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The constrained orthogonal Procrustes problem is the least-squares problem that calls for a rotation matrix that optimally aligns two
matrices of the same order. Over past decades, the algorithm of choice for solving this problem has been the Kabsch-Umeyama
algorithm, which is effectively no more than the computation of the singular value decomposition of a particular matrix. Its
justification, as presented separately by Kabsch and Umeyama, is not totally algebraic since it is based on solving the minimization
problem via Lagrange multipliers. In order to provide a more transparent alternative, it is the main purpose of this paper to present a
purely algebraic justification of the algorithm through the exclusive use of simple concepts from linear algebra. For the sake of
completeness, a proof is also included of the well known and widely used fact that the orientation-preserving rigid motion problem, i.e.,
the least-squares problem that calls for an orientation-preserving rigid motion that optimally aligns two corresponding sets of points in
d—dimensional Euclidean space, reduces to the constrained orthogonal Procrustes problem.
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1. Introduction

In the orthogonal Procrustes problem [1, 2], given real matrices P and Q of size d X n, the problem is
that of finding a d x d orthogonal matrix U that minimizes |[UQ — P||r, where || - ||r denotes the Frobenius
norm of a matrix. On the other hand, in the constrained orthogonal Procrustes problem [3-5], the same
function is minimized but U is constrained to be a rotation matrix, i.e., an orthogonal matrix of
determinant 1. By letting p;, i, i = 1 ...,n, be the vectors in R? that are the columns from left to right of P
and Q, respectively, since clearly |UQ — P||% = Y., |[Ugi — pi||>, where || - || denotes the d—dimensional
Euclidean norm, then an alternative formulation of the two problems above is that of finding an orthogonal
matrix U (of determinant 1 for the constrained problem) that minimizes Y, ||Uq; — p:||>. We note that
minimizing matrices do exist for the two problems as the function being minimized is continuous and both
the set of orthogonal matrices and the set of rotation matrices are compact (in some topology). Finally, in
the same vein, another problem of interest is the orientation-preserving rigid motion problem which is that
of finding an orientation-preserving rigid motion ¢ of R? that minimizes Y7, |¢(g;) — pi||>. An affine
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linear function ¢, ¢ : R? — R, is a rigid motion of R? if it is of the form ¢(q) = Ugq +1 for ¢ € R?, where
U is a d x d orthogonal matrix, and 7 is a vector in R?. The rigid motion ¢ is orientation preserving if
det(U) = 1, i.e., the determinant of U equals 1. With p, g denoting the centroids of {p;}, {¢;}, respectively,
as will be shown in Section 3 of this paper, this problem can be reduced to the constrained orthogonal
Procrustes problem by translating {p;}, {g;} to become {p; — p}, {g;i — G}, respectively, so that the centroid
of each set becomes 0 € R,

With P, O, pi, gi,i =1,...,n, as above, in this paper we focus our attention mostly on the constrained
orthogonal Procrustes problem, and therefore wish to find a d x d rotation matrix U that minimizes
Y |Ugi = pill*.

With this purpose in mind, we rewrite Y/, |[Ug; — pi||* as follows, where given a square matrix R, tr(R)
stands for the trace of R.

C 2
Y [lUgi—pill

i=1
= Y (WUqi—p)" (Ugi—pi)=t((UQ—P) (UQ—P))

i=1
= u((Q"U" -P")(UQ-P))=u(Q"0+P'P-Q"U"P-P'UQ)
= tr(Q Q)+tr(PTP) 2te(PTU Q).

Since only the third term in the last line above depends on U, it suffices to find a d x d rotation matrix U that
maximizes tr(PTUQ). Since tr(PTUQ) = tr(UQPT) (note in general tr(AB) = tr(BA), A an n x d matrix, B a
d x n matrix), denoting the d x d matrix QP” by M, this problem is equivalent to finding a d x d rotation
matrix U that maximizes tr(UM), and it is well known that one such U can be computed from the singular
value decomposition of M [3-5]. This is done with the Kabsch-Umeyama algorithm [3-5] (see Algorithm
Kabsch-Umeyama below, where diag{s,...,sq} is the d x d diagonal matrix with numbers s1,...,s; as the
elements of the diagonal, in that order running from the upper left to the lower right of the matrix). A
singular value decomposition (SVD) [6] of M is a representation of the form M = VSWT, where V and W
are d x d orthogonal matrices and S is a d x d diagonal matrix with the singular values of M, which are
nonnegative real numbers, appearing in the diagonal of S in descending order, from the upper left to the
lower right of S. Finally, note that any matrix, not necessarily square, has a singular value decomposition,
not necessarily unique [6].

Algorithm Kabsch-Umeyama

Compute d x d matrix M = QPT.

Compute SVD of M, i.e., identify d x d matrices V, S, W,
so that M = VSWT in the SVD sense.
Sets;=...=s5_1=1.

If det(VW) > 0, then set s, = 1, else set s, = —1.

Set § = diag{sy,...,54}.

Return d x d rotation matrix U = WSV7T.

Algorithm Kabsch-Umeyama has existed for several decades [3-5], however the known justifications of
the algorithm [3-5] are not totally algebraic as they are based on exploiting the optimization technique of
Lagrange multipliers. It is the main purpose of this paper to justify the algorithm in a purely algebraic
manner through the exclusive use of simple concepts from linear algebra. This is done in Section 2 of the
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paper. Finally, we note that applications of the algorithm can be found, notably in the field of functional and
shape data analysis [7, 8], where, in particular, the shapes of two curves are compared, in part by optimally
rotating one curve to match the other.

2. Algebraic Justification of the Kabsch-Umeyama Algorithm

We justify Algorithm Kabsch-Umeyama using exclusively simple concepts from linear algebra, mostly
in the proof of the following useful proposition. We note that most of the proof of the proposition is
concerned with proving (3) of the proposition. Thus, it seems reasonable to say that any justification of the
algorithm that requires the conclusion in (3) but lacks a proof for it, is not exactly complete. See page 47 of
the otherwise excellent thesis in [9] for an example of this situation. See [10] for an outline of
this dissertation.

Proposition 1: If D = diag{oy,...,04},0;>0, j=1,...,d,and W is a d x d orthogonal matrix, then

L (WD) <Y9_, oj.

2. If Bis a d x d orthogonal matrix, S = BT DB, then tr(WS) < tr(S).

3.1fdet(W)=—1,0,< 0}, j=1,...,d— 1, then tr(WD) < zj;} oj— 0y

Proof: Since W is orthogonal and if Wy, k, j = 1,...,d, are the entries of W, then, in particular,
W;i<1,j=1,...,d,sothat tr(WD) = 27:1 Wjjo; < ):?:1 o;, and therefore statement (1) holds.

Accordingly, assuming B is a d x d orthogonal matrix, since BWB! is also orthogonal, it follows from
(1) that tr(WS) = tr(WB” DB) = tr(BWB' D) < ¥.9_, 6; = tr(D) = tr(S), and therefore (2) holds.

If det(W) = —1, we show next that a d x d orthogonal matrix B can be identified so that with
W = BTWB, then W = (19
d —1 x d — 1 matrix as well; O interpreted as a vertical column or vector of d — 1 zeroes.

With I as the d x d identity matrix, then det(W) = —1 implies
det(W +1) = —det(W)det(W +1) = —det(WT)det(W + 1) = —det(I + WT) = —det(I + W) which implies
det(W +1) = 0 so that x # 0 exists in R with Wx = —x. It also follows then that WY Wx = WT (—x) which
gives x = —W7x so that W7 x = —x as well.

Letting by = x, vectors by,...,bs_1 can be obtained so that by, ...,b,; form a basis of R4, and by the
Gram-Schmidt process starting with by, we may assume by, ..., b, form an orthonormal basis of R? with
Wby =WThy = —by. Letting B= (by,...,by), interpreted as a d x d matrix with columns by, ..., by, in that
order, it then follows that B is orthogonal, and with W = BTWB and W, O as previously described, noting

BTWhy = BT (—by) = (9) and BIWB = (WTby)TB = (—bg)TB = (OT —1), then W = (Z)VQ ° ) Note W

), W interpreted as the upper leftmost d — 1 x d — 1 entries of W and as a

is orthogonal and therefore so is the d — 1 x d — 1 matrix W
Let S = B DB and write S = (:? ;) , So interpreted as the upper leftmost d — 1 x d — 1 entries of S and
asad—1xd—1 matrix as well; a and b interpreted as vertical columns or vectors of d — 1 entries, and Y as

a scalar. Note tr(WD) = tr(B'WDB) = tr(BT WBB! DB) = tr(WS), so that WS = (gg —01> (Z? ?,) -

(5%) st )

We show tr(WpSo) < tr(Sp). For this purpose let W = (g’? (1))’ Wp and O as above. Since W is

orthogonal, then clearly W is a d x d orthogonal matrix, and by (2), tr(WS) < tr(S) so that WS = (Z)VQ ?)

(Z? ;) = (MZ)TSO W;:“) gives tr(WpSo) + ¥ = tr(WS) < tr(S) = tr(Sp) + 7. Thus, tr(WySp) < tr(So).
Note tr(So) + ¥ = tr(S) = tr(D), and if By, k, j = 1,...,d are the entries of B, then y=Y¢_| B2 0}, a

convex combination of the 0y ’s, so that ¥ > o,. It then follows that

tr(WD) = tr(WpSo) — v < tr(Sp) —y=tr(D) —y—y < Z‘;_ll 0 — 04, and therefore (3) holds. O
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Finally, the following theorem, a consequence of Proposition 1, justifies the Kabsch-Umeyama
algorithm.

Theorem 1: Given a d X d matrix M, let V, S, W be d x d matrices such that the singular value
decomposition of M gives M = VSWT . If det(VW) > 0, then U = WV maximizes tr(UM) over all d x d
rotation matrices U. Otherwise, if det(VW) < 0, with § = diag{sy,...,s4}, 51 =... =541 =1, 54 = —1,
then U = WSV maximizes tr(UM) over all d x d rotation matrices U.

Proof: Leto;, j=1,...,d, 01 > 02 > ... > 04 > 0, be the singular values of M, so that
S =diag{o1,...,04}.

Assume det(VW) > 0. If U is any rotation matrix, then U is orthogonal. From (1) of Proposition 1 since
WTUV is orthogonal, then tr(UM) = (UVSWT) = (W' UVS) <Y9_, o;.

On the other hand, if U = WV, then U is clearly orthogonal, det(U) = 1, and
tr(UM) = e(WVTVSWT) = ue(WSWT) = e(S) = X_, 0.

Thus, U = WVT maximizes tr(UM) over all d x d rotation matrices U.

Finally, assume det(VW) < 0. If U is any rotation matrix, then U is orthogonal and det(U) = 1. From
(3) of Proposition 1 since WUV is orthogonal and det(W? UV) = —1, then

tr(UM) = e(UVSWT) = e(WTUVS) < Y4 6, — 0y.

On the other hand, if U = WSV, then U is clearly orthogonal, det(U) = 1, and
twr(UM) = u(WSVIVSWT) = w(WSSWT) = tr($S) = Y9 ] 5 — 0u.

Thus, U = WSVT maximizes tr(UM) over all d x d rotation matrices U. O

3. Reduction of the Orientation-Preserving Rigid Motion Problem to the Constrained
Orthogonal Procrustes Problem

Although not exactly related to the main goal of this paper, for the sake of completeness, we show the
orientation-preserving rigid motion problem reduces to the constrained orthogonal Procrustes problem. For
this purpose, let § and j denote the centroids of the sets {g;}"_, and {p;}"_, in RY, respectively:

gi and p=

1 i

BN
Il

Di -

S| =
.MS

S| =

1

1

First we prove a proposition that shows, in particular, that if q@(q) # p, then ¢ = ¢ does not minimize
A(p) = Z ¢ (i) —PiH27
i=1

the minimization occurring over either the set of all rigid motions ¢ of R or the smaller set of rigid motions
¢ of R? that are orientation preserving.

Proposition 2: Let ¢ be a rigid motion of RY with ¢(7) # p and define an affine linear function 7,
7:R?Y = R, by 1(q) = ¢(q) — ¢(q) + p for g € R%. Then 7 is a rigid motion of R?, 7(§) = p, A(T) < A(9),
and if ¢ is orientation preserving, then so is 7.

Proof: Clearly 7() = p. Let U be a d x d orthogonal matrix and ¢ € R such that ¢(q) = Ug+1 for
g € R?. Then 7(q) = Uq— UG+ p so that 7 is a rigid motion of R?, 7 is orientation preserving if ¢ is, and
for 1 <i<n, we have

10(q:) — pil P = |17(qi) — pil * = (Ugi+t — pi) (Ugi+1 — p;)
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—(Ugqi—UG+p—pi) (Ugi—UG+ p—pi)

= ((Ugi—p)" (Ugi—pi)+2(Ugi—p)'t+1"t) — (Ugi — p:)" (Ugi — pi)
—2(Uqi—p)" (UG—p)+(Uq—p) (UG- p))

= 2Uqi—pi+0) (UG—p+1)—(UG—p+1) (UG—p+1).

It then follows that

A(9) —A(7)

= i(Z(qu—p,-th)T(Uq—pﬂ) —(Ug—p+1)T (UG~ p+1))

= llUg—p+1|* =nllo(@) —p|P* >0
as ¢ (g) — p is nonzero. Thus A(7) < A(¢). O

Finally, the following corollary, a consequence of Proposition 2, shows that the problem of finding an
orientation-preserving rigid motion ¢ of R¢ that minimizes Y'*_, ||¢(g:) — p:||* can be reduced to a
constrained orthogonal Procrustes problem which, of course, then can be solved with the Kabsch-Umeyama
algorithm. Here r; = p; — p, si=q; — g, fori=1,...,n, and if 7 = %Z?:l ri, §= % | si, then clearly
r=5=0.

Corollary 1: Let U be such that U = U minimizes Y, |Us; — ri||* over all d x d rotation matrices U.
Letf = jp—Ug, and let ¢ be given by ¢(q) = Ug+7 for g € R?. Then ¢ = ¢ minimizes Y, ||¢(q:) — pi
over all orientation-preserving rigid motions ¢ of R¢.

Proof: One such U can be computed with the Kabsch-Umeyama algorithm.

By Proposition 2, in order to minimize Y, ||¢(¢:) — p:||* over all orientation-preserving rigid motions
¢ of RY, it suffices to do it over those for which ¢ (§ j) = p. Therefore, it suffices to minimize

" [Ugi+1t— pi||* with t = p— Ug over all d x d rotation matrices U, i.e., it suffices to minimize

n n
Y Ugi+p—Ug—pill> =Y I(U(gi—q) — (pi— P)II?
i=1 i=1

over all d x d rotation matrices U. But minimizing the last expression is equivalent to minimizing

YL, |Us; —ri||* over all d x d rotation matrices U. Since U = U is a solution to this last problem, it then
follows that U = U minimizes Y7, |Uq; +p—Ug— pil|*> = X1, |Uqi +t —p,||2 witht = p— Ug over all
d x d rotation matrices U. Consequently, if f = p— U4, and ¢ is given by q)( )= Uq+1 for g € R?, then
¢ = ¢ clearly minimizes Y, ||¢(¢;) — pi||* over all orientation-preserving rigid motions ¢ of R, O
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