125022 (2020) https://doi.org/10.6028/jres.125.022

Journal of Research of National Institute of Standards and Technology

∆yi = yi+1−yi, and we notice that the product Π1Π2 can be written in these coordinates as

Π1Π2 = Λ
6
m

(
P3/2

Λ3
m

)2P

exp

[
−πP

Λ2
m

2P

∑
i=1
|∆yi|2

]
. (23)

Defining now λ =
√

2Λm, Eq. (23) can be written as

Π1Π2 =
λ 3

8
λ

3

(
(2P)3/2

λ 3

)2P

exp

[
−π 2P

λ 2

2P

∑
i=1
|∆yi|2

]
≡ λ 3

8
Π, (24)

where we recognize the probability distribution Π of a ring polymer with 2P beads corresponding to a
particle of mass µ = m/2; see Eq. (17). Analogous to what happened in the case of the direct term, the
multidimensional integral providing Bex

ε (T ) is invariant under an overall translation of the coordinates yi,
and so it is proportional to the volume V , provided that we fix one of the coordinates (y1, say) at the origin
of the coordinate system. Defining, analogous to Eq. (19) and Eq. (21),

∆̃α2 =
1
P

P

∑
i=1

∆α2 (|yi+P−yi|) (25)

Ṽ2 =
1
P

P

∑
i=1

V2 (|yi+P−yi|) , (26)

the exchange term can be written as

Bex
ε (T ) =

(−1)2I

2I +1
πλ 3N2

A
12

〈
∆̃α2 exp

(
−βṼ2

)〉
, (27)

where the average is taken over the configurations of a closed ring polymer having 2P beads distributed
according to the function Π defined in Eq. (24). Since the size of the ring polymer described by the
distribution Π shrinks to a point at high temperatures, the contribution of the exchange term, Eq. (27), to the
dielectric virial is strongly suppressed by the exponential of Ṽ2, which will sample configurations in the
repulsive region of the interaction potential. It is only when the size of the ring polymer (which is of the
order of λ ) reaches the order of the repulsive region that we would expect the exchange term to contribute
significantly to the dielectric virial. Using the expression of the de Broglie wavelength and the fact that the
“size” of a helium atom is on the order of 0.25 nm, exchange effects are expected to become apparent at
temperatures lower than about 20 K.

3.1 Computational Details

The second dielectric virial coefficient of atomic species is then given by summing the contributions of
Eq. (22) and Eq. (27). The radial integration in Eq. (22) was performed using the VEGAS Monte Carlo
algorithm, whereas the averages over the ring-polymer configuration were performed using the analytical
formula developed by Levy [40, 41] to generate configurations and using at least eight independent samples
for each value of the radial coordinate. The exchange contribution depends only on the ring-polymer
configurations, and in that case we used 105 samples to evaluate this contribution. The path-integral
expressions are exact in the P→ ∞ limit, although in actual applications a large enough value of P suffices.
We found convergence in our results using a value of P depending on temperature according to
P = int(2000 K/T +7) in the case of 3He, P = int(1600 K/T +7) for 4He, P = int(800 K/T +4) for neon,
and P = int(300 K/T +4) for argon, where int(x) denotes the nearest integer to x.
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The calculation of the eigenstates |El,n〉 and the corresponding matrix elements of the polarizability
needed in Eq. (11) required roughly 32 hours on a modern 2.5 GHz processor for each atomic species
considered. After this preliminary calculation, the evaluation of Bε(T ) at each temperature takes only a few
seconds. On the other hand, the path-integral evaluation of the second dielectric virial coefficient takes a
computational time roughly proportional to the Trotter index P needed to reach convergence at a given
temperature. The most demanding computation for this paper—the calculation for 3He at 1 K—took
roughly 5 minutes on the same hardware. Therefore, once the programs were properly debugged, all the
path-integral calculations presented here could be performed during a lunch break.

In general, the results obtained using PIMC are in exceptional agreement with the results obtained using
the more traditional wavefunction-based methods, usually to at least four significant figures. In the
following tables, we report the values of Bε(T ) and B(2)

R (T ) obtained with PIMC. We also report, as
Supplemental Material, the values of the same coefficients at temperature intervals of 1 K, in the range
1–2000 K for the helium isotopes, 4–2000 K for the neon isotopes, and 50–2000 K for 40Ar. In the
Supplemental Material, the virials were generally evaluated using the wavefunction-based method, which is
more efficient for this kind of systematic calculation in the case of substantial quantum effects, except for
argon, because its almost classical nature makes the PIMC approach more suitable.

4. Types of Experimental Data

Since we will be comparing our calculated values with experimental Bε and BR in subsequent sections,
we briefly review the ways in which their values can be derived from experiments.

The most straightforward method would be direct application of Eq. (1) or Eq. (2), measuring the static
dielectric constant ε or refractive index n of a gas at a fixed temperature over a range of pressures [and
therefore a range of densities, where density can be derived from temperature and pressure with a reference
equation of state or with Eq. (4) if the density virial coefficients are well known]. In practice, however, while
these direct experiments can yield highly accurate values of Aε and AR, they are not able to determine the
slope in Eq. (1) and Eq. (2) well enough to determine Bε and BR accurately for nonpolar species such as
those considered here.

For nonpolar species, the most reliable experimental values of Bε have been obtained from expansion
measurements that reduce systematic errors by employing two or more near-identical vessels, following the
general procedure outlined by Orcutt and Cole [42]. All of our comparisons below will be to data from this
method unless otherwise stated. Similarly, most reported values of BR arise from differential expansion
measurements.

Some experimenters report the quantity b, which is Bε/Aε . To convert b to Bε , we used the best current
value of Aε for each gas. For 4He, Aε has been calculated from ab initio quantum mechanics more
accurately than it can be measured [10, 12, 13]; the value is 0.51725408(5) cm3 mol−1. For neon and argon,
the most accurate values come from Gaiser and Fellmuth [43], who reported 0.9947114(24) cm3 mol−1 for
neon and 4.140686(10) cm3 mol−1 for argon.

Dielectric-constant gas thermometry can yield accurate values of the quantity (B−b), where B is the
density-series second virial coefficient in Eq. (4). When highly accurate values of B are known
independently (as is the case for helium), the resulting values of b can be converted to Bε as described in the
preceding paragraph. For neon and argon, there is enough uncertainty in the values of B that this approach
produces Bε with a relatively large uncertainty.
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5. Results for Helium

5.1 Comparison with Other Methods for Bε

We validated our approach by comparing the Bε(T ) values obtained for 4He with those appearing in the
literature, and we show in Fig. 2 the difference between the literature values (Bε,lit) and our results (Bε,PIMC,
calculated with our path-integral approach but using the pair potential and pair polarizability of the original
references). The error bars in Fig. 2 result from combining in quadrature our statistical uncertainty and the
claimed uncertainty of the literature result. We compared our results with three literature sources: The first
includes the work by Moszynski and coworkers wherein the theory was developed [16, 17]. In this case, we
observed mutual agreement between our results and theirs, although we noticed a small systematic
difference. The second source is the paper by Rizzo et al. [18]. These authors did not perform a rigorous
analysis of the final uncertainty, but they stated their expectation that the results were converged to better
than 1 % and possibly within 0.1 %. We found that our path-integral results were consistent with theirs
assuming their worst case, especially at the highest temperatures. In fact, we managed to reproduce the
results of Ref. [18] using the wavefunction approach, and we were able to check that the results given there
were indeed converged only to 1 % and not 0.1 %, due to an insufficient number of angular momenta
considered. Finally, we compared our results with the classical values reported by Cencek et al. [20]; in this
case, the agreement was essentially perfect.

Fig. 2. Difference between the values of Bε (T ) reported in the literature (Bε,lit) and those calculated with the
path-integral method developed in this paper (Bε,PIMC). The error bars indicate the combination of our statistical
uncertainty and the uncertainty claimed in the literature source. Circles: Moszynski et al. (1995) [16, 17]; triangles:
Rizzo et al. (2002) [18], assuming 1 % uncertainty in their calculated values; diamonds: Cencek et al. (2011) [20], using
classical values. In all cases, Bε,PIMC was computed using the pair potential and polarizabilities used in the original
literature source. Note the logarithmic temperature scale.

5.2 Estimate of the Uncertainty

Apart from the statistical uncertainty of the Monte Carlo method, which can be reduced arbitrarily by
performing long enough simulations, and the uncertainty due to the convergence in the number of beads,
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which can also be reduced arbitrarily by using a large enough Trotter index P, there are two sources of
uncertainty in the values of the second dielectric virial coefficient. These come from the uncertainty in the
pair potential V2(r) and the uncertainty in the interaction-induced polarizability ∆α2(r).

We calculated Bε(T ) for helium with the most accurate potential and polarizability currently available,
namely the pair potential developed by Przybytek et al. [19] and the interaction-induced polarizability
developed by Cencek et al. [20]. In both cases, the authors provided estimates of the uncertainty, and we
evaluated the overall uncertainty of the second dielectric virial as follows.

Analogous to our previous work [15, 27, 28], we generated the “most repulsive” and the “most
attractive” pair potentials, defined as V±(r) =V2(r)±δV2(r), and evaluated the second dielectric virial in
both cases using the given ∆α2(r). The absolute difference between the resulting Bε(T ) values provides an
estimate of the uncertainty due to the potential. We also evaluated the second dielectric virials using V2(r)
with the perturbed interaction polarizabilities ∆α±(r) = ∆α2(r)±δ∆α2(r), obtaining an estimate of the
uncertainty of Bε(T ) due to the uncertainty of the polarizability by taking the absolute difference of the Bε

obtained in the two cases. The overall uncertainty was estimated by the sum in quadrature of these two
uncertainties. While neither Ref. [19] nor Ref. [20] assigned a rigorous statistical meaning to the
“uncertainty” reported, in our judgment it is reasonable to treat them as expanded uncertainties with
coverage factor k = 2, approximately corresponding to a 95 % confidence interval. We will use the same
expanded uncertainty for our uncertainty analysis in this paper.

By far the largest contribution to the uncertainty comes from the uncertainty in the interaction-induced
polarizability ∆α2(r), which contributes an uncertainty in the second dielectric virial coefficient that is two
to three orders of magnitude larger than the contribution due to the uncertainty of the pair potential. We
performed Monte Carlo simulations using a large enough number of steps to make the statistical uncertainty
much smaller (at least one order of magnitude) than the systematic uncertainty due to ∆α2(r). Nevertheless,
we summed in quadrature also the statistical uncertainty to obtain the overall uncertainty of Bε(T ).

For the refractivity virial coefficient BR, a rigorous uncertainty estimate is not possible, because no
uncertainty estimate is available for the interaction Cauchy moment, ∆S(−4) (this is also the case for neon
and argon). However, as will be apparent in subsequent sections, the relative difference between Bε and BR

at optical frequencies is small for most conditions (on the order of a few percent); a conservative estimate
might add an additional uncertainty contribution of 10 % of the magnitude of the correction.

5.3 Numerical Values of Bε(T ) for Helium

The values of the second dielectric virial coefficient of 4He are reported in Table 1. The need to include
quantum effects for this light atom is apparent by the discrepancy between quantum and classical values
below 500 K. Table 1 also includes Bε for the rare isotope 3He, which finds use in cryogenics. As expected,
the deviation from classical behavior is somewhat larger for the lighter 3He.

Since ∆α2(r) of helium is negative [31], the values of Bε in Table 1 are generally negative, with the
exception of 3He at the lowest temperature. As Eq. (5) shows, the second dielectric virial coefficient is given
by the sum of two terms, which, in the case of 4He (I = 0), have the same (negative) sign. However, 3He is a
fermion (I = 1/2), and in this case the two contributions have opposite signs. At very low temperatures, the
second term dominates in magnitude, resulting in a positive value of Bε for 3He.
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Table 1. Values of the second dielectric and refractivity virial coefficients of 4He and 3He, together with the overall
expanded (k = 2) uncertainty of Bε , U(Bε ), in units of 10−3 cm6 mol−2, and the dispersion correction B(2)

R defined in
Eq. (3). These results were obtained with the pair potential of Ref. [19], the interaction-induced polarizability of
Ref. [20], and the Cauchy moment of Refs. [11, 31]. In this and subsequent tables, values of the dispersion correction
B(2)

R correspond to those to be used in Eq. (3) when the angular frequency ω is in atomic units; our example wavelength
of 632.99 nm corresponds to ω = 0.071 981 a.u.

Temperature (K) Bε (T ), 4He Bε (T ), 3He U(Bε ) Bε (T ) B(2)
R , 4He BR, 4He

(classical) (632.99 nm)
1 −5.1 0.44 0.4 −172491 −120.0 −5.8
2 −2.3 −0.21 0.3 −913 −79.6 −2.7
3 −1.9 −0.68 0.2 −160 −70.6 −2.3
4 −2.0 −1.1 0.2 −65.7 −67.6 −2.3
5 −2.3 −1.5 0.2 −38.2 −66.5 −2.7
7 −3.0 −2.2 0.2 −20.6 −66.6 −3.4

10 −3.9 −3.3 0.2 −13.6 −69.0 −4.3
15 −5.6 −5.1 0.2 −11.1 −74.4 −6.0
20 −7.1 −6.7 0.2 −11.1 −80.2 −7.6
30 −10.2 −9.8 0.2 −12.7 −91.4 −10.7
40 −12.9 −12.5 0.2 −14.8 −101.7 −13.4
50 −15.3 −15.0 0.2 −17.0 −111.2 −15.9
75 −20.9 −20.6 0.2 −22.0 −132.0 −21.6

100 −25.8 −25.5 0.2 −26.7 −150.0 −26.5
125 −30.2 −29.9 0.2 −30.9 −166.0 −31.0
150 −34.2 −34.0 0.2 −34.9 −180.4 −35.1
175 −37.9 −37.7 0.2 −38.5 −193.6 −38.9
200 −41.4 −41.2 0.2 −42.0 −205.9 −42.4
250 −47.9 −47.7 0.2 −48.4 −228.1 −49.1
273.16 −50.7 −50.5 0.2 −51.1 −237.5 −51.9
300 −53.7 −53.6 0.2 −54.2 −247.9 −55.0
350 −59.1 −59.0 0.2 −59.5 −265.9 −60.5
400 −64.1 −64.0 0.2 −64.5 −282.4 −65.6
450 −68.9 −68.7 0.2 −69.2 −297.6 −70.4
500 −73.3 −73.2 0.2 −73.6 −311.9 −74.9
600 −81.5 −81.4 0.2 −81.8 −337.9 −83.3
700 −88.9 −88.8 0.2 −89.2 −361.2 −90.8
800 −95.8 −95.7 0.2 −96.0 −382.4 −97.8
900 −102.2 −102.1 0.2 −102.4 −401.8 −104.3

1000 −108.1 −108.0 0.2 −108.3 −419.8 −110.3
1500 −133.4 −133.4 0.2 −133.6 −494.1 −136.0
2000 −153.7 −153.6 0.2 −153.8 −551.5 −156.5

Inspection of the two contributions in Eq. (5) allows us to evaluate the temperature at which exchange
becomes important. In the case of 3He, the exchange term becomes sizable (that is, of the order of 1 % of
the direct term) below 5 K and of the same magnitude at around 1.6 K. A similar situation is observed for
4He, although in this case the exchange term becomes of the order of 1 % of the direct term below 4 K, and
at the temperature of 1 K it is roughly 80 % the value of the direct term. In this case, the increasing
importance of the exchange term at low temperatures results in a maximum of Bε(T ) around 3 K.

12 https://doi.org/10.6028/jres.125.022

https://doi.org/10.6028/jres.125.022
https://doi.org/10.6028/jres.125.022


Volume 125, Article No. 125022 (2020) https://doi.org/10.6028/jres.125.022

Journal of Research of National Institute of Standards and Technology

5.4 Second Refractivity Virial Coefficient of Helium

Table 1 also includes values of the dispersion correction B(2)
R for use in Eq. (3), allowing the calculation

of the second refractivity virial coefficient BR. To be consistent with previous work [11, 18, 23], we tabulate
this quantity corresponding to the use of atomic units for the angular frequency ω in Eq. (3). We also
provide values of BR at the wavelength of 632.99 nm, which is widely used in metrology. Our calculated
values of B(2)

R agree with those given by Rizzo et al. [18], who used a different pair potential; our differences
from their results are much less than 1 % over most of the temperature range, with somewhat higher
deviations below 20 K. Table 1 only presents refractivity information for 4He; results for 3He are given in
the Supplemental Material.

5.5 Comparison of Helium Results with Experiment

Figure 3 shows the calculated values of Bε at cryogenic temperatures, along with available experimental
data (with their reported standard uncertainties).

Fig. 3. Comparison of calculated values of Bε (T ) for 4He with those derived from experiment [44–46] at cryogenic
temperatures.

Gaiser et al. [44] reported a temperature correlation for (B−b), which they obtained from 3.7 K to 36 K
using dielectric-constant gas thermometry. We converted these values to Bε = Aε b using B computed (at the
full quantum level) from the pair potential of Przybytek et al. [19]. Because (B−b) is orders of magnitude
larger than b, it is not possible to obtain Bε with high accuracy using this method; the standard uncertainty in
b varies from 0.02 cm3 mol−1 at the highest temperatures shown to 0.19 cm3 mol−1 at the lowest
temperatures [47]. The deviation from our calculations shown on Fig. 3 for the correlation of Gaiser et
al. [44] is within these uncertainties, although the shape of the deviation suggests that the function they
chose to represent (B−b) may not quite have the right shape at the lowest temperatures. The older
dielectric-constant gas thermometry experiments of Gugan and Michel [48] had too much uncertainty in
(B−b) to allow a reliable estimate of Bε .

The expansion measurement of Huot and Bose at 77 K [45] is in good agreement within its relatively
large uncertainty. A striking feature of Fig. 3 is the agreement with the expansion measurements performed
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by White and Gugan between 3 K and 18 K [46]. While our calculated results have much smaller
uncertainties (see Table 1), White and Gugan deserve credit for making accurate measurements at
challenging conditions.

Also shown on Fig. 3 is the result of the classical calculation of Bε . Not surprisingly, the error of this
calculation becomes large below about 20 K. While the deviation of the classical calculation appears small
on the graph above about 40 K, the error exceeds the expanded uncertainty of our calculation by roughly an
order of magnitude in that range.

Fig. 4. Comparison of calculated values of Bε (T ) for 4He with those derived from experiment [42, 45, 49, 50] at higher
temperatures.

Figure 4 shows our calculated values of Bε at higher temperatures, compared with several experimental
sources [42, 45, 49, 50]. The older sources are somewhat scattered, but for the most part they are consistent
with our results. Particularly noteworthy is the agreement with the recent work of Gaiser and Fellmuth [50],
who reported (B−b) with small uncertainty at 273.1576 K from dielectric-constant gas thermometry. When
converted to Bε with B calculated from the potential of Przybytek et al. [19], the resulting estimate of Bε is
consistent with our results (which have about a factor of 10 smaller uncertainty).

For 3He, the only reported value of Bε comes from the capacitance measurements of Kerr and
Sherman [51] near 3.8 K. Converted to our units, their result (after correcting an obvious sign error in the
paper) is Bε =−0.030 cm6 mol−2, which is much too negative. This work was criticized by Gugan and
Michel [48], who reanalyzed the experimental data but obtained a similar result. (We note that the value of b
that Gugan and Michel attributed to Kerr and Sherman is too large in magnitude by a factor of 4/3, probably
reflecting use of the molar mass of 4He rather than 3He.)

For the refractivity virial BR of 4He, the only measurements we know of are those of Achtermann and
coworkers [52, 53], who reported (−0.068±0.010) cm6 mol−2 at both 303.15 K and 323.15 K at a
wavelength of 632.99 nm. These lie slightly below our values for BR (see Table 1), but they are consistent
within their experimental uncertainty. We are not aware of any measurements of BR for 3He.
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6. Results for Neon

6.1 Numerical Values of Bε(T ) for Neon

Natural neon exists in three stable isotopes. The amount of 21Ne is much less than 1 %, while 20Ne is
roughly 90.5 % and 22Ne is roughly 9.2 % [54]. In principle, a separate Bε could be computed for each
isotopic pair and combined to yield an overall value of Bε for any isotopic composition, analogous to the
procedure used to calculate the second virial coefficient B for a mixture. However, since the isotopic
differences for neon are small, we simply tabulate the results for pure 20Ne and 22Ne.

The values of Bε(T ) in Table 2 were obtained using the neon pair potential of Hellmann et al. [22]
together with the pair polarizability of Hättig et al. [23]. Since neither paper reported uncertainties, we were
unable to calculate the overall uncertainties of the second dielectric virials. It is reasonable to expect the
relative uncertainties to be of the same order as those for argon, discussed below, since the ab initio
calculations were performed at a similar level in both cases. However, Gaiser and Fellmuth [50] cited a
private communication by Bich with an independent calculation of Bε at 273.16 K of −0.067 cm6 mol−2,
which is significantly less negative than the −0.089 cm6 mol−2 we obtained based on the pair polarizability
of Hättig et al. [23]. This suggests that there is a larger uncertainty in our knowledge of Bε for neon.

Reference [23] reported values of the second dielectric virial coefficient, as well as the second density
virial, obtained with a pair potential described in the same paper. Although the authors stated that they used
a semiclassical approximation, the values reported for both B(T ) and Bε(T ) came from purely classical
calculations. In Ref. [23], the authors also used the method outlined in Sec. 2 to calculate the second
dielectric virial coefficient. However, the values that they reported were not converged to the claimed
precision due to an insufficient number of angular momenta used to perform the sum in Eq. (10), as we were
able to verify by running our code implementing the same algorithm.

The data reported in Table 2 show that the quantum nature of the neon atom also has to be taken into
account in this case; the temperature at which the deviation from a classical calculation becomes significant
is around 200 K.

6.2 Second Refractivity Virial Coefficient of Neon

Table 2 includes values of B(2)
R and of BR at the wavelength of 632.99 nm, again calculated at the fully

quantum level. Table 2 only presents this information for 20Ne; results for 22Ne are presented in the
Supplemental Material. Our values of B(2)

R in this case are somewhat more negative than those given by
Hättig et al. [23], by about 2 % at high temperatures and increasing to roughly 15 % at 40 K. It is not clear
whether this is the result of their different pair potential or some other difference in the calculations.
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Table 2. Values of the second dielectric and refractivity virial coefficients of 20Ne and 22Ne in units of cm6 mol−2,
along with the dispersion correction B(2)

R defined in Eq. (3). These results were obtained with the pair potential of
Ref. [22], together with the interaction-induced polarizability and Cauchy moment of Ref. [23]. No uncertainty was
reported in the original papers, and so we could not assign any uncertainty to these values.

Temperature (K) Bε (T ), 20Ne Bε (T ), 22Ne Bε (T ) B(2)
R , 20Ne BR, 20Ne

(classical) (632.99 nm)
4 −47.3 −55.1 −605 −378.9 −49.3
5 −12.5 −14.0 −80.9 −100.5 −13.0
7 −2.58 −2.79 −8.28 −21.2 −2.69

10 −0.744 −0.784 −1.51 −6.30 −0.777
15 −0.264 −0.273 −0.399 −2.35 −0.276
20 −0.152 −0.156 −0.203 −1.42 −0.159
30 −0.0879 −0.0882 −0.103 −0.85 −0.091
40 −0.0673 −0.0680 −0.0756 −0.67 −0.071
50 −0.0596 −0.0600 −0.0648 −0.59 −0.063
75 −0.0553 −0.0555 −0.0579 −0.51 −0.058

100 −0.0575 −0.0576 −0.0592 −0.50 −0.060
125 −0.0615 −0.0616 −0.0627 −0.50 −0.064
150 −0.0660 −0.0661 −0.0670 −0.51 −0.069
175 −0.0708 −0.0709 −0.0716 −0.52 −0.073
200 −0.0755 −0.0756 −0.0762 −0.54 −0.078
250 −0.0848 −0.0849 −0.0854 −0.57 −0.088
273.16 −0.0890 −0.0890 −0.0895 −0.58 −0.092
300 −0.0936 −0.0937 −0.0941 −0.60 −0.097
350 −0.102 −0.102 −0.102 −0.63 −0.105
400 −0.110 −0.110 −0.110 −0.65 −0.113
450 −0.117 −0.117 −0.118 −0.68 −0.121
500 −0.125 −0.125 −0.125 −0.70 −0.128
600 −0.138 −0.138 −0.138 −0.75 −0.142
700 −0.150 −0.150 −0.150 −0.79 −0.154
800 −0.162 −0.162 −0.162 −0.83 −0.166
900 −0.172 −0.173 −0.173 −0.86 −0.177

1000 −0.183 −0.183 −0.183 −0.89 −0.187
1500 −0.226 −0.226 −0.226 −1.03 −0.231
2000 −0.261 −0.262 −0.261 −1.14 −0.267

6.3 Comparison with Experiment for Neon

In Fig. 5, our results for Bε(T ) for neon are compared with experimental results [42, 45, 50]. We again
achieved good agreement with the result derived by Gaiser and Fellmuth [50] from measuring (B−b) near
273 K, although their uncertainty is larger in this case because B for neon [55] is not known as accurately as
for helium.
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Fig. 5. Comparison of calculated values of Bε (T ) for neon with those derived from experiment [42, 45, 50].

Three studies have reported BR for neon [53, 56, 57]. While Burns et al. [57] reported data at multiple
wavelengths, we limit our comparison to 632.99 nm, where all three studies reported results. Figure 6 shows
that our calculations are consistent with all three results, including the most recent and precise datum of
Achtermann et al. [53].

Fig. 6. Comparison of calculated values of BR(T ) for neon at a wavelength of 632.99 nm with those derived from
experiment [53, 56, 57].
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7. Results for Argon

7.1 Numerical Values of Bε(T ) for Argon

We report our results for the second dielectric virial coefficient of the most abundant (∼ 99.6 %) argon
isotope, 40Ar, in Table 3. For these calculations, we used the pair potential developed by Patkowski and
Szalewicz [24] together with the pair polarizability of Vogel et al. [25]. Reference [25] reported an
alternative pair potential, which gave indistinguishable results when we used it instead.

Comparison between the classical and quantum calculations of Bε(T ) shows that argon behaves like a
classical system at temperatures above roughly 100 K. In fact, our fully quantum values of Bε are in
excellent agreement with those reported by Vogel et al. [25] and by Song and Luo [21], which were obtained
with a semiclassical approach. We obtained expanded uncertainties with the same approach as for helium.
While the uncertainty of the pair polarizability ∆α2(r) was not reported in Ref. [25], one of the authors
communicated to us an estimated standard uncertainty of 5 % [58].

The small influence of quantum effects on the dielectric virial of argon contrasts with the results
reported by Rizzo et al. [18]. In Ref. [18], the comparison between classical results and quantum statistical
calculations using the approach outlined in Sec. 2 indicated a 3 % effect at 100 K, in contrast to the 0.4 %
difference between our quantum values and classical values at the same temperature. In fact, as we noted in
Sec. 2.1, we were unable to obtain correct results using the approach starting from Eq. (6), despite using a
large number of angular momenta or a very dense grid of wavevectors to account for the resonances in the
scattering of 40Ar atoms. However, when we resorted to the alternative diagonalization method, the values
of Bε(T ) for T = 100 K using the same potential and polarizability as Ref. [18] were 2.253 cm6 mol−2 and
2.258 cm6 mol−2 in the quantum and classical case, respectively. PIMC calculations at the same conditions
agree very well with the results from diagonalization. These values should be compared with the result of
Rizzo et al. [18], i.e., 2.23 cm6 mol−2 using a classical approach and 2.16 cm6 mol−2 using a quantum
approach based on Eq. (5) and Eq. (6), which we believe is missing something in the case of 40Ar.

7.2 Second Refractivity Virial Coefficient of Argon

Table 3 includes calculated values of B(2)
R for argon, and BR computed at 632.99 nm from Eq. (3). Our

values of B(2)
R are systematically less positive (by around 8 %) compared to the values calculated classically

by Koch et al. [11]. Our classical calculations show that quantum effects on B(2)
R are less than 1 % in the

temperature range reported by Koch et al., so the reason for the discrepancy is unclear.
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Table 3. Values of the second dielectric and refractivity virial coefficients of 40Ar and the expanded (k = 2) uncertainty
of Bε , U(Bε ), in units of cm6 mol−2, along with the dispersion correction B(2)

R defined in Eq. (3). These results were
obtained with the pair potential of Ref. [24], the pair polarizability of Ref. [25], and the Cauchy moment of
Refs. [11, 31]. In the calculation of the uncertainty, a 5 % standard uncertainty of the pair polarizability was
assumed [58].

Temperature (K) Bε (T ) U(Bε ) Bε (T ) B(2)
R BR

(classical) (632.99 nm)
50 6.17 0.35 6.25 −4.72 6.14
75 3.53 0.20 3.54 3.31 3.54

100 2.75 0.16 2.76 4.83 2.78
125 2.39 0.14 2.40 5.25 2.42
150 2.18 0.13 2.18 5.35 2.21
175 2.04 0.13 2.04 5.33 2.07
200 1.94 0.12 1.94 5.25 1.97
250 1.80 0.12 1.80 5.03 1.83
273.16 1.76 0.11 1.76 4.92 1.78
300 1.71 0.11 1.71 4.79 1.73
350 1.64 0.11 1.64 4.54 1.66
400 1.58 0.11 1.58 4.30 1.60
450 1.53 0.11 1.53 4.07 1.55
500 1.49 0.11 1.49 3.85 1.51
600 1.42 0.11 1.42 3.43 1.43
700 1.36 0.11 1.36 3.04 1.37
800 1.30 0.11 1.30 2.68 1.32
900 1.26 0.12 1.25 2.35 1.27

1000 1.21 0.12 1.21 2.03 1.22
1500 1.03 0.12 1.03 0.71 1.04
2000 0.90 0.13 0.89 −0.33 0.89

7.3 Comparison with Experiment for Argon

In Fig. 7, our results for Bε(T ) for argon are compared with the available data [42, 45, 50, 59–62]. In
addition to expansion measurements, we included the older direct dielectric measurements of Orcutt and
Cole [59], because they extend to higher temperatures, and a more recent direct measurement of Moldover
and Buckley [62] made with a cross capacitor. There is much scatter in the experimental values, especially
at high temperatures, and some of the reported experimental uncertainties must be overly optimistic.
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Fig. 7. Comparison of calculated values of Bε (T ) for argon with those derived from experiment [42, 45, 50, 59–62].
Dashed lines indicate expanded (k = 2) uncertainty of calculated values.

Five studies have reported BR for argon [52, 53, 56, 57, 63]. While two of these [57, 63] reported data at
multiple wavelengths, we limit our comparison to 632.99 nm, where all studies reported results. Figure 8
shows that we again obtained good agreement with the more recent data of Achtermann and coworkers
[52, 53], and were within the scatter of the older data.

Fig. 8. Comparison of calculated values of BR(T ) for argon at a wavelength of 632.99 nm with those derived from
experiment [52, 53, 56, 57, 63].
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8. Conclusions

We developed a numerical procedure to evaluate the second dielectric and refractivity virial coefficients
of atomic gases using the path-integral formulation of quantum statistical mechanics. This approach enabled
us to take into account both diffraction and quantum statistical effects with no uncontrolled approximations.
The procedure was validated by demonstrating that it gives results matching those from the traditional, and
generally more computer-intensive, phase-shift approach.

We applied our method to the calculation of the second dielectric and refractivity virial coefficients of
4He, 3He, neon, and argon using state-of-the-art pair potentials, interaction-induced polarizabilities, and
interaction Cauchy moments. Additionally, for helium and argon, we evaluated the uncertainty of the
dielectric virials due to the uncertainties in the potential and polarizability, finding that the contribution of
the latter is much larger than that of the former. Our results are consistent with the (limited and scattered)
experimental data available, but the calculated results have smaller uncertainties, especially for helium.
Similar agreement was obtained with experiment for the second refractivity virial coefficients.

For helium, independent sources of both the pair potential and the pair polarizability are in good
agreement, and we can be confident that neither quantity is introducing extra systematic uncertainty. For
argon, it would be useful to have independent confirmation of the interaction polarizabilities of Vogel et
al. [25], which have 5 % uncertainty but yield Bε inconsistent with the older results of Rizzo et al. [18]
(even after accounting for the inaccuracy in the quantum calculations of Ref. [18] discussed in Sec. 7.1). For
neon, the situation is worse; the only published pair polarizability is that of Hättig et al. [23], for which the
uncertainty is unknown. Furthermore, the unpublished personal communication of Bε at 273.16 K cited by
Gaiser and Fellmuth [50] disagrees with the Bε in Table 2 by roughly 25 %, implying that either the pair
polarizability of Hättig et al. or the one used in the unpublished work is significantly in error. For use of
neon in metrology based on dielectric or refractive measurements, an independent calculation of the
interaction polarizability of neon, with reliable uncertainty estimates, would be highly desirable.

Because metrology will require these quantities at temperatures not listed in Tables 1–3, we have
deposited supplemental data files in which the quantities computed in this work are given at intervals of 1 K,
with finer intervals below 10 K for 3He and 4He [64]. For metrological applications, we recommend
interpolation in these files, rather than attempting to interpolate the values in the sparser Tables 1–3.

The inclusion of quantum effects in the calculations is important for quantitative accuracy, especially for
helium. Classical calculations begin to deviate from the rigorous result by more than 1 % below roughly
300 K for helium, 175 K for neon, and 60 K for argon.

While this paper was in preparation, Song and Luo [21] published values of Bε for the same species we
considered here, calculated at a semiclassical level including second-order quantum corrections. They used
the same pair potentials and ∆α2(r) that we used in this work. The agreement with our fully quantum results
is excellent down to roughly 20 K for 4He, 30 K for 3He, and at all temperatures tabulated by Song and Luo
for the other two gases (down to 25 K for neon and 83.806 K for argon).

Analogous to what has been done for the density virial coefficients [15, 26], our approach can be
generalized in a direct way to higher-order dielectric virial coefficients, and we are working on that
extension. However, rigorous calculation of Cε requires the nonadditive three-body interaction polarizability,
and to the best of our knowledge no ab initio calculations of that quantity have been published.

Supplemental Materials

See Ref. [64] for fully quantum values of Bε , B(2)
R , and BR at a wavelength of 633.99 nm at 1 K intervals

(with finer intervals for helium below 10 K). Expanded (k = 2) uncertainties for Bε are given for 3He, 4He,
and 40Ar. Classically calculated values of Bε are also tabulated for helium, neon, and argon.
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