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We describe a methodology for constructing tabular potentials of supertoroids with short-range interactions, which requires the
calculation of the volume of overlap of these shapes for many relative positions and orientations. Recent advances in the synthesis of
anisotropic colloids have made experimental realizations of such particles feasible and have increased the practical impact of
fundamental simulation studies of these families of shapes. This extends our recent work on superquadric potentials to now include a
family of ring-like shapes with a hole in the middle. Along with the addition of supertoroids, the ability to make tables for nonidentical
particles and particle pairs with multiple, disconnected overlap volumes was added. Using newly developed extensions to a previously
published algorithm, we produced tabular potentials for all of these new cases. The algorithmic developments in this work will enable
Monte Carlo simulations of a wider variety of shapes to predict thermodynamic properties over a range of conditions.
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1. Introduction

Due to the development of new techniques for nanoparticle construction [1–5], recent years have seen
rapid growth in the use of anisotropic colloids [6, 7]. Colloids have become an appealing base for
self-assembly studies because the interaction, both attractive and repulsive, between particles can be
controlled by manipulating the properties of the individual particles, such as the particle anisotropy [8–11].
This push for the development of more exotic types of colloids has caused an increased demand for
simulations that accurately and efficiently predict the system behavior over a range of thermodynamic
conditions. Many studies have presented models that describe the behavior of systems of convex, solid
particles [10, 12–14]. Expansion of the model to include porous, concave [15–18] shapes would allow the
examination of systems relevant for drug delivery [17, 19–21], optics [17, 19], catalysis [22], and photonics
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[20, 21]. Existing models also focus on single-component systems [9, 18], rather than multicomponent
systems. While existing algorithms aim to efficiently compute the overlap of hard superquadrics during the
many-particle simulation [23], computational time may be further reduced by use of tabular potentials. This
work outlines a modification to the methodology presented in Ref. [10], which was previously used to create
tabular potentials for simulation of superquadrics, so that the method is now also capable of simulating
supertoroids.

Supertoroids and superquadrics are both sets of geometric primitives that can have their curvature and
spatial dimensions easily manipulated to model a wide variety of shapes [24]. However, supertoroids are
challenging to simulate due to the hole in the middle. In some special cases, when another particle of similar
size approaches the surface of the toroid, but it is too large to pass through the hole, there is effectively a
concave curvature to the surface. This effective concave curvature due to the presence of the hole must be
handled with the specialized algorithms discussed in this work due to the possibility that the excluded
volume overlap of two particles contains multiple regions that are not connected. If another particle is small
enough to pass through the hole in the toroid, then inner and outer surfaces must be distinguished, which is
beyond the scope of this work. Other factors included in this work are modifications to the algorithm such
that tables were generated for nonidentical particles. The methodology described within this manuscript was
implemented in the FEASST simulation package and is planned for eventual public release [25]. The
methods for the modifications are outlined in Sec. 2, and the results for specific cases are given in Sec. 3.

Specifically, the following four different pair interactions were considered: toroid-toroid,
supertoroid-supertoroid, cube-sphere, and toroid-sphere. These cases were divided into the following two
categories: interactions between identical particles (Sec. 3.1), and interactions between nonidentical
particles (Sec. 3.2). Finally, conclusions and future work are discussed in Sec. 4.

2. Methods

2.1 Supertoroids and the Depletant Potential

Particles were modeled using the supertoroid equation given by the following parametric equation [24].

r(η ,ω) =

[
a4 + cos ε1η

a3 sin ε1η

]
⊗
[

a1 cos ε2ω

a2 sin ε2ω

]
=

a1(a4 + cos ε1η)cos ε2ω

a2(a4 + cos ε1η)sin ε2ω

a3 sin ε1η

 −π ≤ η ≤ π

−π ≤ ω ≤ π
(1)

The ε1 and ε2 parameters define the curvature of the particle. The a1, a2, and a3 parameters are scaling
factors that determine the extents of the particle along the axis in the x, y, and z dimensions, respectively. In
the z dimension, the particle extends up to values of ±a3, but the maximum extents of the particles in the x
and y dimensions also depend upon the a4 parameter, which is directly related to the size of the hole. Note
that Eq. (1) reduces to the superquadric equation when a4 = 0. Figure 1 shows the relationship between a4

and the size of the hole in the supertoroid.
In order to specify the relative position and orientation of two particles, one particle is used as a

reference. Specifically, the center of the reference particle is on the origin, as described by Eq. (1). In
addition, the orientation of the reference particle is also as described in Eq. (1). The relative position of the
center of the second particle with respect to the center of the reference particle is defined by spherical
coordinates (rS,θS,φS) using the mathematical convention of radial, azimuthal, and polar angles,
respectively. The orientation of the second particle relative to the reference particle is defined using Euler
angles (φE ,θE ,ψE), which represent a rotation with respect to the orientation of the reference particle.
These Euler angles are defined via the so-called “x-convention,” which is given by a rotation by φE about the
z-axis, θE about the new x-axis, and then ψE about the new z-axis. With these six degrees of freedom, we are
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Fig. 1. The cross section of a toroid in the x-y plane, where ε1 = ε2 = 1 and a1 = a2. The outer and inner surfaces
intersect the x and y axes at ai(a4 +1) and ai(a4−1), respectively (i.e., i = 1,2 for x,y).

able to describe any spatial configuration of two particles. All angles are defined in radians in this work, and
the ranges of each of these angles are considered from 0 to π/2, using 51 evenly-spaced points between and
inclusive to these bounds for the calculations in the following results section.

The following anisotropic model is similar to that described in Ref. [10]. In particular, the shapes are
modeled as hard particles with short-range attractions given by an implicit depletant potential. The total
potential energy between two particles, U , is given by

U =Uh +Ud (2)

where Uh is the potential energy due to hard sphere interactions, and Ud is the short-range attraction. The
hard potential is simply given by

Uh =

{
∞ if r < rh

0 if r ≥ rh
(3)

where rh is the hard contact distance, which is a function of orientation and is computed numerically [10].
This numerical calculation utilizes a grid of surface points, as described in Ref. [10], using the parameter
ns = 50 in this work.

A short-range depletant potential, Ud , is described by

Ud =− ∆Vex
4
3 πR3

d
φkBT (4)

where Rd = 0.04 is the radius of a depletant particle, kB is the Boltzmann constant, T is the temperature, φ is
a depletant number density, and ∆Vex is the excluded volume overlap between two supertoroid particles,
which is computed numerically. This excluded volume calculation represents an implicit model of an ideal
gas of noninteracting solvent. The use of these pairwise interactions in Monte Carlo simulations also
assumes that many-body effects are minimal. This many-body assumption increases in validity as the ratio
of Rd to the particle size [e.g., max(a1,a2,a3)] decreases to values much less than one. A visualization of the
depletant system is shown by Fig. 2, where the explicit version shows the depletant particles along with the
larger supertoroids, and the implicit version shows the excluded volume around the supertoroids that the
depletant is unable to occupy. The overlap of these excluded volumes represents the extra space that is freed
up in the bulk, which the depletant molecules can sample relative to the infinite separation case. Thus, there
is an entropic driving force for the excluded volumes to overlap, and this effect may be calculated
analytically as in Eq. (4), by assuming the depletants are noninteracting point particles. The excluded
volume was approximated by increasing the size of the shape with the following transformations, similar to
the method described in Ref. [10]. The first three size parameters were transformed as ai→ ai +Rd for
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i = 1,2,3. The particle center to ring center distance, a4a1, as shown in Fig. 1, remains constant. Thus, the
parameter for the size of the hole was transformed as a4→ a1

a1+Rd
a4 for the case of a1 = a2. This

transformed shape represented the approximate excluded volume and was centered and oriented the same as
the hard particle shape. The potential at contact, U(rH), was then computed based on the overlap volume of
these transformed shapes. For the remainder of this manuscript, we normalize the potential energy, U , by the
arbitrary energy scale φkBT . Thus, the normalized potential energy is simply the negative ratio of the
overlap of the excluded volumes to the volume of a spherical depletant. The overlap of the excluded
volumes was computed as described in Ref. [10], using voxels of size 0.05 and 128 test points per voxel.

Fig. 2. The depletant system using two different visualizations. Explicit shows depletant particles surrounding larger
colloids, while implicit shows the excluded volume around each colloid.

The hard contact distance, rH , and the excluded volume, ∆Vex, are computationally expensive to
calculate. Thus, values of the potential for various orientations of two particles were calculated and stored in
a table, referred to as the tabular potential, for use during the simulation of the particles. The focus of this
work is the optimization of the calculation of the tabular potential [10] for use with supertoroids.

2.2 Algorithm

To compute ∆Vex, the methods outlined in Appendixes B and C of Ref. [10] were utilized, with two
optimizations that made the algorithm capable of handling the special cases presented by supertoroids. First,
an initial estimate of the region of overlap of the two shapes was obtained as described in Fig. 3. We could
encapsulate each toroid in a sphere that contained all possible orientations of each individual supertoroid.
While it would be more efficient to consider only the overlap of the sphere, it was computationally more
simple to consider the overlap of two cuboids or boxes that contained these spheres. The overlap of the two
boxes provided a maximum possible volume of overlap for the two shapes, based solely on the relative
distance between the particle centers and the maximal extent of the particle surface from the center in any
direction. This method reduced the volume necessary for the Monte Carlo integration and thus reduced the
time required to compute the overlap volume, depending on the shape.

In the previous study [10], concave shapes were not used due to the possibility that two separate regions
of excluded volume overlap could be created along a concave surface. Due to the hole of the supertoroid, the
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possibility of distinct and separate excluded volume regions could not be avoided. The method described in
Ref. [10] uses the most recent point of contact from the hard surface calculation to initialize the flood fill
algorithm for Monte Carlo volume integration of voxels. With the possibility of two distinct volumes of
overlap that do not touch, the previous method would only find one of these overlap volumes. Thus, for the
supertoroid overlap volume calculation, all of the points that define the hard surface were then used to
initialize voxel searches, also taking into account the previous search so as to not overcount. This resulted in
a slight decrease in efficiency, but it enabled the calculation of multiple regions of ∆Vex.

Fig. 3. A two-dimensional cross section of the concept used to estimate the finite region which contains the entirety of
the overlap of the shapes. The maximum bounds of the shape from the center to each dimension are illustrated as a
bounding box for each particle. The overlap of these bounding boxes then becomes the region in which Monte Carlo
integration is performed.

3. Results

In the following subsections, four different pairs of shapes were considered with reported values for the
hard contact distance, rh, and the energy at contact, U(rh). In the remainder of this section, we simply refer
to U(rh) as the potential energy. Thus, the potential energy is always reported as that at contact in the
remainder of this work and is normalized by φkBT . The four pairs of shapes include toroid-toroid,
supertoroid-supertoroid, cube-sphere, and toroid-sphere. These test cases were chosen for a broad array of
shapes, and were divided into two categories. First, we consider the interaction between two identical
toroids and supertoroids in Sec. 3.1. Then, we consider the interaction between nonidentical particles,
specifically for cube-sphere and toroid-sphere interactions in Sec. 3.2. This broad range of particle pair
interactions demonstrates the range of types of shapes that may be considered within the methodology
described in this manuscript. However, we do not consider any case where the toroid is large enough that
another particle may fit inside the hole, which is beyond the scope of this work. All shapes were normalized
such that their maximum extents in the largest dimension is unity.

3.1 Identical Supertoroids

Here, we consider the interaction between two identical toroids and supertoroids. Toroids are
distinguished from supertoroids as the shape that is formed when a circle or ellipse is rotated about a point
outside of the circle or ellipse but along one of the two principal axes. Thus, toroids have the parameters
ε1 = ε2 = 1, while supertoroids are not subject to this constraint.

The first test case is that of toroid-toroid interactions. The toroids are described by the following
parameters: a1 = a2 = a3 = 0.2, a4 = 1.5, and ε1 = ε2 = 1. This shape is the solid of revolution that would
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Fig. 4. Hard contact distance, rH (center to center distance between particles when particle surfaces touch), for identical,
round supertoroids (a1 = a2 = a3 = 0.2, a4 = 1.5 and ε1 = ε2 = 1) as a function of the polar spherical coordinate, φS.
Visualizations of φS = 0 and π/2 are shown on the left and right, respectively. All other spherical coordinate angles and
Euler angles are 0. Note that all distances were dimensionless by normalization with their maximum extents in the
largest dimension.

result from rotating a circle of radius 0.2 about the z-axis, where the circle is centered on the x-axis at a point
of a1a4 = 0.3. Figure 4 shows a plot of the calculated hard contact distance for identical round supertoroids
over a range of 0≤ φS ≤ π

2 while all other angles are held constant at 0. When φS = 0, the two toroids stack
on top of each other and are separated by a distance of 2a3 = 0.4. As φS increases, the orientations of the
toroids remain fixed, but the relative position of the toroids changes as the center of the top toroid is rotated
along the x-axis. When φS reaches a value of π/2, the toroids are touching on the sides with a center
separation distance of 2a1(a4 +1) = 1.

The potential energy at contact is shown in Fig. 5 for the toroid-toroid interaction as a function of the
two spherical coordinate angles when Euler angles are zero. When the Euler angles are 0, the z-axis is the
axis of revolution of both particles. Thus, there is no dependence on the azimuthal angle, θS. The potential
decreases with increasing polar angle, φS, because the most contact between the toroids is possible when this
angle is zero, and there is a circular contact line. As φS increases, the particles move toward a side-by-side
relative orientation and there is only a point of contact instead of a line. This leads to a decrease in the
overlap of the excluded volumes of the two shapes. Figure 5 also shows the dependence on the Euler angles.
The potential is independent of the first rotation about the z-axis, φE , because the toroids are solids of
revolution oriented about the z-axis. As θE , the second rotation about the new x-axis, increases to a value of
π/2, the toroids become perpendicular. This perpendicular configuration does not have as large of an
excluded volume overlap. Note that special symmetry for ε1 = ε2 = 1 allows for a reduced table size, as
utilized in Ref. [10] for cylinders.

The next test case is for supertoroids. Supertoroids have ε1 6= 1 or ε2 6= 1. The supertoroids are described
by the following parameters: a1 = a2 = a3 = 0.1, a4 = 4, and ε1 = ε2 = 0.01. The small ε parameters lead
to sharp edges and vertices. The supertoroid extends 2a1(a4 +1) = 1 in the x and y coordinates and 0.2 in
the z coordinate. The square hole in the toroid is of size 2a1(a4−1) = 0.6 in the x and y dimensions (i.e.,
i = 1,2) and 2a3 = 0.2 in the z dimension. Figure 6 shows a plot of the calculated hard contact distance for
identical square supertoroids over a range of 0≤ φS ≤ π

2 while all other angles are held constant at zero.
When φS = 0, the two supertoroids stack on top of one another and are separated by a distance of 2a3 = 0.2.
As φS increases, the orientations of the toroids remain fixed, but the relative position of the toroids changes.
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Fig. 5. The toroid-toroid potential energy at hard contact for the shapes described in Fig. 4 as a function of (left) two
spherical coordinates, the azimuthal θS and polar φS, while Euler angles are zero, and (right) two Euler angles while the
spherical coordinate angles are zero.

When φS reaches a value of φ/2, the toroids are touching on the flat sides with the centers separated by a
distance of unity. There is a peak in rH just before φ/2 is reached, which corresponds with the configuration
where the top edge of the bottom toroid is touching the bottom edge of the top toroid. This behavior is not
observed in the round toroids and is due to the sharp edges determined by the small ε parameter values.

Fig. 6. Hard contact distance, rH , for identical, square supertoroids (a1 = a2 = a3 = 0.1, a4 = 4, and ε1 = ε2 = 0.01) as
a function of the polar spherical coordinate, φS. Visualizations of φS = 0 and π/2 are shown on the left and right,
respectively. All other spherical coordinate angles and Euler angles are zero.

The potential energy at contact is shown in Fig. 7 for the supertoroid-supertoroid interaction as a
function of the two spherical coordinate angles when Euler angles are zero. In this case, the supertoroids are
not solids of revolution along the z-axis as was the case for the toroids. Thus, there is a dependence on the
azimuthal angle, θS, as well as the polar angle, φS. In this case, the most excluded volume overlap is seen for
low values of φS, when the entire face is in contact on the plane perpendicular to the z-axis. When φS = 0,
there is no θS dependence by definition. However, as the polar angle increases, the overlap decreases until
the edges touch as described for the peak in Fig. 6. The potential then decreases slightly as the skinny sides
of the supertoroids contact. Figure 7 also shows the dependence on Euler angles. As opposed to the round
toroid case, there is no axis of symmetry, and thus a nontrivial dependence on both Euler angles. As θE
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increases to π/2, the toroid rotates such that the skinny side of the top supertoroid contacts two separate
ends of the ring of the reference toroid, as shown in the image at the top left corner in the right image of Fig.
7. In this case, there are two separate regions of excluded volume overlap that must both be computed. The
previous algorithm as described in Ref. [10] would not properly account for both of these overlaps, but the
algorithm as described in this paper does. The most excluded volume overlap occurs when the supertoroids
are stacked vertically on top of one another.

Fig. 7. The supertoroid-supertoroid potential energy at hard contact for the shapes described in Fig. 6 as a function of
(left) two spherical coordinates, the azimuthal θS and the polar φS, while Euler angles are zero, and (right) two Euler
angles while the spherical coordinate angles are zero.

3.2 Nonidentical Particles

In the previous section and Ref. [10], only the interactions of two identical particles were considered. In
this section, the pair of particles are not identical. In particular, we consider the interactions between a cube
and a sphere first, and then a toroid and a sphere. For the cube-sphere interaction, the cube is defined by the
following parameters: a1 = a2 = a3 = 0.5, a4 = 0, and ε1 = ε2 = 0.01. The cube has unit side lengths and
relatively sharp edges due to the small ε parameters. The cube was defined as the reference particle on the
origin, and the orientation is given by Eq. (1), while the sphere has a center position specified by the
spherical coordinates. The sphere has the same parameters as the cube, except ε1 = ε2 = 1. Thus, the sphere
has a diameter of unity. The sphere also has no dependence on Euler angles because of its isotropy.

The left image in Fig. 8 shows the calculated hard contact distance over the polar spherical coordinate,
φS, from 0 to π/2. To begin, at φS = 0, the sphere is on top of the cube. As φS increases, the sphere rolls
along the side of the cube and contacts with the edge of the cube at an angle of φS = π/4. At this point, the
center of the sphere is as far as possible from the center of the cube while the objects are still in contact, at a
value of rH =

√
(2)/2+1/2. However, there is some noise in the computed contact distance in Fig. 8. This

is due to the discrete nature of the algorithms used, where a grid with a finer mesh would smooth out this
discrepancy. The ε parameters lead to this sharp edge, which is more difficult for the method to model
precisely as opposed to more smooth surfaces. While the ns parameter described below Eq. (3) may be
increased to minimize this effect, ns = 50 is still used in this work to demonstrate and warn the reader that
certain shape combinations may require careful selection of these parameters.

The potential energy at contact, U(rH), for the cube-sphere pair and both the azimuthal, θS, and polar,
φS, spherical coordinates are shown in the right image of Fig. 8. The potential energy at contact is greatest
when the sphere contacts the middle of the flat face of the cube. This is because the excluded volume
overlap is the largest. This occurs when values of the spherical coordinates are either 0 or π/2. When both
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Fig. 8. (Left) Hard contact distance, rH , for a cube centered on the origin and a sphere with center point given by the
polar spherical coordinate, φS. The side lengths of the cube and the diameter of the sphere are both unity. All other
spherical coordinate angles and Euler angles are zero. (Right) The cube-sphere potential energy at hard contact as a
function of the two spherical coordinates, the azimuthal angle, θS, and the polar angle, φS.

spherical coordinates are π/4, the sphere is in contact with a vertex or corner of the cube. The excluded
volume overlap is thus minimum at this position, which is shown in the middle of the right image in Fig. 8.

Finally, we consider the interaction between a toroid and a sphere. In this case, the toroid is round as in
the very first test case, with the following parameters: a1 = a2 = a3 = 0.2, a4 = 1.5, and ε1 = ε2 = 1. Thus,
the toroid is 0.4 high in the z-dimension, with its axis of symmetry along the z-axis. The toroid is used as the
reference particle, and it also has a cross section with unit diameter for the outer surface in the x-y plane.
The left image in Fig. 9 shows the distance between the centers of the two particles as a function of the polar
spherical coordinate, φS. When φS = 0, the sphere sits slightly inside of the hole of the toroid, at a value that
is less than half of the sum of the z-dimension parameters, a3, of both shapes (e.g., a little less than 0.7). As
φS increases, the sphere rolls outside of this hole, and the distance between the centers increases nearly
linearly, until it eventually plateaus at a distance of 1 when φS = π/2.

Fig. 9. (Left) Hard contact distance, rH , for a toroid centered on the origin and a sphere with center point given by the
polar spherical coordinate, φS. The sphere has a diameter of 1, and the toroid has the following parameters:
a1 = a2 = a3 = 0.2, a4 = 1.5, and ε1 = ε2 = 1. (Right) The toroid-sphere potential energy at hard contact as a function
of the azimuthal, θS, and polar, φS, spherical coordinates.

The right image in Fig. 9 shows the potential energy at contact as a function of the spherical
coordinates. There is no dependence on the azimuthal spherical coordinate, θS, because of the rotational
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symmetry of the toroid about the z-axis and the isotropy of the sphere. Note that the algorithm uses random
numbers to compute the excluded volume overlap, and thus there is some noise associated with this
procedure. In particular, the volume of overlap of the two shapes is determined by the ratio of randomly
selected points within the voxel that are inside of both shapes. Thus, even when the overlap volumes should
be exactly the same, a different series of random numbers may yield a slight variation in the volume
calculation; this is the source of the slight differences in color that may be observed for different values of
θS, and it may be diminished by increasing the number of test points per voxel, or decreasing the voxel size.
The most favorable configuration by far is when the sphere sits slightly inside of the hole of the toroid at
φS = 0. This leads to a large overlap of excluded volume when compared to any other configuration.

4. Conclusion

This work demonstrated an algorithm for computing a tabular potential of supertoroids, nonidentical
particles, and shapes with the possibility of disconnected excluded overlap values. By adding these cases to
the existing FEASST [25] software, the breadth of the algorithm is now greatly increased. However, the
table generation is still limited by computation time. This time could be reduced by implementing rotational
symmetry for the supertoroids to limit the number of angles for which the potential needs to be explicitly
calculated. Further improvement could be obtained by minimizing the size of the initial overlap volume
bound as described in Fig. 3. Future work includes using the tabular potential to conduct Monte Carlo
simulations of supertoroids, but this is beyond the scope of this work. Similarly, more work needs to be done
to include nonidentical particles in simulations, as these would currently require more than one tabular
potential to simulate. Furthermore, particles that fit inside the hole of a supertoroid may require separate
inner and outer tabular potentials.
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