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Given a composite null hypothesis H0, test supermartingales are non-negative supermartingales with respect to H0 with an initial value 
of 1. Large values of test supermartingales provide evidence against H0. As a result, test supermartingales are an effective tool for 
rejecting H0, particularly when the p-values obtained are very small and serve as certificates against the null hypothesis. Examples 
include the rejection of local realism as an explanation of Bell test experiments in the foundations of physics and the certification of 
entanglement in quantum information science. Test supermartingales have the advantage of being adaptable during an experiment and 
allowing for arbitrary stopping rules. By inversion of acceptance regions, they can also be used to determine confidence sets. We used 
an example to compare the performance of test supermartingales for computing p-values and confidence intervals to
Chernoff-Hoeffding bounds and the “exact” p-value. The example is the problem of inferring the probability of success in a sequence 
of Bernoulli trials. There is a cost in using a technique that has no restriction on stopping rules, and, for a particular test 
supermartingale, our study quantifies this cost.
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1. Introduction

Experiments in physics require very high confidence to justify claims of discovery or to unambiguously
exclude alternative explanations [1]. Particularly striking examples in the foundations of physics are
experiments to demonstrate that theories based on local hidden variables, called local realist (LR) theories,
cannot explain the statistics observed in quantum experiments called Bell tests. See Ref. [2] for a review and
Refs. [3–6] for the most definitive experiments to date. Successful Bell tests imply the presence of some
randomness in the observed statistics. As a result, one of the most notable applications of Bell tests is to
randomness generation [7]. In this application, it is necessary to certify the randomness generated, and these
certificates are equivalent to extremely small significance levels in an appropriately formulated hypothesis
test. In general, such extreme significance levels are frequently required in protocols for communication or
computation to ensure performance.

Bell tests consist of a sequence of “trials”, each of which gives a result Mi. LR models restrict the
statistics of the Mi and therefore constitute a composite null hypothesis to be rejected. Traditionally, data has
been analyzed by estimating the value of a Bell function B̂ and its standard error σ̂ from the collective result
statistics (see [8, 9]). Under the null hypothesis, B̂ is expected to be negative, so a large value of B̂ compared
to σ̂ is considered to be strong evidence against the null hypothesis. This method suffers from several
problems, including the failure of the Gaussian approximation in the extreme tails and the fact that the trials
are observably not independent and identically distributed (i.i.d.) [9].

For the earliest discussion of martingales for analysis of Bell test experiments, see Refs. [10, 11]. In
Ref. [9] a method was introduced that can give rigorous p-value bounds against LR. These p-value bounds
are memory-robust, that is, without any assumptions on dependence of trial statistics on earlier trials. The
method can be seen as an application of test supermartingales as defined in Ref. [12]. Test supermartingales
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were first considered, and many of their basic properties were proved, by Ville [13] in the same work that
introduced the notion of martingales. The method involves constructing a non-negative stochastic process Vi

determined by (M j) j≤i such that the initial value is V0 = 1 and, under LR models, the expectations
conditional on all past events are non-increasing. As explained further below, the final value of Vi in a
sequence of n trials has expectation bounded by 1, so its inverse p = 1/Vn is a p-value bound according to
Markov’s inequality. A large observed value of such a test supermartingale thus provides evidence against
LR models. Refs. [9, 14] give methods to construct Vi that achieve asymptotically optimal gain rate
E(− log(p)/n) for i.i.d. trials, where E(. . .) is the expectation functional. This is typically an improvement
over other valid memory-robust Bell tests. Additional benefits are that Vi can be constructed adaptively
based on the observed statistics, and the p-value bounds remain valid even if the experiment is stopped
based on the current value of Vi. These techniques were successfully applied to experimental data from a
Bell test with photons where other methods fail [15].

Although the terminology is apparently relatively recent, test supermartingales have traditionally played
a major theoretical role. Carefully constructed test supermartingales contribute to the asymptotic analysis of
distributions and proofs of large deviation bounds. They can be constructed for any convex-closed null
hypothesis viewed as a set of distributions, so they can be used for memory- and stopping-robust adaptive
hypothesis tests in some generality. The application to Bell tests shows that at least in a regime where high
significance results are required, test supermartingales can perform well or better than other methods. Here
we compare the performance of test supermartingales directly to (1) the standard large deviation bounds
based on the Chernoff-Hoeffding inequality [16, 17], and (2) “exact” p-value calculations. Our comparison
is for a case where all calculations can be performed efficiently, namely for testing the success probability in
Bernoulli trials. The three p-value bounds thus obtained have asymptotically optimal gain rates. Not
surprisingly, for any given experiment, test supermartingales yield systematically worse p-value bounds, but
the difference is much smaller than the experiment-to-experiment variation. This effect can be viewed as the
cost of robustness against arbitrary stopping rules. For ease of calculation, we do not use an optimal test
supermartingale construction, but we expect similar results no matter which test supermartingale is used.

Any hypothesis test parametrized by φ can be used to construct confidence regions for φ by acceptance
region inversion (see Ref. [18], Sec. 7.1.2). Motivated by this observation, we consider the use of test
supermartingales for determining confidence regions. We expect that they perform well in the
high-confidence regime, with an increase in region size associated with robustness against stopping rules.
We therefore compared the methods mentioned above for determining confidence intervals for the success
probability in Bernoulli trials. After normalizing the difference between the interval endpoints and the
success probability by the standard deviation, which is O(1/

√
n), we find that while large deviation bounds

and exact regions differ by a constant at fixed confidence levels, the test supermartingale’s normalized
endpoint deviation is Ω(

√
log(n)) instead of O(1). This effect was noted in Ref. [12] and partially reflects a

suboptimal choice of supermartingale. To maintain robustness against stopping rule, one expects
Ω(
√

log log(n)) according to the law of the iterated logarithm. However, we note that if the number of trials
n is fixed in advance, the normalized endpoint deviation can be reduced to O(1) with an adaptive test
supermartingale. So although the increase in confidence region necessitated by stopping rule robustness is
not so large for reasonably sized n, when n is known ahead of time it can, in principle, be avoided without
losing the ability to adapt the test supermartingale on the fly during the experiment in non-i.i.d. situations.

The remainder of the paper is structured as follows. We establish the notation to be used and define the
basic concepts in Sec. 2. Here we also explain how adaptivity can help reject hypotheses for stochastic
processes. We introduce the three methods to be applied to Bernoulli trials in Sec. 3. Here we also establish
the basic monotonicity properties and relationships of the three p-value bounds obtained. In Sec. 4 we
determine the behavior of the p-value bounds in detail, including their asymptotic behavior. In Sec. 5 we
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introduce the confidence intervals obtained by acceptance region inversion. We focus on one-sided intervals
determined by lower bounds but note that the results apply to two-sided intervals. The observations in
Secs. 4 and 5 are based on theorems whose proofs can be found in the Appendix. While many of the
observations in these sections can ignore asymptotically small terms, the results in the Appendix
uncompromisingly determine interval bounds for all relevant expressions, with explicit constants.
Concluding remarks can be found in Sec. 6.

2. Basic Concepts

We use the usual conventions for random variables (RVs) and their values. RVs are denoted by capital
letters such as X ,Y, . . . and their values by the corresponding lower case letters x,y, . . .. All our RVs are finite
valued. Probabilities and expectations are denoted by P(. . .) and E(. . .), respectively. For a formula φ , the
expression {φ} refers to the event where the formula is true. The notation µ(X) refers to the distribution of
X induced on its space of values. We use the usual conventions for conditional probabilities and
expectations. Also, µ(X |φ) denotes the probability distribution induced by X conditional on the event {φ}.

We consider stochastic sequences of RVs such as X = (Xi)
n
i=1 and X≤k = (Xi)

k
i=1. We think of the Xi as

the outcomes from a sequence of trials. For our study, we consider B = (Bi)
n
i=1, where the Bi are

{0,1}-valued RVs. The standard {0,1}-valued RV with parameter θ is the Bernoulli RV B satisfying
E(B) = θ . The parameter θ is also referred to as the success probability. We denote the distribution of B by
νθ . We define Sk = ∑

k
i=1 Bi and Θ̂k = Sk/k. We extend the RV conventions to the Greek letter Θ̂k. That is,

θ̂k = sk/k = ∑
k
i=1 bi/k is the value of the RV Θ̂k determined by the values bi of Bi. We may omit subscripts

on statistics such as Sn and Θ̂n when they are based on the full set of n samples. Some expressions involving
Θ̂n require that nΘ̂n is an integer, which is assured by the definition.

A null hypothesis for X is equivalent to a set H0 of distributions of X , which we refer to as the “null”.
For our study of Bernoulli RVs, we consider the nulls

Bϕ = {νθ |θ ≤ ϕ} (1)

parametrized by 0≤ ϕ ≤ 1. This is the set of distributions of Bernoulli RVs with P(B = 1)≤ ϕ . One can test
the null hypothesis based on special statistics called p-value bounds. A statistic P = P(X)≥ 0 is a p-value
bound for H0 if for all µ ∈H0 and p≥ 0, Pµ(P≤ p)≤ p. Here, the subscript µ on Pµ(. . .) indicates the
distribution with respect to which the probabilities are to be calculated. We usually just write “p-value”
instead of “p-value bound”, even when the bounds are not achieved by a member of H0. Small p-values are
strong evidence against the null. Since we are interested in very small p-values, we preferentially use their
negative logarithm − log(P) and call this the log(p)-value. In this work, logarithms are base e by default.

A general method for constructing p-values is to start with an arbitrary real-valued RV Q jointly
distributed with X . Usually Q is a function of X . Define the worst-case tail probability of Q as
P(q) = supµ∈H0

Pµ(Q≥ q). Then P(Q) is a p-value for H0. The argument is standard. Define
Fµ(q) = Pµ(Q≥ q). The function Fµ is non-increasing. We need to show that for all µ ∈H0,
Pµ(P(Q)≤ p)≤ p. Since Fµ(q)≤ P(q), we have Pµ(P(Q)≤ p)≤ Pµ(Fµ(Q)≤ p). The set
{q : Fµ(q)≤ p} is either of the form [qmin,∞) or (qmin,∞) for some qmin. In the first case,
Pµ(Fµ(Q)≤ p) = Pµ(Q≥ qmin) = Fµ(qmin)≤ p. In the second, Pµ(Fµ(Q)≤ p) =
Pµ (

⋃
n{q : q≥ qmin +1/n}) = limnPµ({q : q≥ qmin +1/n}) = limnPµ(Fµ(Q)≤ qmin +1/n)≤ p, with

σ -additivity applied to the countable monotone union.
When referring to H0 as a null for X, we mean that H0 consists of the distributions where the Xi are

i.i.d., with Xi distributed according to µ for some fixed µ independent of i. To go beyond i.i.d., we extend
H0 to the set of distributions of X that have the property that for all x≤i−1, µ(Xi|X≤i−1 = x≤i−1) = µi for
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some µi ∈H0, where µi depends on i and x≤i−1. We denote the extended null by H0. In particular,

Bϕ = {µ : for all i and b≤i−1, µ(Bi|B≤i−1 = b≤i−1) = νθ for some θ ≤ ϕ}. (2)

The LR models mentioned in the introduction constitute a particular null HLR for sequences of trials
called Bell tests. In Ref. [9], a technique called the probability-based ratio (PBR) method was introduced to
construct p-values Pn that achieve asymptotically optimal gain rates defined as E(log(1/Pn))/n. The method
is best understood as a way of constructing a test supermartingale for HLR. A test supermartingale of X for
H0 is a stochastic sequence T = (Ti)

n
i=0 where Ti is a function of X≤i, T0 = 1, Ti ≥ 0 and for all µ ∈H0,

Eµ(Ti+1|X≤i)≤ Ti. In this work, to avoid unwanted boundary cases, we further require Ti to be positive. The
definition of test supermartingale used here is not the most general one because we consider only discrete
time and avoid the customary increasing sequence of σ -algebra by making it dependent on an explicit
stochastic sequence X. Every test supermartingale defines a p-value by Pn = 1/Tn. This follows from
E(Tn)≤ T0 = 1 (one of the characteristic properties of supermartingales) and Markov’s inequality for
non-negative statistics, according to which P(Tn ≥ κ)≤ E(Tn)/κ ≤ 1/κ . From martingale theory, the
stopped process Tτ for any stopping rule τ with respect to X also defines a p-value by P = 1/Tτ . Further,
P∗n = 1/maxn

i=1 Ti also defines a p-value. See Ref. [12] for a discussion and examples.
A test supermartingale T can be viewed as the running product of the Fi = Ti/Ti−1, which we call the

test factors of T. The defining properties of T are equivalent to having Fi > 0 and E(Fi|X≤i−1)≤ 1 for all
distributions in the null, for all i. The PBR method adaptively constructs Fi as a function of the next trial
outcome Xi from the earlier trial outcomes X≤i−1. The method is designed for testing H0 for a closed
convex null H0, where asymptotically optimally gain rates are achieved when the trials are i.i.d. with a trial
distribution ν not in H0. If ν were known, the optimal test factor would be given by x 7→ ν(x)/µ(x), where
µ ∈H0 is the distribution in H0 closest to ν in Kullback-Leibler (KL) divergence
KL(ν |µ) = ∑x ν(x) log(ν(x)/µ(x)) [19]. Since ν is not known, the PBR method obtains an empirical
estimate ν̂ of ν from x≤i−1 and other information available before the i’th trial. It then determines the
KL-closest µ ∈H0 to ν̂ . The test factor Fi is then given by Fi(x) = ν̂(x)/µ(x). The test factors satisfy
Eµ ′(Fi)≤ 1 for all µ ′ ∈H0, see Ref. [9] for a proof and applications to the problem of testing LR.

The ability to choose test factors adaptively helps reject extended nulls when the distributions vary as
the experiment progresses, both when the distributions are still independent (so only the parameters vary)
and when the parameters depend on past outcomes. Suppose that the distributions are sufficiently stable so
that the empirical frequencies over the past k trials are statistically close to the next trial’s probability
distribution. Then we can adaptively compute the test factor to be used for the next trial from the past k
trials’ empirical frequencies, for example by following the strategy outlined in the previous paragraph. The
procedure now has an opportunity to reject an extended null provided only that there is a sufficiently long
period where the original null does not hold. For example, consider the extended null Bϕ . The true success
probabilities θi at the i’th trial may vary, maybe as a result of changes in experimental parameters that need
to be calibrated. Suppose that the goal is to calibrate for θi > ϕ . If we use adaptive test factors and find at
some point that we cannot reject Bϕ according to the running product of the test factors, we can recalibrate
during the experiment. If the the recalibration succeeds at pushing θi above ϕ for the remaining trials, we
may still reject the extended null by the end of the experiment. In many cases, the analysis is performed
after the experiment, or it may not be possible to stop the experiment for recalibration. For this situation, if
the frequencies for a run of k trials clearly show that θi < ϕ , the adaptive test factors chosen would tend to
be trivial (equal to 1), in which case the next trials do not contribute to the final test factor product. This is in
contrast to a hypothesis test based on the final sum of the outcomes for which all trials contribute equally.

Let ϕ be a parameter of distributions of X . Here, ϕ need not determine the distributions. There is a close
relationship between methods for determining confidence sets for ϕ and hypothesis tests. Let Hϕ be a null
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such that for all distributions µ with parameter ϕ , µ ∈Hϕ . Given a family of hypothesis tests with p-values
Pϕ for Hϕ , we can construct confidence sets for ϕ by inverting the acceptance region of Pϕ , see Ref. [18],
Sec. 7.1.2. According to this construction, the confidence set Ca at level a is given by {ϕ|Pϕ(X)≥ a} and is
a random quantity. The defining property of a level a confidence set is that its coverage probability satisfies
Pµ(ϕ ∈Ca)≥ 1−a for all distributions µ ∈Hϕ . When we use this construction for sequences B of
i.i.d. Bernoulli RVs with the null Bϕ , we obtain one-sided confidence intervals of the form [ϕ0,1] for
θ = E(Bi). When the confidence set is a one-sided interval of this type, we refer to ϕ0 as the confidence
lower bound or endpoint. If B has a distribution µ that is not necessarily i.i.d., we can define
Θmax = maxi≤nEµ(Bi|B≤i−1). If we use acceptance region inversion with the extended null Bϕ , we obtain a
confidence region for Θmax. Note that Θmax is an RV whose value is covered by the confidence set with
probability at least 1−a. The confidence set need not be an interval in general, but including everything
between its infimum and its supremum increases the coverage probability, so the set can be converted into an
interval if desired.

We focus on construction of one-sided confidence intervals. Given this machinery, we then construct
two-sided intervals. For our example, we can obtain confidence upper bounds at level a by symmetry, for
example by relabeling the Bernoulli outcomes 0 7→ 1 and 1 7→ 0. To obtain a two-sided interval at level a,
we compute lower and upper bounds at level a/2. The two-sided interval is the interval between the bounds.
The coverage probability of the two-sided interval is valid according to the union bound applied to
maximum non-coverage probabilities of the two one-sided intervals.

3. Bernoulli Hypothesis Tests

We compare three hypothesis tests for the nulls Bϕ or the extended nulls Bϕ : The “exact” test with
p-value PX, the Chernoff-Hoeffding test with p-value PCH and a PBR test with p-value PPBR. In discussing
properties of these tests with respect to the hypothesis parameter ϕ , the true success probability θ and the
empirical success probability Θ̂, we generally assume that these parameters are in the interior of their range.
In particular, 0 < ϕ < 1, 0 < θ < 1, and 0 < Θ̂ < 1. When discussing purely functional properties with
respect to values θ̂ of Θ̂, we use the variable t instead of θ̂ . By default nt is a positive integer.

The p-value for the exact test is obtained from the tail for i.i.d. Bernoulli RVs:

PX,n(Θ̂|ϕ) = ∑
k≥Θ̂n

(
n
k

)
ϕ

k(1−ϕ)n−k, (3)

where Θ̂ = Sn/n = ∑
n
i=1 Bi/n as defined in Sec. 2. Note that unlike the other p-values we consider, PX,n is

not just a p-value bound. It is achieved by a member of the null. The quantity PX,n(t|ϕ) is decreasing as a
function of t, given 0 < ϕ < 1. It is smooth and monotonically increasing as a function of ϕ , given t > 0. To
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see this, compute

d
dϕ

PX,n(t|ϕ) =
n

∑
i=nt

ϕ
i(1−ϕ)n−i

(
n
i

)(
i
ϕ
− n− i

1−ϕ

)
= n

n

∑
i=nt

ϕ
i−1(1−ϕ)n−i

(
n−1
i−1

)
−n

n−1

∑
i=nt

ϕ
i(1−ϕ)n−i−1

(
n−1

i

)

= n

(
n−1

∑
i=nt−1

ϕ
i(1−ϕ)n−1−i

(
n−1

i

)
−

n−1

∑
i=nt

ϕ
i(1−ϕ)n−1−i

(
n−1

i

))

= nϕ
nt−1(1−ϕ)n(1−t)

(
n−1
nt−1

)
. (4)

This is positive for ϕ ∈ (0,1). The probability that Sn ≥ tn, given that all Bi are distributed as νθ with
θ ≤ ϕ , is bounded by PX,n(t|θ)≤ PX,n(t|ϕ). That PX is a p-value for the case where the null is restricted to
i.i.d. distributions now follows from the standard construction of p-values from worst-case (over the null)
tails of statistics (here Sn) as explained in the previous section. That PX is a p-value for the extended null
Bϕ follows from the observations that the tail probabilities of Sn are linear functions of the distribution
parameters θ1,θ2, ...,θn where θi ≤ ϕ, i = 1,2, ...,n, the extremal distributions in Bϕ have Bi independent
with P(Bi = 1) = θi ≤ ϕ , and the tail probabilities of Sn are monotonically increasing in P(Bi = 1) for each i
separately. See section C of Appendix of Ref. [20].

Define Θ̂max = max(Θ̂,ϕ). The p-value for the Chernoff-Hoeffding test is the optimal
Chernoff-Hoeffding bound [16, 17] for a binary random variable given by

PCH,n(Θ̂|ϕ) =
(

ϕ

Θmax

)nΘmax( 1−ϕ

1−Θmax

)n(1−Θmax)

=


(

ϕ

Θ̂

)nΘ̂( 1−ϕ

1−Θ̂

)n(1−Θ̂)
if Θ̂≥ ϕ ,

1 otherwise.
(5)

This is a p-value for our setting because PCH,n(t|ϕ)≥ PX,n(t|ϕ), see Ref. [17]. For ϕ ≤ t, we have
− log(PCH,n(t|ϕ)) = nKL(νt |νϕ). We abbreviate KL(νt |νϕ) by KL(t|ϕ). For ϕ ≤ t < 1, PCH,n(t|ϕ) is
monotonically increasing in ϕ , and decreasing in t. For 0≤ t ≤ ϕ , it is constant.

The p-value for the PBR test that we use for comparison is constructed from a p-value for the point null
{νϕ} defined as

P0
PBR,n(Θ̂|ϕ) = ϕ

nΘ̂(1−ϕ)n(1−Θ̂)(n+1)
(

n
nΘ̂

)
. (6)

The PBR test’s p-value for Bϕ is

PPBR,n(Θ̂|ϕ) = max
0≤ϕ ′≤ϕ

P0
PBR,n(Θ̂|ϕ ′). (7)

That PPBR is a p-value for Bϕ is shown below. As a function of ϕ , P0
PBR,n(t|ϕ) has an isolated maximum at

ϕ = t. This can be seen by differentiating log
(
ϕ t(1−ϕ)1−t

)
= t log(ϕ)+(1− t) log(1−ϕ). Thus in Eq. 7
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when ϕ ≥ Θ̂, the maximum is achieved by ϕ ′ = Θ̂. We can therefore write Eq. 7 as

PPBR,n(Θ̂|ϕ) =

{
P0

PBR,n(Θ̂|ϕ) if Θ̂≥ ϕ ,
P0

PBR,n(Θ̂|Θ̂) otherwise.
(8)

By definition, PPBR,n(t|ϕ) is non-decreasing in ϕ and strictly increasing for ϕ ≤ t. As a function of t, it is
strictly decreasing for t ≥ ϕ (integer-valued nt). To see this, consider k = nt ≥ nϕ and compute the ratio of
successive values as follows:

P0
PBR,n((k+1)/n|ϕ)/P0

PBR,n(k/n|ϕ) = ϕ

1−ϕ

n− k
k+1

=
ϕ

1−ϕ

1− t
t +1/n

≤ ϕ

1−ϕ

1− t
t

≤ 1. (9)

The expression for P0
PBR,n is the final value of a test supermartingale obtained by constructing test factors

Fk+1 from Sk. Define

Θ̃k =
1

k+2
(Sk +1) . (10)

Thus, Θ̃k would be an empirical estimate of θ if there were two initial trials B−1 and B0 with values 0 and 1,
respectively. The test factors are given by

Fk+1(Bk+1) =

(
Θ̃k

ϕ

)Bk+1
(

1− Θ̃k

1−ϕ

)1−Bk+1

. (11)

One can verify that Eνθ
(Fk+1) = 1 for θ = ϕ . More generally, set δ = θ −ϕ and compute

Eνθ
(Fk+1|Θ̃k = t) = θ

t
ϕ
+(1−θ)

1− t
1−ϕ

= 1+δ

(
t
ϕ
− 1− t

1−ϕ

)
= 1+δ

t−ϕ

ϕ(1−ϕ)
. (12)

As designed, Tn = ∏
n
k=1 Fk is a test supermartingale for the point null {νϕ}. Theorem 5 in section 7.2 of the

Appendix, establishes that Tn = 1/P0
PBR,n(Θ̂|ϕ). The definition of PPBR,n(Θ̂|ϕ) as a maximum of p-values

for νϕ ′ with ϕ ′ ≤ ϕ in Eq. 7 ensures that PPBR,n(Θ̂|ϕ) is a p-value for Bϕ .
To show that PPBR is a p-value for Bϕ , we establish that for all t (integer-valued nt),

PPBR,n(t|ϕ)≥ PCH,n(t|ϕ). By direct calculation for both ϕ ≤ t and t ≤ ϕ , we have

PPBR,n(t|ϕ)/PCH,n(t|ϕ) = tnt(1− t)n(1−t)(n+1)
(

n
nt

)
. (13)

The expression tk(1− t)k
(n

k

)
is maximized at k = nt as can be seen by considering ratios for successive
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values of k and the calculation in Eq. 9, now applied also for k < nt. Therefore,

tnt(1− t)n(1−t)(n+1)
(

n
nt

)
=

n

∑
k=0

tnt(1− t)n(1−t)
(

n
nt

)
≥

n

∑
k=0

tk(1− t)k
(

n
k

)
= 1. (14)

A better choice for test factors to construct a test supermartingale to test Bϕ would be

T ′k+1 =

{
Tk+1 if Θ̃k ≥ ϕ ,
1 otherwise.

(15)

This choice ensures that Eνθ
(Fk+1|B≤k)≤ 1 for all θ ≤ ϕ but the final value of the test supermartingale

obtained by multiplying these test factors is not determined by Sn, which would complicate our study.
We summarize the observations about the three tests in the following theorem.

Theorem 1. We have
PX ≤ PCH ≤ PPBR. (16)

The three tests satisfy the following monotonicity properties for 0 < ϕ < 1 and 0 < t < 1 with nt
integer-valued:

PX(t|ϕ) is strictly increasing in ϕ and strictly decreasing as a function of t.

PCH(t|ϕ) is strictly increasing in ϕ for ϕ ≤ t, constant in ϕ for ϕ ≥ t, strictly decreasing in t for t ≥ ϕ

and constant in t for t ≤ ϕ .

PPBR(t|ϕ) is strictly increasing in ϕ for ϕ ≤ t, constant in ϕ for ϕ ≥ t and strictly decreasing in t for
t ≥ ϕ .

4. Comparison of p-Values

We begin by determining the relationships between PX, PCH and PPBR more precisely. Since we are
interested in small p-values, it is convenient to focus on the log(p)-values instead and determine their
differences to O(1/

√
n). Because of the identity − log(PCH,n(t,ϕ)) = nKL(t|ϕ), we reference all

log(p)-values to − log(PCH,n). Here we examine the differences for t ≥ ϕ determined by the following
theorem:

Theorem 2. For 0 < ϕ < t < 1,

− log(PPBR,n(t|ϕ)) =− log(PCH,n(t|ϕ))−
1
2

log(n+1)+
1
2

log(2πt(1− t))+O
(

1
n

)
, (17)

− log(PX,n(t|ϕ)) =− log(PCH,n(t|ϕ))+
1
2

log(n)− log
(√

t
2π(1− t)

1−ϕ

t−ϕ

)
+O

(
1
n

)
. (18)

The theorem follows from Thms. 6, 7 and Cor. 8 proven in the Appendix, where explicit interval
expressions are obtained for these log(p)-value differences. The order notation assumes fixed t > ϕ . The
bounds are not uniform, see the expressions in the Appendix for details.

The most notable observation is that there are systematic gaps of log(n)/2+O(1) between the
log(p)-values. As we already knew, there is no question that the exact test is the best of the three for this
simple application. While these gaps may seem large on an absolute scale, representing factors close to

√
n,

they are in fact much smaller than the experiment-to-experiment variation of the p-values. To determine this
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variation, we consider the asymptotic distributions. We can readily determine that the log(p)-values are
asymptotically normal with standard deviations proportional to

√
n, which is transferred from the variance

of Θ̂. Compared to these standard deviations the gaps are negligible. The next theorem determines the
specific way in which asymptotic normality holds. Let N(µ,σ2) denote the normal distribution with mean µ

and variance σ2. The notation Xn
D−→ N(µ,σ2) means that Xn converges in distribution to the normal

distribution with mean µ and variance σ2.

Theorem 3. Assume 0 < ϕ < θ < 1. For P = PCH,n, P = PPBR,n or P = PX,n, the log(p)-value − log(P)
converges in distribution according to

√
n(− log(P)/n−KL(θ |ϕ)) D−→ N(0,σ2

G), (19)

with

σ
2
G = θ(1−θ)

(
log
(

θ

1−θ

1−ϕ

ϕ

))2

.

The theorem is proven in the Appendix, see Thm. 10. For the rest of the paper, we write P or Pn for the
p-values of any one of the tests when it does not matter which one.

We display the behavior described in the above theorems for n = 100 and θ = 0.5 in Fig. 1. We
conclude that the phenomena discussed above are already apparent for small numbers of trials. For Fig. 1,
we computed the quantiles of the log(p)-values numerically using the formulas provided in the previous
section, substituting for t the corresponding quantile of Θ̂ given that P(B = 1) = θ . To be explicit, let tr,n(θ)
be the r-quantile of Θ̂ defined as the minimum value θ̂ of Θ̂ satisfying P(Θ̂≤ θ̂)≥ r. (For simplicity we do
not place the quantile in the middle of the relevant gap in the distribution.) For example, t0.5,n(θ) is the
median. Then, by the monotonicity properties of the tests, the r-quantile of − log(Pn(Θ̂|ϕ)) is given by
− log(Pn(tr,n(θ)|ϕ)).

10 https://doi.org/10.6028/jres.125.003

https://doi.org/10.6028/jres.125.003
https://doi.org/10.6028/jres.125.003


Volume 125, Article No. 125003 (2020) https://doi.org/10.6028/jres.125.003

Journal of Research of National Institute of Standards and Technology

0
.0

0
.5

1
.0

1
.5

−
lo

g
(P

)
n

n = 100

median(− log(PCH) n)
KL(θ | ϕ)
0.16 and 0.84 quantiles of − log(PCH) n

0.0 0.1 0.2 0.3 0.4 0.5

−
0

.2
0

−
0

.0
5

0
.0

5
0

.1
5

ϕ

0.0 0.1 0.2 0.3 0.4 0.5

−
0

.2
0

−
0

.0
5

0
.0

5
0

.1
5

median(− log(PX)) n − median(− log(PCH)) n
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0.16 and 0.84 quantiles − median of − log(PCH) n

Fig. 1. Comparison of log(p)-values at n = 100 and θ = 0.5. The top half of the figure shows the median, and the 0.16
and 0.84 quantiles of − log(PCH,n(Θ̂|ϕ))/n. For θ = 0.5, the median agrees with KL(θ |ϕ) by symmetry. The lower half
shows the median differences − log(P(Θ̂|ϕ))/n+ log(PCH,n(Θ̂|ϕ))/n for P = PPBR,n and P = PX,n. The difference
between the 0.16 and 0.84 quantiles and the median for − log(PCH,n(Θ̂|ϕ))/n are also shown where they are within the
range of the plot; even for n as small as 100, they dominate the median differences, except where ϕ approaches θ = 0.5,
where the absolute p-values are no longer extremely small.

As noted above, the gaps between the log(p)-values are of the form log(n)/2+O(1). In fact, it is
possible to determine the asymptotic behavior of these gaps. After accounting for the explicitly given O(1)
terms in Thm. 2, they are asymptotically normal with variances of order O(1/n). The standard deviations of
the gaps are therefore small compared to their size. The precise statement of their asymptotic normality is
Thm. 11 in the Appendix. Figure 2 shows how these gaps depend on the value θ̂ of Θ̂ given ϕ . The gaps are
scaled by log(n) so that they can be compared to log(n)/2 visually for different values of n. The deviation
from log(n)/2 is most notable near the boundaries, where convergence is also slower, particularly for PX.
This behavior is consistent with the divergences as t approaches ϕ in the explicit interval bounds in Thm. 7
and Cor. 8.
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Fig. 2. Gaps between the log(p)-values depending on θ̂ at ϕ = 0.5. We show the normalized differences(
− log(Pn(θ̂ |ϕ))+ log(PCH,n(θ̂ |ϕ))

)
/ log(n) for P = PCH and P = PX at n = 100,1000, and 10000. For large n, at

constant θ̂ with 0.5 < θ̂ < 1, the PBR test’s normalized difference converges to −0.5, and the exact test’s normalized
difference converges to 0.5. The horizontal lines at ±0.5 indicate this limit. The lowest order normalized asymptotic
differences from ±0.5 are O(1/ log(n)) and diverge at θ̂ = 0.5 and θ̂ = 1.

5. Comparison of Confidence Intervals

Before presentation of our technical results, we remark that there are many excellent publications on
construction of one-sided and two-sided confidence intervals for the success probability of binomial trials
for the case of i.i.d. observations including [21] and [22].

Let P be one of PCH,n, PPBR,n or PX,n. Given a value θ̂ of Θ̂, the level-a confidence set determined by the
test with p-value P is I = {ϕ|P(θ̂ |ϕ)≥ a}. By the monotonicity properties of P, the closure of I is an
interval [ϕa(θ̂ ;P),1]. We can compute the endpoint ϕa by numerically inverting the exact expressions for P.
An example is shown in Fig. 3, where we show the endpoints according to each test for a = 0.01 and
θ̂ = 0.5 as a function of n. All tests’ endpoints converge to 0.5 as the number of trials grows. Notably, the
relative separation between the endpoints is not large at level a = 0.01.
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Fig. 3. Lower endpoints for the level 0.01 confidence set of the three tests as a function of n, where θ̂ = 0.5.

To quantify the behavior of the endpoints for the different tests, we normalize by the empirical standard

deviation σ̂ =
√

θ̂(1− θ̂)/n. The empirical endpoint deviation is then defined as

γa(θ̂ ;P) =
θ̂ −ϕa(θ̂ ;P)

σ̂
. (20)

For the exact test and for large n, we expect this quantity to be determined by the tail probabilities of a
standard normal distribution. That is, if the significance a is the probability that a normal RV of variance 1
exceeds κ , we expect γa(θ̂ ;PX)≈ κ .

We take the point of view that the performance of a test is characterized by the size of the endpoint
deviation. If the relative size of the deviations for two tests is close to 1 then they perform similarly for the
purpose of characterizing the parameter θ . Another way of comparing the intervals obtained is to consider
their coverage probabilities. For our situation, the coverage probability for test P at a can be approximated
by determining a′ such that γa′(θ ;PX) = γa(θ ;P). From Thm. 4 below, one can infer that the coverage
probability is then approximately 1−a′ ≥ 1−a. The coverage probabilities can be very conservative (larger
than 1−a), particularly for small a and P = PPBR.

We determined interval bounds for the empirical endpoint deviation for all three tests. The details are in
section 7.5 of the Appendix. The next theorem summarizes the results asymptotically.

Theorem 4. Let q(x) =− log(PN(0,1)(N ≥ x)) be the negative logarithm of the tail of the standard normal.
Fix θ̂ ∈ (0,1). Write α = | log(a)|. There is a constant c (depending on θ̂ ) such that for α ∈ (1,cn], γa
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satisfies

γa(θ̂ ;PCH) =
√

2α +O(α/
√

n), (21)

γa(θ̂ ;PPBR) =

√
2α + log(n)/2− log(2πθ̂(1− θ̂))/2+O(α/

√
n), (22)

γa(θ̂ ;PX) = q−1(α)+O(α/
√

n). (23)

The last expression has the following approximation relevant for sufficiently large α:

γa(θ̂ ;PX) =
√

2α− log(2π)− log(2α− log(2π))+O(log(α)/α
3/2)+O(α/

√
n). (24)

For α = o(
√

n), the relative error of the approximation in the first two identities goes to zero as n grows.
This is not the case for the last identity, where the relative error for large n is dominated by the term
O(log(α)/α3/2), and large α is required for a small relative error.

Proof. The expression for γa(θ̂ ;PCH) is obtained from Thm. 12 in the Appendix by changing the relative
approximation errors into absolute errors.

To obtain the expression for γa(θ̂ ;PPBR), note that the term ∆ in Thm. 13 satisfies
∆ = log(n)/2− log(2πθ̂(1− θ̂))/2+O(1/n), see Thm. 6. The O(1/n) under the square root pulls out to an
O(1/(

√
max(α, log(n))n)) term that is dominated by O(α/

√
n) because α ≥ 1 by assumption.

To obtain the expressions for γa(θ̂ ;PX), we refer to Thm. 14, where the lower bound on α implies
α ≥ 1 > log(2). The intervals in Thm. 14 give relative errors that need to be converted to absolute
quantities. By positivity and monotonicity of q−1, for sufficiently large n and for some positive constants u
and v, we have

γa(θ̂ ;PX) ∈
[
q−1(α(1−u

√
α/
√

n))(1− v
√

α/
√

n),q−1(α(1+u
√

α/
√

n))(1+ v
√

α/
√

n)
]
. (25)

Explicit values for u and v can be obtained from Thm. 14. We simplified the argument of q−1 by absorbing
the additive terms in the theorem into the term uα

√
α/
√

n with the constant u chosen to be sufficiently
large. Consider Eq. 94 with δ = u

√
α/
√

n. For sufficiently large n, the expression in the denominator of the
approximation error on the right-hand side exceeds a constant multiple of α . From this, with some new
constant u′,

γa(θ̂ ;PX) ∈
[
q−1(α)(1−u′

√
α/
√

n)(1− v
√

α/
√

n),q−1(α)(1+u′
√

α/
√

n)(1+ v
√

α/
√

n)
]
, (26)

which, with order notation simplifies further to

γa(θ̂ ;PX) = q−1(α)(1+O(
√

α/
√

n)). (27)

It now suffices to apply q−1(α) = O(
√

α) (see the proof of Eq. 24 below) and Eq. 23 is obtained.
For Eq. 24, we bound x = q−1(α), which we can do via bounds for α = q(x). From the expression

q(x) = x2/2+ log(2π)/2− log(Y (x)) = x2/2+ log(2π)/2+ log(x)− log(xY (x)) in the statement of
Thm. 14 and the bounds in Eq. 58, we have the two inequalities

q(x) = x2/2+ log(2π)/2+ log(x)− log(xY (x))≥ x2/2+ log(2π)/2+ log(x), (28)

q(x)≤ x2/2+ log(2π)/2+ log(x)+1/x2. (29)

Let l(x) = x2/2+ log(2π)/2+ log(x), which is monotonically increasing, as is q. The first inequality implies
that q−1 ≤ l−1. We need a bound of the form q(x)≤ dx2, from which we can conclude that x2 ≥ α/d. A
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bound of this type can be obtained from Eq. 91 in the Appendix. For definiteness, we restrict to α ≥ 6 and
show that the bound holds with d = 1. By Eq. 29, it suffices to establish that for x≥

√
6, l(x)+1/x2 ≤ x2.

Since log(2π)/2≤ 1, we have log(2π)/2+ log(x)+1/x2 ≤ 1+ log(1+(x−1))+1/x2 ≤ x+1/x2. For
x≥ 9/4, x+1/x2 ≤ x2/2. To finish the argument, apply the inequality

√
6≥ 9/4.

Given the bound x2 ≥ α , Eq. 29 becomes q(x) = α ≤ l(x)+1/α . With Eq. 28 we get
α = q(x) ∈ l(x)+ [0,1]/α . Equivalently,

l(x) ∈ α +
1
α
[−1,0]. (30)

Applying the monotone l−1 on both sides gives

x = l−1(l(x)) ∈ l−1
(

α +
1
α
[−1,0]

)
. (31)

Let α ′ satisfy x = l−1(α ′) with α ′ = α +δ and δ ∈ [−1,0]/α . Write z = x2 and c = log(2π). We have
l(z1/2) = z/2+ c/2+ log(z)/2 = α ′, which we can write as a fixed point equation z = f (z) for z with
f (z) = 2α ′− c− log(z). We can accomplish our goal by determining lower and upper bounds on the fixed
point. Since d

dy f (y) =−1/y < 0 for y > 0, the iteration z0 = 2α ′− c and zk = f (zk−1) is alternating around
the fixed point z, provided zk > 0 for all k. Provided z0 > 1, z1 = f (z0)< z0, from which we conclude that
z1 ≤ z < z0. Since we are assuming that α ≥ 6 and from above z0 ≥ 2(α−1/α)− c, the condition z0 > 1 is
satisfied. If z1 ≥ 1, then 0 > d

dy f (y)>−1 between z1 and z0, which implies that z0 and z1 are in the region
where the iteration converges to z. For our bounds, we only require z1 > 0, so that we can bound z according
to z1 ≤ z≤ z2. That z1 > 0 follows from log(y)< y for y > 0. We have

z2− z1 = z0− log(z1)− (z0− log(z0))

= log(z0/z1)

= log(z0/(z0− log(z0)))

=− log(1− log(z0)/z0)

= O(log(z0)/z0) = O(log(α ′)/α
′) = O(log(α)/α), (32)

where z0 = 2α ′− c ∈ 2α− c+2[−1,0]/α , and so − log(z0) =− log(2α− c)+O(1/α2). For z1 we get
z1 = z0− log(z0) = 2α− c− log(2α− c)+O(1/α). Applying Eq. 32 and from the definitions,

q−1(α) = x =
√

2α− c− log(2α− c)+O(log(α)/α). (33)

The approximation error in Eq. 24 is obtained by expanding the square root. We could have used Newton’s
method starting from z0 to obtain better approximations in one step, but the resulting expression is more
involved.

The expression for γa(θ̂ ;PX) confirms our expectation that it approaches the expected value for a
standard normal distribution and may be compared to the Berry-Esseen theorem [23]. The empirical
endpoint deviation of the CH test approaches that of the exact test for small a (large α). Their squares differ
by a term of order log(α) = log | log(a)|. Notably, the ratio of the PBR and CH tests’ empirical endpoint
deviation grows as Θ(

√
log(n)/α). The relationships are visualized in Figs. 4, 5 and 6 for different values

of a. The figures show that the relative sizes of the empirical endpoint deviations tend toward 1 with smaller
a. The Θ(

√
log(n)/α) relative growth of the PBR test’s endpoint deviations leads to less than a doubling of

the deviations relative to the exact test’s at a = 0.01 and a = 0.001 even for n = 106. So while the test’s
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coverage probabilities are much closer to 1 than the nominal value of 1−a, we believe that it does not lead
to unreasonably conservative results in many applications.
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Fig. 4. Empirical confidence set endpoint deviations at level a = 0.1 for θ̂ = 0.5 as a function of n. The continuous lines
show the expressions obtained after dropping the O(1/

√
n) terms. For the exact test, these expressions are the same as

the normal approximation and therefore match the absolute value of the 0.1 quantile of a unit normal.
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Fig. 5. Empirical confidence set endpoint deviations at level a = 0.01 for θ̂ = 0.5 as a function of n. See the caption of
Fig. 4.
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Fig. 6. Empirical confidence set endpoint deviations at level a = 0.001 for θ̂ = 0.5 as a function of n. See the caption of
Fig. 4.

Next we consider the behavior of the true endpoint deviations given by the normalized difference of the
true success probability θ and the endpoint obtained from one of the tests. Let σ =

√
θ(1−θ)/n be the

true standard deviation and define the true endpoint deviation determined by test P as

γ̃a(Θ̂|P) = (θ −ϕa(Θ̂|P))/σ

= (θ − Θ̂)/σ + γa(Θ̂|P)σ̂/σ . (34)

The true endpoint deviations show how the inferred endpoint compares to θ and therefore directly exhibits
the statistical fluctuations of Θ̂. In contrast, the empirical endpoint deviations are to lowest order
independent of θ̂ −θ .

We take the view that two tests’ endpoints perform similarly if their true endpoint deviations differ by an
amount that is small compared to the width of the distribution of the true endpoint deviations. To compare
the three tests on this basis, we consider the quantiles for Θ̂ corresponding to ±κ Gaussian standard
deviations from θ with κ constant. The quantiles satisfy θ±κ = θ ±κσ(1+O(1/

√
n)), by the Berry-Esseen

theorem or from Thm. 14. Since σ̂ = σ(1+O(1/
√

n)), we can also see that
γa(θ±κ |P) = γa(θ̂ |P)+O(1/

√
n), and so by substituting into the definition,

γ̃a(θ±κ |P) = γa(θ |P)±κ +O(1/
√

n), (35)

where the implicit constants depend on κ . For large α , the CH and exact tests’ endpoints are close and are
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dominated by κ , so they perform similarly. But this does not hold for the comparison of the CH or the exact
test’s endpoints to those of the PBR test, since the latter’s endpoint deviation grows as

√
log(n)/2.

The PBR test’s robustness to stopping rules requires that endpoint deviations must grow. Qualitatively,
we expect a growth of at least Ω(

√
log log(n)) due to the law of the iterated logarithm. This growth is

slower than the
√

log(n)/2 growth found above, suggesting that improvements are possible, as observed in
Ref. [12]. In many applications, the number of trials to be acquired can be determined ahead of time, so full
robustness to stopping rules is not necessary. However, the ability to adapt to changing experimental
conditions may still be helpful, as the example in Sec. 2 shows. If we know the number of trials ahead of
time, we can retain the ability to adapt while avoiding the asymptotic growth of the endpoint deviations of
the PBR test.

A strategy for avoiding the asymptotic growth of the PBR test’s endpoint deviations is to set aside the
first m = λn of the trials for training to infer the probability of success, and then use this to determine the
test factor to be used on the remaining (1−λ )n of the trials. With this strategy, the endpoint deviations are
bounded on average and typically. We formalize the training strategy as follows: Modify Eq. 11 by setting
Fk=1 = 1 for k < m and for k ≥ m,

Fk+1(Bk+1) = F(Bk+1) =

(
Θ̂m

ϕ

)Bk+1(1− Θ̂m

1−ϕ

)1−Bk+1

. (36)

Let G = F if ϕ ≤ Θ̂m and G = 1 otherwise. The Gk+1 are valid test factors for the null Bϕ . A p-value for
testing Bϕ is given by

Pλ (B|ϕ) = G(1)−(n−m)Θ̂′mG(0)−(n−m)(1−Θ̂′m) (37)

where Θ̂′m is defined by (n−m)Θ̂′m +mΘ̂m = nΘ̂n. We call this the Pλ test.
Define

Qλ (B|ϕ) =
(

ϕ

Θ̂m

)(n−m)Θ̂′m
(

1−ϕ

1− Θ̂m

)(n−m)(1−Θ̂′m)

. (38)

Then for ϕ ≤ Θ̂m, Qλ (B|ϕ) = Pλ (B|ϕ). To investigate the behavior of these quantities, we consider values
b, θ̂ , θ̂m and θ̂ ′m of the corresponding RVs. As a function of ϕ , Qλ (b|ϕ) is maximized at ϕ = θ̂ ′m and
monotone on either side of θ̂ ′m. If θ̂m ≤ ϕ ≤ θ̂ ′m, then Qλ (b|ϕ)≥ 1 = Pλ (b|ϕ), So for ϕ ≤max(θ̂m, θ̂

′
m), we

can use Qλ instead of Pλ without changing endpoint calculations.
For determining the endpoint of a level-a one-sided confidence interval from Pλ , we seek the maximum

ϕ such that for all ϕ ′ ≤ ϕ , Pλ (b|ϕ ′)≤ a. This maximum value of ϕ satisfies that ϕ ≤min(θ̂ ′m, θ̂m): For
θ̂m ≤ θ̂ ′m, this follows from Pλ (b|θ̂m) = 1. For θ̂m ≥ θ̂ ′m, the location of the maximum of Qλ implies that
Pλ (b|θ̂ ′m)≥ Pλ (b|θ̂m) = 1.

We show that endpoint deviations from the Pλ test are typically a constant factor larger than those of the
CH test. For large α , the factor approaches 1/

√
1−λ , approximating the endpoint deviations for a CH test

with (1−λ )n trials. We begin by comparing Pλ to PCH,(1−λ )n with the latter applied to the last (1−λ )n
trials and ϕ ≤ θ̂ ′m, where we can use Qλ in place of Pλ .

Qλ (b|ϕ)/PCH,(1−λ )n(θ̂
′
m|ϕ) =

(
θ̂ ′m
θ̂m

)(1−λ )nθ̂ ′m
(

1− θ̂ ′m
1− θ̂m

)(1−λ )n(1−θ̂ ′m)

. (39)
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Or, for the log(p)-value difference lp,

lp =− log(Qλ (b|ϕ))+ log(PCH,(1−λ )n(θ̂
′
m|ϕ)) =−(1−λ )nKL(θ̂ ′m|θ̂m), (40)

which is non-positive. By expanding to second order,

KL(t + x|t + y) = (t + x)(log(1+ x/t)− log(1+ y/t))

+(1− t− x)(log(1− x/(1− t))− log(1− y/(1− t)))

=
(x− y)2

2t(1− t)
+O(max(|x|, |y|)3). (41)

Let ∆ = Θ̂m−θ and ∆′ = Θ̂′m−θ . From the above expansion with t = θ , x = δ ′ and y = δ (where δ and δ ′

are values of ∆ and ∆′)

lp =−(1−λ )n
(

(δ −δ ′)2

2θ(1−θ)
+O(max(|δ |, |δ ′|3))

)
. (42)

The RVs ∆ and ∆′ are independent with means 0 and variances σ2/λ and σ2/(1−λ ). Furthermore,
√

n∆

and
√

n∆′ are asymptotically normal with variances θ(1−θ)/λ and θ(1−θ)/(1−λ ). Consequently, the
RV
√

n(∆−∆′) is asymptotically normal with variance v = θ(1−θ)/(λ (1−λ )). Accordingly, the
probability that n(∆−∆′)2 ≥ κ2θ(1−θ)/(λ (1−λ )) is asymptotically given by the two-sided tail for κ

standard deviations of the standard normal. For determining typical behavior, we consider
(δ −δ ′)2 = κ2θ(1−θ)/(nλ (1−λ )) with κ ≥ 0 constant for asymptotic purposes. Observe that n∆3 and
n∆′3 are Õ(1/

√
n) with probability 1, where the “soft-O” notation Õ subsumes the polylogarithmic factor

from the law of the iterated logarithm. We can now write

lp =−
κ2

2λ
+ Õ(1/

√
n). (43)

Fix the level a and thereby also α = | log(a)|. Define σ̂ ′ =
√

θ̂ ′m(1− θ̂ ′m)/(1−λ )n, and let ϕ ′ = θ̂ ′m− γ ′σ̂ ′

be the smallest solution of − log(Qλ (b|ϕ ′)) = α . Because

− log(Qλ (b|ϕ ′)) =− log(PCH,(1−λ )n(θ̂
′
m|ϕ ′))+ lp, (44)

we can estimate γ ′ as γ ′ = γa′,(1−λ )n(θ̂
′
m;PCH) =

√
2(α− lp)+O(α/

√
n) with a′ = e−(α−lp). Here, the

subscript (1−λ )n of γa′ makes the previously implicit number of trials explicit.
To finish our comparison, we express the endpoint ϕ ′ relative to θ̂ . For this, we write

ϕ
′ = θ̂

′
m− γ

′
σ̂
′

= θ̂ +(θ̂ ′m− θ̂)− γ
′
σ̂

√
θ̂ ′m(1− θ̂ ′m)

(1−λ )θ̂(1− θ̂)

= θ̂ +(θ̂ ′m− θ̂)− γ ′√
1−λ

σ̂
(
1+O(|θ̂ − θ̂

′
m|)
)
. (45)

We have θ̂ ′m− θ̂ = λ (θ̂ ′m− θ̂m) = λ (δ ′−δ ), and we are considering the case
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λ |δ ′−δ |= κ
√

λθ(1−θ)/(n(1−λ )), so

ϕ
′ = θ̂ − γ ′√

1−λ
σ̂
(
1+O(1/

√
n)
)
. (46)

We can therefore identify

γa(θ̂ |Pλ ) =
γ ′√

1−λ
(1+O(1/

√
n))

=

√
2(α +κ2/(2λ )+ Õ(1/

√
n))+O(α/

√
n)√

1−λ
(1+O(1/

√
n))

=

√
2(α +κ2/(2λ ))√

1−λ
+ Õ(α/

√
n), (47)

which compares as promised to γa(θ̂ ;PCH) =
√

2α +O(α/
√

n).

6. Conclusion

It is clear that for the specific problem of one-sided hypothesis testing and confidence intervals for
Bernoulli RVs, it is always preferable to use the exact test in the ideal case, where the trials are i.i.d. For
general nulls, exact tests are typically not available, so approximations are used. The approximations often
do not take into account failure of underlying distributional assumptions. The approximation errors can be
large at high significance. Thus trustworthy alternatives such as those based on large deviation bounds or
test supermartingales are desirable. Our goal here is not to suggest that these alternatives are better for the
example of Bernoulli RVs, but to determine the gap between them and an exact test, in a case where an exact
test is known and all tests are readily calculable. The suggestion is that for high significance applications,
the gaps are relatively small on the relevant logarithmic scale. For p-values, they are within what is expected
from experiment-to-experiment variation, even for moderate significances. For confidence intervals, the
increase in size is bounded by a constant if the number of trials is known ahead of time, but there is a slowly
growing cost with number of trials if we allow for arbitrary stopping-rules.

7. Appendix

7.1 Preliminaries

Notation and definitions are as introduced in the text. The p-value bounds obtained by the three tests
investigated are denoted by PX for the exact, PCH for the Chernoff-Hoeffding, and PPBR for the PBR test.
They depend on n, ϕ and Θ̂. For reference, here are the definitions again.

PX(Θ̂|ϕ,n) =
n

∑
i=nΘ̂

ϕ
i(1−ϕ)n−i

(
n
i

)
,

PCH(Θ̂|ϕ) =


(

ϕ

Θ̂

)nΘ̂( 1−ϕ

1−Θ̂

)n(1−Θ̂)
if Θ̂≥ ϕ ,

1 otherwise.

PPBR(Θ̂|ϕ) =

{
ϕnΘ̂(1−ϕ)n(1−Θ̂)(n+1)

( n
nΘ̂

)
if Θ̂≥ ϕ ,

Θ̂nΘ̂(1− Θ̂)n(1−Θ̂)(n+1)
( n

nΘ̂

)
otherwise.

(48)
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The gain per trial for a p-value bound Pn is Gn(Pn) =− log(Pn)/n. The values of ϕ , θ̂ and θ are usually
constrained. Unless otherwise stated, we assume that 0 < ϕ, θ̂ ,θ < 1 and n≥ 1.

Most of this appendix is dedicated to obtaining upper and lower bounds on log(p)-values and lower
bounds on endpoints of confidence intervals. We make sure that the upper and lower bounds differ by
quantities that converge to zero as n grows. Their differences are O(1/n) for log(p)-values and O(1/

√
n) for

confidence lower bounds. We generally aim for simplicity when expressing these bounds, so we do not
obtain tight constants.

7.2 Closed-Form Expression for PPBR

Theorem 5. Define

Θ̃k =
1

k+2
(Sk +1) ,

Fk+1 =

(
Θ̃k

ϕ

)Bk+1
(

1− Θ̃k

1−ϕ

)1−Bk+1

. (49)

Then
1

∏
n
k=1 Fk

= ϕ
nΘ̂(1−ϕ)n(1−Θ̂)(n+1)

(
n

nΘ̂

)
. (50)

Proof. The proof proceeds by induction. Write Pk for the right-hand side of Eq. 50. For n = 0, P0 = 1, and
the left-hand side of Eq. 50 evaluates to 1 as required, with the usual convention that the empty product
evaluates to 1.

Now suppose that Eq. 50 holds at trial n = k. For n = k+1 we can use (k+1)Θ̂k+1 = Sk+1 = Sk +Bk+1.
We expand the binomial expression to rewrite the right-hand side as

Pk+1 = ϕ
kΘ̂k+Bk+1(1−ϕ)k(1−Θ̂k)+(1−Bk+1)(k+2)

(
k+1

kΘ̂k +Bk+1

)
= ϕ

kΘ̂k(1−ϕ)k(1−Θ̂k)(k+1)
(

k
kΘ̂k

)
·ϕBk+1(1−ϕ)1−Bk+1(k+2)(k− kΘ̂k +1)−(1−Bk+1)(kΘ̂k +1)−Bk+1 . (51)

Since Θ̃k = (Sk +1)/(k+2) = (kΘ̂k +1)/(k+2) and
1− Θ̃k = (k−Sk +1)/(k+2) = (k− kΘ̂k +1)/(k+2), the identity simplifies to

Pk+1 = Pk ·
1

Fk+1
, (52)

thus establishing the induction step.

The expression in Eq. 50 can be seen as the inverse of a positive martingale for H0 = {νϕ} determined
by Sn. The complete family of such martingales was obtained by Ville [13], Chapter 5, Sec. 3, Eq. 21. Ours
is obtained from Ville’s with dF(t) = dt as the probability measure.

7.3 Log-p-Value Approximations

We use − log(PCH,n(t|ϕ)) = nKL(t|ϕ) as our reference value. According to Theorem 1, the
log(p)-values are ordered according to − log(PPBR)≤− log(PCH)≤− log(PX). To express the asymptotic
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differences between the log(p)-values, we use auxiliary functions. The first is

Hn(t) =− log
(

tnt(1− t)n(1−t)
(

n
nt

)√
n+1

)
=−nt log(t)−n(1− t) log(1− t)− log

(
n
nt

)
− 1

2
log(n+1). (53)

The first two terms of this expression can be recognized as the Shannon entropy of n independent random
bits, each with probability t for bit value 1. For t ∈ [1/n,1−1/n] and with Stirling’s approximation√

2πn(n/e)ne1/(12n+1) ≤ n!≤
√

2πn(n/e)ne1/(12n) applied to the binomial coefficient, we get

log
(

n
nt

)
= log

(
n!

(tn)!((1− t)n)!

)
∈ log

( √
2πn√

2πtn
√

2π(1− t)n

)
+ log

(
(n/e)n

(tn/e)tn((1− t)n/e)(1−t)n

)
+

[
1

12n+1
,

1
12n

]
+

[
− 1

12tn
− 1

12(1− t)n
,− 1

12tn+1
− 1

12(1− t)n+1

]
=−1

2
log(2πt(1− t))− 1

2
log(n)− tn log(t)− (1− t)n log(1− t)

+

[
1

12n+1
− 1

12t(1− t)n
,

1
12n
− 12n+2

(12tn+1)(12(1− t)n+1)

]
. (54)

We can increase the interval to simplify the bounds while preserving convergence for large n. For the lower
bound, we use −1/(12t(1− t)n). For the upper bound, note that (12tn+1)(12(1− t)n+1) is maximized at
t = 1/2. We can therefore increase the upper bound according to

1
12n
− 12n+2

(12tn+1)(12(1− t)n+1)
≤ 1

12n
− 2

6n+1
≤ 0 (55)

for n≥ 1. From this we obtain the interval expression

Hn(t) ∈
1
2

log(2πt(1− t))− 1
2

log(1+1/n)+
[

0,
1

12nt(1− t)

]
, (56)

valid for t ∈ [1/n,1−1/n]. The boundary values of Hn at t = 0 and t = 1 are − log(n+1)/2.
The next auxiliary function is

Y (t) =
1

e−t2/2

∫
∞

t
e−s2/2ds ∈

(
t

1+ t2 ,
1
t

)
for t > 0, (57)

where the bounds are from Ref. [24]. See this reference for a summary of all properties of Y mentioned
here, or Ref. [25] for more details. The function Y is related to the tail of the standard normal distribution,
the Q-function, by Q(t) = e−t2/2Y (t)/

√
2π . The function Y is monotonically decreasing, convex,

Y (0) =
√

π/2, and it satisfies the differential equation d
dt Y (t) = tY (t)−1. We make use of the following

bounds involving Y :

− log tY (t) ∈
[

0,
1
t2

]
. (58)

The lower bound comes from the upper bound 1/t for Y (t). The upper bound is from the lower bound
t/(1+ t2) for Y (t). Specifically, we compute
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− log(Y (t))≤− log(t/(1+ t2)) = log(t)+ log(1+1/t2)≤ log(t)+1/t2.
With these definitions, we can express the log(p)-values in terms of their difference from − log(PCH).

Theorem 6. For 0 < ϕ ≤ t < 1,

− log(PPBR,n(t|ϕ)) =− log(PCH,n(t|ϕ))−
1
2

log(n+1)+Hn(t) (59)

∈ − log(PCH,n(t|ϕ))−
1
2

log(n+1)+
1
2

log(2πt(1− t))− 1
2

log(1+1/n)

+

[
0,

1
12nt(1− t)

,

]
(60)

Proof. The theorem is obtained by substituting definitions and then applying the bounds of Eq. 56 on Hn(t).
Here are the details.

− log(PPBR,n(t|ϕ)) =− log
(

ϕ
nt(1−ϕ)n(1−t)(n+1)

(
n
nt

))
=− log

((
ϕ

t

)nt
(

1−ϕ

1− t

)n(1−t)
)

− log
(

tnt(1− t)n(1−t))(n+1)
(

n
nt

))
=− log(PCH,n(t|ϕ))−

1
2

log(n+1)

− log
(

tnt(1− t)n(1−t))√n+1
(

n
nt

))
=− log(PCH,n(t|ϕ))−

1
2

log(n+1)+Hn(t). (61)

It remains to substitute the interval expression for Hn(t).

Theorem 7. Define

lEn(t|ϕ) = min
(
(t−ϕ)

√
πn

8ϕ(1−ϕ)
,1
)
. (62)

Then for 0 < ϕ < t < 1,

− log(PX,n(t|ϕ)) ∈ − log(PPBR,n(t|ϕ))+ log(n+1)− log

(
t

√
(1−ϕ)

ϕ

)

− log
(√

nY
(√

n
ϕ(1−ϕ)

(t−ϕ)

))
+

[
− lEn(t|ϕ)

n(t−ϕ)
,0
]
, (63)

− log(PX,n(t|ϕ)) ∈ − log(PCH,n(t|ϕ))+
1
2

log(n)− log

(√
t(1−ϕ)

2π(1− t)ϕ

)

− log
(√

nY
(√

n
ϕ(1−ϕ)

(t−ϕ)

))
+

[
− lEn(t|ϕ)

n(t−ϕ)
,

1
12nt(1− t)

]
. (64)

Observe that lEn(t|ϕ) is O(1) with respect to n for t > ϕ constant. The first term in the defining
minimum is smaller than 1 only for ϕ within less than one standard deviation (which is O(1/

√
n)) of t. It is

defined so that the primary dependence on the parameters is visible in the interval bounds.
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Proof. For approximating PX, we apply Theorem 2 of Ref. [24] with the following sequence of
substitutions, the first four of which expand the definitions in the reference:

B(k;n, p)←
n

∑
j=k

b( j;n, p),

b(k−1;n−1, p)←
(

n−1
k−1

)
pk−1(1− p)n−k,

x← (k− pn)/σ ,

σ ←
√

np(1− p),

p← ϕ,

k← nt. (65)

With the given substitutions and Y (t) as defined by Eq. 57, we obtain for t ≥ ϕ ,

− log(PX) ∈ − log
(√

nϕ(1−ϕ)ϕnt−1(1−ϕ)n(1−t)
(

n−1
nt−1

))
− log

(
Y

( √
n(t−ϕ)√
ϕ(1−ϕ)

))
+

[
− lEn(t|ϕ)

n(t−ϕ)
,0
]

=− log
(

ϕ
nt(1−ϕ)n(1−t)(n+1)

(
n
nt

))
− log

(
nt
√

nϕ(1−ϕ)

ϕn(n+1)

)

− log

(
Y

( √
n(t−ϕ)√
ϕ(1−ϕ)

))
+

[
− lEn(t|ϕ)

n(t−ϕ)
,0
]

=− log(PPBR)+ log(n+1)− log

(
t

√
(1−ϕ)

ϕ

)

− log

(
√

nY

( √
n(t−ϕ)√
ϕ(1−ϕ)

))
+

[
− lEn(t|ϕ)

n(t−ϕ)
,0
]
. (66)

The second identity of the theorem follows by substituting the expression from Theorem 6.

We can eliminate the function Y from the expressions by applying the bounds from Eq. 58.

Corollary 8. With the assumptions of Theorem 7,

− log(PX,n(t|ϕ)) ∈ − log(PCH,n(t|ϕ))+
1
2

log(n)− log
(

1−ϕ

t−ϕ

√
t

2π(1− t)

)
+

[
− lEn(t|ϕ)

n(t−ϕ)
,

ϕ(1−ϕ)

(t−ϕ)2n
+

1
12nt(1− t)

]
. (67)
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Proof. Define c = (t−ϕ)/
√

ϕ(1−ϕ). In view of Eq. 58, we have

− log
(√

nY
(√

n
ϕ(1−ϕ)

(t−ϕ)

))
=− log(

√
nY (c
√

n))

= log(c)− log(c
√

nY (c
√

n))

∈ log(c)+
[

0,
1

c2n

]
. (68)

Substituting in Eq. 64 and simplifying the expression gives the desired result.

7.4 Asymptotic Normality of the log(p)-Values and Their Differences

The main tool for establishing the asymptotic distribution of the log(p)-values is the “delta method”. A
version sufficient for our purposes is Theorem 1.12 and Corollary 1.1 of Ref. [18]. The notation
Xn

D−→ N(µ,σ2) means that Xn converges in distribution to the normal distribution with mean µ and variance
σ2. By the central limit theorem, Θ̂n = Sn/n satisfies

√
n(Θ̂n−θ)

D−→ N(0,θ(1−θ)). An application of the
delta method therefore yields the next lemma.

Lemma 9. Let F : R→ R be differentiable at θ , with F ′(θ) 6= 0. Then

√
n(F(Θ̂n)−F(θ))

D−→ N
(
0,F ′(θ)2

θ(1−θ)
)

Theorem 10. For P = PCH, P = PPBR or P = PX, and 0 < ϕ < θ < 1 constant, the gain per trial Gn(P)
converges in distribution according to

√
n(Gn(P)−KL(θ |ϕ)) D−→ N(0,σ2

G), (69)

with

σ
2
G = θ(1−θ)

(
log
(

θ

1−θ

1−ϕ

ϕ

))2

.

Proof. Consider P = PCH first. In Lemma 9, define
F(x) = KL(x|ϕ) = x log(x/ϕ)+(1−x) log((1−x)/(1−ϕ)) so that F(Θ̂n) = Gn(PCH). For the derivative of
F at x = θ , we get

F ′(θ) = log
(

θ

1−θ

1−ϕ

ϕ

)
. (70)

The theorem now follows for PCH by applying Lemma 9.
Theorem 6 and the law of large numbers imply that (− log(PPBR)/

√
n)− (− log(PCH)/

√
n) converges in

probability to 0. Corollary 8 implies the same for PX, namely that (− log(PX )/
√

n)− (− log(PCH)/
√

n)

converges in probability to 0. In general, if Xn−Yn converges in probability to 0 and Yn
D−→ µ , then Xn

D−→ µ ,
see Ref. [26], Proposition 6.3.3. The statement of the theorem to be proven now follows for P = PPBR and
P = PX by comparison of

√
nGn(PPBR) and

√
nGn(PX) to

√
nGn(PCH).

The differences of the log(p)-values have much tighter distributions. They are also asymptotically
normal with scaling and variances given in the next theorem. The differences are Ω(log(n)) with standard
deviations O(1/

√
n).
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Theorem 11. Let 0 < ϕ < θ < 1 be constant. If θ 6= 1/2, then PPBR/(
√

nPCH) satisfies

−
√

n log

(√
2πθ(1−θ)PPBR√

nPCH

)
D−→ N

(
0,

(1−2θ)2

4θ(1−θ)

)
. (71)

If ϕ 6= θ(2θ −1), then
√

nPX/PCH satisfies

−
√

n log

(
θ −ϕ

1−ϕ

√
2π(1−θ)

θ

√
nPX

PCH

)
D−→ N

(
0,

(θ(1−2θ)+ϕ)2

4(θ −ϕ)2θ(1−θ)

)
, (72)

Proof. From Theorem 6, Eq. 60 and the law of large numbers, we see that

√
n
(
− log

(
PPBR√
nPCH

)
− log

(√
2πΘ̂(1− Θ̂)

))
(73)

converges in probability to zero. From Lemma 9 and

d
dx

log(x(1− x))/2 =
1
2x
− 1

2(1− x)
=

1−2x
2x(1− x)

, (74)

we conclude

√
n
(

log
(√

2πΘ̂(1− Θ̂)

)
− log

(√
2πθ(1−θ)

))
D−→ N

(
0,
(

1−2θ

2θ(1−θ)

)2

θ(1−θ)

)
. (75)

Combining the above observations gives Eq. 71.
Similarly, from Corollary 8 and taking note of the definition of lEn(t|ϕ),

√
n

− log
(√

nPX

PCH

)
− log

 Θ̂−ϕ

1−ϕ

√
2π(1− Θ̂)

Θ̂

 (76)

converges in probability to zero. The relevant derivative is

d
dx

(log(x−ϕ)+ log((1− x)/x)/2) =
1

x−ϕ
− 1

2(1− x)
− 1

2x
=

x(1−2x)+ϕ

2(x−ϕ)x(1− x)
, (77)

from which

√
n

log

 Θ̂−ϕ

1−ϕ

√
2π(1− Θ̂)

Θ̂

− log

θ −ϕ

1−ϕ

√
2π(1− θ̂)

θ̂


D−→ N

(
0,
(

θ(1−2θ)+ϕ

2(θ −ϕ)θ(1−θ)

)2

θ(1−θ)

)
, (78)

and combining the two observations gives Eq. 72.

7.5 Confidence Interval Endpoints

For the one-sided confidence intervals, we need to determine the lower boundaries of acceptance
regions, that is the confidence lower bounds. By monotonicity of the p-values in ϕ , it suffices to solve
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equations of the form − log(P(θ̂ ,ϕ)) = α , where a = e−α is the desired significance level. Here we obtain
lower and upper bounds on the solutions ϕ .

To illuminate the asymptotic behavior of solutions ϕ of − log(P(θ̂ ,ϕ)) = α , we reparametrize the

log-p-values so that our scale is set by an empirical standard deviation, namely σ̂ =
√

θ̂(1− θ̂)/n. Thus we
express the solution as

ϕ(γ, θ̂) = θ̂ − σ̂ γ, (79)

in terms of a scaled deviation down from θ̂ . Inverting for γ we get

γ = γ(ϕ, θ̂) =
θ̂ −ϕ

σ̂
. (80)

Theorem 12. Let 0 < θ̂ < 1 and α > 0. Suppose that α ≤ nθ̂ 2(1− θ̂)2/8. Then there is a solution γα > 0
of the identity − log(PCH(θ̂ ,ϕ(γα , θ̂))) = α satisfying

γα ∈
√

2α

1+
5
2

√
α√

nθ̂(1− θ̂)
[−1,1]

−1/2

. (81)

The constants in this theorem and elsewhere are chosen for convenience, not for optimality; better
constants can be extracted from the proofs. Note that the upper bound on α ensures that the reciprocal square
root is bounded away from zero. However, for the relative error to go to zero as n grows requires α = o(n).

Proof. Consider the parametrized bound α ≤ 2nθ̂ 2(1− θ̂)2(1−a1)
2, where later we set a1 = 3/4 to match

the theorem statement. Let F(γ) =− log(PCH(θ̂ ,ϕ(γ, θ̂))). F is continuous and monotone increasing. A
standard simplification of the Chernoff-Hoeffding bound noted in Ref. [17] is

PCH ≤ e−2n(θ̂−ϕ)2
= e−2θ̂(1−θ̂)γ2

. (82)

For ϕ = ϕ(γα , θ̂) solving the desired equation, we have (θ̂ −ϕ)≤
√

α/(2n) (by monotonicity), which in
turn is bounded above according to

√
α/2n≤ θ̂(1− θ̂)(1−a1)≤ θ̂(1−a1), according to our assumed

bound. We conclude that ϕ ≥ a1θ̂ . For the solution γα , we get

γα ≤
√

α/(2θ̂(1− θ̂))≤
√

nθ̂(1− θ̂)(1−a1).

We now Taylor expand KL(θ̂ |ϕ) with remainder at third order around ϕ = θ̂ . Write
f (x) = KL(θ̂ |θ̂ − x), where we can restrict x according to θ̂ ≥ θ̂ − x = ϕ ≥ a1θ̂ . The derivatives of f can be
written explicitly as follows:

f (k)(x) = (k−1)!
θ̂

(θ̂ − x)k
− (−1)k−1(k−1)!

1− θ̂

(1− θ̂ + x)k
. (83)
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We have

f (1)(0) = 0,

f (2)(0) =
1
θ̂
+

1
1− θ̂

=
1

θ̂(1− θ̂)
,

f (3)(x) = 2
θ̂

(θ̂ − x)3
−2

1− θ̂

(1− θ̂ + x)3
,

f (3)(x)≤ 2
θ̂

(θ̂ − x)3
≤ 2

θ̂

a3
1θ̂ 3

= 2
1

a3
1θ̂ 2

,

f (3)(x)≥−2
1− θ̂

(1− θ̂ + x)3
≥−2

1− θ̂

(1− θ̂)3
=−2

1
(1− θ̂)2

, (84)

since 0 < a1 < 1. We use the bounds on f (3)(x) to bound the remainder in the Taylor expansion, where, to
get cleaner expressions, we can decrease θ̂ and 1− θ̂ to θ̂(1− θ̂) in the denominators.

KL(θ̂ |θ̂ − x) ∈ x2

2θ̂(1− θ̂)
+

x3

3(θ̂(1− θ̂))2

[
−1,

1
a3

1

]
. (85)

Substituting x = γα

√
θ̂(1− θ̂)/n gives

α =− log(PCH(θ̂ ,ϕ(γα , θ̂))) = nKL(θ̂ |θ̂ − x) ∈ γ2
α

2

1+
2γα

3
√

nθ̂(1− θ̂)

[
−1,

1
a3

1

] . (86)

For θ̂ ≤ 1/2, f (4)(x) and f (3)(0) are non-negative, so we could have taken the lower bound in the interval to
be zero for θ ≤ 1/2. For the theorem, we prefer not to separate the cases.

We substitute the bound γ ≤
√

nθ̂(1− θ̂)(1−a1) for the γ multiplying the interval in Eq. 86 and use the
lower bound in the interval for the inequality

α ≥ γ2

2

(
1− 2(1−a1)

3

)
. (87)

For the theorem, we have a1 = 3/4, so 1−2(1−a1)/3 = 5/6. Inverting the inequality for γ gives
γ ≤ 2

√
3/5
√

α . Now substituting this bound on γ for the γ multiplying the interval in Eq. 86 gives

α ∈ γ2

2

1+
4√
15

√
α√

nθ̂(1− θ̂)

[
−1,

43

33

] . (88)

By monotonicity of the appropriate operations,

γ ∈
√

2α

1+
4√
15

√
α√

nθ̂(1− θ̂)

[
−1,

43

33

]−1/2

. (89)

For the theorem statement, we simplify the bounds with 1≤ 43/33 and 44/(33
√

15)≤ 5/2.

29 https://doi.org/10.6028/jres.125.003

https://doi.org/10.6028/jres.125.003
https://doi.org/10.6028/jres.125.003


Volume 125, Article No. 125003 (2020) https://doi.org/10.6028/jres.125.003

Journal of Research of National Institute of Standards and Technology

Theorem 13. Let 0 < θ̂ < 1 and α > 0. Define ∆ = log(n+1)/2−Hn(θ̂). Suppose that
α +∆≤ nθ̂ 2(1− θ̂)2/8. Then there is a solution γα > 0 of the identity − log(PPBR(θ̂ ,ϕ(γα , θ̂))) = α

satisfying

γα ∈
√

2(α +∆)

1+
5
2

√
α +∆√

nθ̂(1− θ̂)
[−1,1]

−1/2

.

Proof. By Theorem 6, − log(PCH)− (− log(PPBR)) = ∆. If we define α̃ = α +∆, then solving
− log(PPBR) = α is equivalent to solving − log(PCH) = α̃ . Since ∆ depends only on n and θ̂ , α̃ does not
depend on γ . We can therefore apply Theorem 12 to get the desired bounds.

Theorem 14. For x≥ 0, let q(x) =− log(e−x2/2Y (x)/
√

2π) = x2/2+ log(2π)/2− log(Y (x)). Suppose that
0 < θ̂ < 1, and log(2)< α ≤ nθ̂ 2(1− θ̂)2/8. Then there is a solution γα of the identity
− log(PX(θ̂ ,ϕ(γα , θ̂)) = α satisfying

γα ∈max

0,q−1

α

1+
64
√

α/(15
√

15)√
nθ̂(1− θ̂)

[−1,1]

+

√
π/6+8

√
α/
√

15√
nθ̂(1− θ̂)

[−1,1]


×

1+
2
√

α/
√

5√
nθ̂(1− θ̂)

[−1,1]

 , (90)

where we extend q−1 to negative values by q−1(y) =−∞ for y≤ 0 (if necessary) when evaluating this
interval expression.

The function q(x) is the negative logarithm of the Q-function, which is the tail of the standard normal
distribution. The lower bound on α in Theorem 14 ensures that there is a solution with γα > 0, because
q(0) = log(2). For reference, the constants multiplying the interval expressions are 64/(15

√
15)≈ 1.102,

8/
√

15≈ 2.066,
√

π/6≈ 0.724, 2/
√

5≈ 0.894. Note that in the large n limit, where the O(1/
√

n) terms
are negligible, the value of γα in Theorem 14 corresponds to the (1− e−α)-quantile of the standard normal.

By monotonicity of q−1, the explicit bounds in Eq. 90 are obtained by combining the lower or the upper
bounds in intervals in the expression. We remark that q−1 behaves well with respect to relative error for α

large enough because of the inequalities

q−1(y)/(1+q−1(y)2)≤ d
dy

q−1(y)≤ 1/q−1(y),

q−1(y)2 ≥ y−q(1)+1, for y≥ q(1)≈ 1.841,

q−1(y)2 ≤ 2(y− log(2)), for y≥ q(0) = log(2), (91)

which we now establish. By implicit differentiation and from the properties of Y noted after Eq. 57,
d
dy q−1(y)|y=q(x) = Y (x) ∈ [x/(1+ x2),1/x]. Therefore q−1(y)/(1+q−1(y)2)≤ d

dy q−1(y)≤ 1/q−1(y). For
y≥ log(2), we can integrate d

dz q−1(z)2 = 2q−1(z) d
dz q−1(z)≤ 2 from z = log(2) to y to show that

q−1(y)2 = q−1(y)2−q−1(log(2))2 ≤ 2(y− log(2)), making use of the identity q−1(log(2)) = 0. Consider
y,z≥ q(1). Since q−1(z) and 0≤ x 7→ x2/(1+ x2) are monotone increasing,
q−1(z)2/(1+q−1(z)2)≥ q−1(q(1))2/(1+q−1(q(1))2) = 1/2, so the integral of d

dz q−1(z)2 from z = q(1) to
y with the lower bound on d

dz q−1(z) gives q−1(y)2−q−1(q(1))2 = q−1(y)2−1≥ y−q(1).
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From the inequality d
dy q−1(y)≤ 1/q−1(y) in Eq. 91, integration and monotonicity, for 0≤ z≤ δ ,

q−1(α− z)≥ q−1(α)− z
q−1(α−δ )

≤ q−1(α)

(
1− z

q−1(α−δ )2

)
,

q−1(α + z)≤ q−1(α)+
z

q−1(α−δ )
≥ q−1(α)

(
1+

z
q−1(α−δ )2

)
. (92)

To determine the relative error, write δ ′ = δ/α to obtain the interval inclusion

q−1(α(1+δ
′[−1,1]))⊆ q−1(α)

(
1+

αδ ′

q−1(α(1−δ ′))2 [−1,1]
)
. (93)

For α(1−δ ′)> q(1), the interval relationship can be weakened to

q−1(α(1+δ
′[−1,1]))⊆ q−1(α)

(
1+

αδ ′

α(1−δ ′)−q(1)+1
[−1,1]

)
. (94)

The relative error on the right-hand side is given by the term multiplying the interval, and can be written as
αδ ′/(α− (αδ ′+q(1)−1)). If αδ ′+q(1)−1≤ α/2, then the relative error is bounded by 2δ ′ which is
twice the relative error of α . Of course, for the interval bounds to converge, we need α = o(n).

Proof. As in the proof of Theorem 12, consider the parametrized bound α ≤ 2nθ̂ 2(1− θ̂)2(1−a1)
2, where

later we set a1 = 3/4 to match the statement of Theorem 14. From the Chernoff-Hoeffding bound, we get

ϕ ≥ a1θ̂ and γα ≤
√

α/(2θ̂(1− θ̂))≤
√

nθ̂(1− θ̂)(1−a1).

Define γ̃ = (θ̂ −ϕ)/
√

ϕ(1−ϕ)/n. We start from Eq. 64, rewritten as follows:

− log(PX) ∈ nKL(θ̂ |ϕ)+ 1
2

log(2π)− logY (γ̃)− 1
2

log

(
θ̂(1−ϕ)

(1− θ̂)ϕ

)

+

[
− lEn(θ̂ |ϕ)

n(θ̂ −ϕ)
,

1
12nθ̂(1− θ̂)

]
. (95)

If γ̃ ≥
√

8/π ≈ 1.6, lEn(θ̂ |ϕ) = 1. For better bounds at small values of γ̃ , we use the other alternative in the
definition of lEn, according to which the lower bound in the last interval of Eq. 95 is

− lEn(θ̂ |ϕ)
n(θ̂ −ϕ)

≥−
√

π/8√
nϕ(1−ϕ)

≥−
√

π/8√
na1θ̂(1−ϕ)

≥−
√

π/8√
na1θ̂(1− θ̂)

. (96)

Next we approximate nKL(θ̂ |ϕ) in terms of γ̃ instead of γ . We still write the interval bounds in terms of
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γ . Let f (x) = KL(ϕ + x|ϕ). We are concerned with the range 0≤ x≤ θ̂ −ϕ , with ϕ ≥ a1θ̂ . We have

f (1)(x) = log((ϕ + x)/ϕ)− log((1−ϕ− x)/(1−ϕ))

f (2)(x) =
1

ϕ + x
+

1
1−ϕ− x

=
1

(ϕ + x)(1−ϕ− x)

f (3)(x) =− 1
(ϕ + x)2 +

1
(1−ϕ− x)2

=− 1−2(ϕ + x)
(ϕ + x)2(1−ϕ− x)2

| f (3)(x)| ≤ 1
a2

1θ̂ 2(1− θ̂)2
, (97)

yielding

KL(ϕ + x|ϕ) ∈ x2

2ϕ(1−ϕ)
+

x3

6a2
1θ̂ 2(1− θ̂)2

[−1,1], (98)

and with x = γ̃
√

ϕ(1−ϕ)/n = γ

√
θ̂(1− θ̂)/n,

nKL(θ̂ |ϕ) ∈ γ̃2

2
+

γ3

6a2
1

√
nθ̂(1− θ̂)

[−1,1]. (99)

For the fourth term on the right-hand side of Eq. 95,

d
dx

log

(
θ̂(1− θ̂ + x)
(1− θ̂)(θ̂ − x)

)
=

1
1− θ̂ + x

+
1

θ̂ − x
=

1
(1− θ̂ + x)(θ̂ − x)

, (100)

whose absolute value is bounded by 1/(a1θ̂(1− θ̂)) for x in the given range. Thus

log

(
θ̂(1−ϕ)

(1− θ̂)ϕ

)
∈ γ

a1

√
nθ̂(1− θ̂)

[−1,1]. (101)

Since PX ≤ PCH, we can also use the bound γ ≤ 2
√

3/5
√

α obtained in the proof of Theorem 12.
Substituting a1 = 3/4 as needed, the equation to solve is now

α ∈ γ̃2

2
+

1
2

log(2π)− logY (γ̃)

+
8√
15

√
α√

nθ̂(1− θ̂)
[−1,1]+

64
15
√

15

√
α

3√
nθ̂(1− θ̂)

[−1,1]

+

− √
π/6√

nθ̂(1− θ̂)
,

1
12nθ̂(1− θ̂)

 . (102)

The sum of the first three terms evaluates to q(γ̃). The remaining terms are now independent of γ and are of
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order 1/
√

n. They can be merged by means of common bounds using 2nθ̂(1− θ̂)≥
√

nθ̂(1− θ̂), since

nθ̂(1− θ̂)≥ 1/2 for our standing assumptions that n≥ 1 and θ̂n is an integer different from 0 and n.

Consequently, 12nθ̂(1− θ̂)≥ 6
√

nθ̂(1− θ̂)≥
√

6/π

√
nθ̂(1− θ̂). The interval bounds then combine

conservatively to √
π/6+8

√
α/
√

15+64
√

α
3
/(15
√

15)√
nθ̂(1− θ̂)

. (103)

We can now write

α ∈ q(γ̃)+

√
π/6+8

√
α/
√

15+64
√

α
3
/(15
√

15)√
nθ̂(1− θ̂)

[−1,1], (104)

which holds iff

q(γ̃) ∈ α

1+
64
√

α/(15
√

15)√
nθ̂(1− θ̂)

[−1,1]

+

√
π/6+8

√
α/
√

15√
nθ̂(1− θ̂)

[−1,1]. (105)

By monotonicity of q and extending q−1 to negative arguments as mentioned in the statement of Theorem 14
if necessary, the constraint is equivalent to

γ̃ ∈ q−1

α

1+
64
√

α/(15
√

15)√
nθ̂(1− θ̂)

[−1,1]

+

√
π/6+8

√
α/
√

15√
nθ̂(1− θ̂)

[−1,1]

 . (106)

For α > log(2), we know that γ̃ > 0, so we can add max(0, . . .) as in the theorem statement.

To determine the interval equation for γ , we have γ = γ̃

√
ϕ(1−ϕ)/(θ̂(1− θ̂)). We use the first-order

remainder to bound the factor on the right-hand side. For this consider the numerator, and write

g(x) =
√
(θ̂ − x)(1− θ̂ + x) with 0≤ x≤ θ̂ −ϕ . We have

g(1)(x) =
2(θ̂ − x)−1

2
√

(θ̂ − x)(1− θ̂ + x)
, (107)

|g(1)(x)| ≤ 1

2
√

a1θ̂(1− θ̂)

=
1√

3θ̂(1− θ̂)
, (108)

g(x) ∈
√

θ̂(1− θ̂)+
x√

3θ̂(1− θ̂)
[−1,1]. (109)

With x = γ

√
θ̂(1− θ̂)/n and the bound of γ ≤ 2

√
3/5
√

α , we get

γ ∈ γ̃

1+
2
√

α/
√

5√
nθ̂(1− θ̂)

[−1,1]

 . (110)
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The theorem follows by composing this constraint with Eq. 106.
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