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In the branch of forensic science known as firearm evidence identification, estimating error rates is a fundamental challenge. Recently, 
a new quantitative approach known as the congruent matching cells (CMC) method was developed to improve the accuracy of 
ballistic identifications and provide a basis for estimating error rates. To estimate error rates, the key is to find an appropriate 
probability distribution for the relative frequency distribution of observed CMCs overlaid on a relevant measured firearm surface such 
as the breech face of a cartridge case. Several probability models based on the assumption of independence between cell pair 
comparisons have been proposed, but the assumption of independence among the cell pair comparisons from the CMC method may 
not be valid. This article proposes statistical models based on dependent Bernoulli trials, along with corresponding methodology for 
parameter estimation. To demonstrate the potential improvement from the use of the dependent Bernoulli trial model, the 
methodology is applied to an actual data set of fired cartridge cases.  
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1. Introduction

In firearm evidence analysis, the parts of the firearm that make forcible contact with the bullets or
cartridge cases when fired create characteristic tool marks on their surface called “ballistic signatures” [1]. 
These signatures can be used for firearm evidence identifications. In general, tool marks have so-called 
“class characteristics” that are common to certain brands or models of firearms and individual 
characteristics arising from random variation in firearm manufacturing and wear. Figure 1 (from Ref. [2]) 
shows topography images of breech face impressions obtained from a pair of cartridge cases ejected from 
the same firearm slide. The slide is a component of a semiautomatic pistol firing mechanism that absorbs 
the recoil impact of the cartridge case on its breech face. The image pair has several features in common.  
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Fig. 1. Topography images of breech face impressions obtained from a pair of cartridge cases fired from the same firearm slide [2]. 

In investigations of crimes involving firearms, a challenge for firearms examiners is to determine 
whether a questioned cartridge case, typically recovered from a crime scene, and a known cartridge case, 
typically shot by investigators from a suspect firearm, were shot from the same firearm. Common 
automated ballistics identification systems are primarily based on comparison of two-dimensional (2D) 
images using optical microscopy and some correlation measure used to compare the image pair. Recently, a 
quantitative approach known as the congruent matching cells (CMC) method was developed to improve the 
accuracy of ballistic identifications and to provide a potentially improved basis for estimating error rates [3, 
4]. To estimate the expected error rates of the results using the CMC method, two common probability 
models have been proposed in Ref. [2]. However, the assumption of independence among the cell pair 
comparisons upon which these models rely may not be valid. 

In Appendix B of Ref. [2], a model for dependent Bernoulli trials and its applications to the CMC 
method for ballistic identification were briefly mentioned without any detail. This article provides a 
comprehensive discussion on that statistical model and its extension and proposes corresponding statistical 
methodology for parameter estimation. In Sec. 2, the CMC method is briefly described. The details of the 
CMC method can be found in Ref. [4] and Ref. [2]. In Sec. 3, the correlated binomial distribution based on 
dependent Bernoulli trials is introduced, and its properties are discussed. In Sec. 4, maximum likelihood 
estimators of the parameters of the correlated binomial distribution and estimators based on nonlinear 
regression models are proposed. In Sec. 5, the methodology is applied to a data set of fired cartridge cases 
to illustrate the performance of the different models. In Sec. 6, the correlated binomial distribution is 
combined with the beta distribution to create a compound probability distribution called the beta-correlated 
binomial distribution. 

 
2. Congruent Matching Cells (CMC) Method for Ballistic Identification 

 
The CMC method deals with pairs of measured 2D optical or three-dimensional (3D) topography 

images of breech face impressions for which the similarity has been objectively quantified. For an image 
pair, the CMC method divides one image as reference into an array of rectangular cells (after appropriate 
registration) as shown in Fig. 2 (from Ref. [3]). For each reference cell, a search for a matching cell is then 
conducted on the compared image [2]. Figure 3 shows the correlated cell pairs located in common valid 
regions and invalid regions [3].  
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Fig. 2. Conceptual diagram of a topography image from Fig. 1 overlaid by a 7 × 7 grid, dividing the image into cells. The drag mark at 
the 3 o’clock position in Fig. 1 and the central hole and surrounding bulge from the firing pin impression are masked out of the images 
before the cell division step. Only cells with a sufficient fraction of measured pixels are used for the correlation analysis. Also shown is 
a schematic diagram of the automated search procedure to find an area in the compared image (right) that has a strong correlation with 
one of the cells in the reference image (left). Here the topography is represented by a color scale [2].  

A cell is a rectangular subregion of the surface topography image that contains a sufficient quantity of 
distinguishing peaks, valleys, and other topographic features so that an assessment of topography similarity 
can be made. For example, in Fig. 3 (from Ref. [2]), if topographies A and B originating from the same 
firearm are registered at their position of maximum correlation, the cell pairs (A1, B1), (A2, B2), and (A3, B3) 
can be identified as correlated cell pairs. Whether the cell pair is correlated is determined by the maximum 
cross-correlation function [2].  

 
Fig. 3. Schematic diagram of topographies A and B originating from the same firearm and registered at the position of maximum 
correlation. The six solid cell pairs in each image are located in three valid correlated regions (A1, B1), (A2, B2), and (A3, B3). The dashed 
cell pairs (a', b'), (a", b"), and (a'", b'") are located in the invalid correlation region [3].  

Next, each correlated cell pair is determined to be a congruent matching cell (CMC) pair, or not, using 
four identification parameters for quantifying both the topographic similarity of the correlated cell pairs and 
the pattern congruency of the cell distributions. The details can be found in Ref. [2]. How many CMC pairs 
are required so that the two surface topographies can be identified as matching? The threshold would be 
determined after carefully designed experiments and error rate estimation. From a statistical point of view, 
the CMC method is based on the pass-or-fail tests of individual cell pairs from an image pair of breech face 
impressions. For a pair of images of breech face impressions, N  represents the number of correlated cell 
pairs in the image pair. To avoid confusion with the statistical correlations among cell pair comparisons, 
which we will discuss later, from now on, we just call a correlated cell pair a “cell pair.” For a given cell 
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pair, a random variable X  represents the outcome of the CMC method applied to the cell pair. When the 
CMC method determines that a cell pair is a congruent matching cell pair, then 1X = ; otherwise, 0X = . 
We denote the probability that 1X =  by p . That is, ( 1)P X p= = , and ( 0) 1P X p= = − . 

We sought to develop an approach for estimating the expected error rates of ballistic identification 
based on the CMC method. When the CMC method is applied to a set of cartridge cases, the result, in 
general, includes certain known matching (KM) image pair comparisons and certain known nonmatching 
(KNM) image pair comparisons. The false positive error rate is the rate of pairs of images incorrectly 
judged as matches. It represents the expected frequency or probability of obtaining an erroneous result of 
identification (declared match) when comparing samples from different sources (KNM). On the other hand, 
the false negative error rate is the rate of pairs of images incorrectly judged as nonmatches. It represents the 
probability of obtaining an erroneous result of exclusion (declared nonmatch) when comparing samples 
from the same source (KM). 

To reliably estimate error rates and the associated uncertainties, the key is to find an appropriate 
probability distribution for the relative frequency distribution of the observed CMC results. A binomial 
probability distribution was proposed in Ref. [2] for the distribution of CMC measurements. Two 
assumptions were made there: (1) The comparisons between cell pairs are statistically independent from 
each other, and (2) each cell pair comparison within the image pair has the same probability, p . Under 
these assumptions, for an image pair with N  cell pairs, we have a sequence of Bernoulli trials, 1,..., NX X . 
Denoting the sum of the CMC values for the comparisons of the first image pair by 1Y  with 1N  cell pairs 

and a sequence of Bernoulli trials, 
111 1,..., NX X , 1 1

1

N

i
i

Y X
=

= ∑ . We say that 1Y  is the number of CMCs for 

the first image pair. In probability, 1 1( , )Y Bin N p  is a binomially distributed random variable with the 
probability mass function given by 

 
1

11( ) (1 )N kk k
NP Y k C p p −= = −  for 10,1,...,k N= .    (1) 

Similarly, for M  image pairs, we have 1,..., MY Y  correspondingly. Assuming { , 1,..., }jY j M=  are 

independent from each other, we have a sequence of binomially distributed random variables, i.e., 
( , )j jY Bin N p for 1,...,j M= , where jN  is the number of cell pairs for the thj  image pair. For 

observed values from the CMC method, { , 1,..., }jy j M= , from Ref. [5], p. 56, the maximum likelihood 

estimator of p  is given by  
 

        
1 1

ˆ
M M

j j
j j

p y N
= =

= ∑ ∑ .      (2) 

 
3. Binomial Distribution Based on Dependent Bernoulli Trials 

 
As stated in Sec. 2, a key assumption for the proposed binomial distribution is the independence 

among cell pair comparisons in an image pair. However, this assumption may be invalid. For example, 
since the array of cells laid over the image is not precisely aligned with features in the image, neighboring 
cell pairs may share some individualizing features. Dependence among those neighboring cells is more 
likely to increase compared to cells situated relatively far apart. Reference [6], Sec. 6.1.2, discussed some 
practical examples indicating correlation between binary responses in biology. In these cases, we need to 
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consider some type of dependent Bernoulli trials, as done in other statistical research. For example, Ref. [7] 
and Ref. [8], p. 96–102, proposed a model for Bernoulli trials with Markov dependence. This approach 
assumes that the Bernoulli trials form a Markov chain and thus may not apply to the cell pair comparisons 
in the procedure for ballistic signatures. Reference [9] proposed a more general model for dependent 
Bernoulli trials, which sometimes is called the Bahadur-Lazarsfeld model.  

In general, for a sequence of Bernoulli trials, we have random variables 1,..., NX X , where each iX  
takes the value 0 or 1, with ( 1)i iP X p= =  and ( 0) 1i iP X p= = −  for 1,...,i N= . Now, for the sequence

1,..., NX X  of generalized Bernoulli trials, which may not be mutually independent, the second-order 
correlation between iX  and ,  where ,jX j i≠  is given by 

Cov[ , ] [( )( )]i j i i j j
ij

i j i j

X X E X X
r

µ µ
σ σ σ σ

− −
= = ,     (3) 

where iµ  is the marginal mean, and iσ  is the marginal standard deviation for iX . Note that 
[ ]i i iE X pµ= =  and Var[ ] (1 )i i iX p p= − , for 1,...,i N= , which are the same as in the case of independent 

trials. Similarly, third- and higher-order correlations, up to the thN  order correlation, are defined by 
 

       [( )( )( )]i i j j k k
ijk

i j k

E X X X
r

µ µ µ
σ σ σ

− − −
= , … , 1 1 2 2

12...

1

[( )( )...( )]N N
N N

i
i

E X X X
r

µ µ µ

σ
=

− − −
=

∏
.  (4) 

That is, one can define as many as 1N −  correlations of different order from (2, 3, …, N). The k th order 
correlation for 2,...,k N=  is the correlation for any k  distinct random variables of 1{ ,..., }NX X . If any of 
these correlations is not zero, 1{ ,..., }NX X  are dependent. For example, when 3N = , for 

1 2 3{ , , },X X X=X there are eight possible outcomes: (0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), 
(1,1,0), and (1,1,1). In this case, there are three second-order correlations: 12r , 13r , and 23r . There is only 
one third-order correlation 123r . 

From Ref. [9], the joint probability distribution of 1{ ,..., }NX X=X  is expressed by 
 

   [1]( ) ( ) ( )P P f= ⋅X X X ,      (5) 

where [1] ( )P X  is the joint probability distribution of X  when the iX  values are independently distributed. 

That is, 1
[1] 1

1
( ,..., ) (1 )i i

N
X X

N i i
i

P X X p p −

=

= −∏ . The correction factor ( )f X  due to correlations is given by 

    1... 1( ) 1 ... ,...,ij i j ijl i j l N N
i j i j l

f r Z Z r Z Z Z r Z Z
< < <

= + + + +∑ ∑X ,    (6) 

where ( ) (1 )i i i i iZ X p p p= − − . We may approximate ( )P X  in Eq. (5) to any specific order k  by 

omitting correlations higher than k . For example, the k th (1 )k N< ≤ order approximation is given by  

       [ ] [1] ...
...

( ) ( )(1 ... ... )k ij i j i l i j
i j i l

P P r Z Z r Z Z
< < <

= + + +∑ ∑X X .    (7) 
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Note that in the last summation in Eq. (7), the product behind the summation symbol includes k  distinct Z
values, and ...i lr  is the corresponding thk order correlation. 

Currently, we consider only the case of symmetric distributions. That is, we assume ip p= , for all 

1,...,i N= , (2)ijr r= , for all distinct i , and j , (3)ijkr r= , etc., for all distinct , ,i j and ,...k  For the example 

described earlier when 3N = , 12 13 23 (2)r r r r= =  . In particular, for each pair of iX  and jX , the joint 

distribution of ( , )i jX X  is given by Eq. (6) as 2N =  and thus only depends on p  and (2)r . Later, we will 

discuss some aspects of this assumption that suggest this may not be a limiting assumption, given our 
purposes for the use of these models. We denote the sum of { , 1,..., }iX i N=  by Y . Note that when { }iX  
are independent from each other as shown in Eq. (1), Y  is a binomial distributed random variable. From 
Eq. (3), 

 

(2)
1 1

(2)

(2)

Var[ ] Var[ ] Var[ ]

(1 ) ( 1) (1 )

(1 ){1 ( 1) }.

N N

i i
i i i j

Y X r X

Np p N N r p p

Np p N r

= = ≠
= +

= − + − −

= − + −

∑ ∑∑
     (8) 

When there is no correlation between pairs of { }iX , (2) 0r = , and Var[ ] (1 )Y Np p= − , which is the 

variance of Y  when { }iX  are independent from each other. When (2) 0r > , from Eq. (8), 

Var[ ] (1 )Y Np p> − . Thus, the positive correlation between pairs of { }iX  leads to a larger variance of Y . 
For the negative correlation, we refer to the discussion in Ref. [6], Sec. 6.3. 

We denote the probability mass function of Y  when { }iX  are independent from each other, as given 
in Eq. (1), by [1] ( )P Y . Then, when the Bernoulli trials are dependent, and the joint distribution is 
symmetric, from Ref. [9], the probability mass function of Y  is expressed by 
 

           [1] ( )
2

( ) ( ){1 ( )}
N

j j
j

P Y P Y r g Y
=

= + ∑ ,     (9) 

where ( )jg Y  is a polynomial in Y  of degree j  and also a function of p . In this case, we say Y  has a 

correlated binomial distribution. Obviously, when the correlations for all orders are zero, the equation 
reduces to the binomial distribution based on independent Bernoulli trials. The explicit formulas for ( )jg Y  

when 2,3j =  are given in Ref. [9]. In particular, when 2j =  , 
 

          
2

2
( ) (1 2 )( ) (1 )( )

2 (1 )
Y Np p Y Np Np pg Y

p p
− − − − − −

=
−

.    (10) 

From Eq. (9), ( )P Y  can be approximated by 
 

     [ ] [1] ( )
2

( ) ( ){1 ( )}
k

k j j
j

P Y P Y r g Y
=

= + ∑ , 2,..., ( 1), ,k N N= −     (11) 
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where [ ] ( )kP Y  (1 )k N< ≤  denotes the k th order approximation of the probability distribution of Y . In 

particular, [ ] ( ) ( )NP Y P Y= .  

As shown in Ref. [9], an approximate distribution of X  of order k , as given in Eq. (7), is a probability 
distribution as long as the corresponding [ ] ( )kP X  are nonnegative for all X . In addition, it is shown in 
Ref. [9] that if all correlations of the given distribution of the Bernoulli trials are sufficiently small in 
absolute value, [ ] ( )kP Y  is a probability distribution for each k . Based on that, for an approximation of a 
given probability distribution of Y , all correlations of the dependent Bernoulli trials are assumed to be 
appropriate to make the approximation a proper probability distribution yielding values between 0 and 1 
and with a sum equal to 1. Now, consider a more general case that assumes for all iX  the marginal 
probabilities are the same, i.e., = p , but that the correlations are not all symmetric. From Proposition 5 in 
Ref. [9], an approximation based on a symmetric distribution is better than any nonsymmetric case that has 
same p  but different correlation(s) with respect to the corresponding approximations for the probability. 
Therefore, in that sense, using symmetric dependent Bernoulli trials should provide better models than the 
case with nonsymmetric distributions, limiting the cases that need to be considered.  

We now discuss some properties of the central moments of Y  with respect to [ ] ( )kP Y  for 2,...,k N= . 

We denote the k th central moment of Y with the probability distribution of [ ] ( )iP Y  by 
[ ], ( )
ik P Yµ  ( , 0i k > ). 

That is,  
 

 
[ ] [ ], ( ) [ ]
i i

k
k P P YY E Yµ µ= − ,     (12) 

where Yµ  is the mean of Y  with probability distribution of [ ] ( )iP Y . It is shown in the Appendix that  
 
          

[ ] [ ], ,( ) ( )
i kk P k PY Yµ µ=  when i k> .     (13) 

Thus, for the thk  central moment, the mean of Y  is the same with respect to [ ] ( )kP Y , [ 1] ( )kP Y+ ,…, [ ] ( )iP Y  

for N i k≥ ≥ . In particular, 
[ ] [1]

[ ] [ ]
iP PE Y E Y=  for 1i ≥ . That is, for all [ ] ( )iP Y , the corresponding means 

of Y  are the same as Y Npµ = . In addition, the variance of Y  with [ ] ( )iP Y  when 2i >  is equal to that 

with [2] ( )P Y . For example, 
[2] [3] [ 1]Var [ ] Var [ ] ... Var [ ] Var[ ]P P NY Y Y Y−= = = = . Thus, from Eq. (8),  

 
   

[2] [1] (2)Var ( ) Var ( ){1 ( 1) },P PY Y N r= + −      (14) 

where 
[2]

Var ( )P Y is the variance or the second central moment of Y with respect to [2] ( )P Y . From Eq. (14), 

one can determine that when (2)r  is positive, the variance of Y with respect to [2] ( )P Y  is larger than that 

with respect to [1] ( )P Y  and vice versa when (2)r  is negative. In addition, from Eq. (14), 

(2)1 ( 1) 1N r− − < ≤ . In addition, for [2] ( )P Y , Eq. (3.3) in Ref. [9] gave two inequalities as a function of N  

and p  for the permissible range of (2)r for [2] ( )P Y  to be a probability distribution. The lower bound of 

(2)r  is given by 
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        (2)
2 1min ,

( 1) 1
p pr

N N p p
 − −

≥  − − 
.     (15) 

For example, when 0.8p =  and 26N = , the lower bound of (2)r is −0.00077, which is effectively zero. 

On the other hand, from Eq. (3.3) in Ref. [9], the upper bound of (2)r  is 0.08. 

We use some examples to illustrate the probability mass functions of [1] ( )P Y and [ ] ( )kP Y  in Eq. (11). 

First, we let p  = 0.6, (2)r  = 0.02, and N =  26. These probability mass functions are plotted in Fig. 4. 

Then, we let p  = 0.6, (2)r  = 0.05, and N =  26. These probability mass functions are plotted in Fig. 5.  

 
Fig. 4. Probability mass functions of [1]( )P Y and [2]( )P Y  with p  = 0.6 and (2)r  = 0.02. 

 
Fig. 5. Probability mass functions of [1]( )P Y and [2]( )P Y  with p  = 0.6 and (2)r  = 0.05. 

Note that when (2)r changes from 0.02 to 0.05, the number of modes in the probability mass function 

[2] ( )P Y  changes from one to two. Note that the means with [1] ( )P Y and [2] ( )P Y  with (2)r = 0.05 are the 

same. Namely, from Eq. (13), 
[1] [2]

( ) ( ) 15.6P PE Y E Y Np= = = . However, the variances based on the 

[1] ( )P Y and [2] ( )P Y  values are different. 
[1]

Var [ ] (1 )P Y Np p= − = 6.24, while 
[2]

Var [ ]P Y = 14.04 from Eq. 

(14). The variance increases when (2)r  is positive. If we let p  = 0.6, (2)r  = −0.002, and N =  26, then 
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[1]
Var [ ] (1 )P Y Np p= − = 6.24 and 

[2]
Var [ ]P Y = 5.928. The variance decreases due to the negative value of 

(2)r . The probability mass functions for [1] ( )P Y and [2] ( )P Y  with p = 0.6 and (2)r = −0.002 are plotted in 

Fig. 6. 

 
Fig. 6. Probability mass functions of [1]( )P Y and [2]( )P Y  with p  = 0.6 and (2)r  = −0.002. 

In addition, we show a case with third-order correlation that has p  = 0.6, (2)r  = 0.02, (3)r = −0.001, 

and N = 26. These probability mass functions are plotted in Fig. 7. Again, in this case,

[1] [3]
( ) ( )P PE Y E Y Np= = = 15.6, and 

[1]
Var [ ] (1 )P Y Np p= − = 6.24. From Eq. (13), 

[3] [2]
Var [ ] Var [ ]P PY Y= = 

9.36. The third-order central moment based on [1] ( )P Y  is given by (see Ref. [5]):  

[1]

3
3, ( ) [( ) ] (1 )(1 2 )P YY E Y Np p pµ µ= − = − −  = −1.248. 

 
Fig. 7. Probability mass function of [1]( )P Y and [2]( )P Y  with p  = 0.6, (2)r  = 0.02, and (3)r = −0.001. 

Finally, we use an example to show the probability mass distributions for the correlated binomial 
distributions based on generalized Bernoulli trials. Consider N = 5 and [0.1,0.3,0.4,0.6,0.8]=p . The 
average of p  is 0.44. The probability mass functions of the second-order approximated correlated binomial 
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distributions for the symmetric case with p  = 0.44, k = 2, and (2)r = 0.02 and −0.02 are obtained from Eq. 

(11) and plotted in Figs. 8 and 9, labelled as P2(Y, p=0.44, r2=0.02) and P2(Y, p=0.44, r2= −0.02), 
respectively. For comparison, the binomial distribution with p = 0.44 is also shown and labelled as P1(Y, 
p=0.44). In addition, the probability mass functions of the binomial distribution based on the generalized 
Bernoulli trials, with p  labelled as P1(Y,P), as well as the second-order approximated correlated binomial 

distributions based on the generalized Bernoulli trials, with p  and (2)r calculated from Eq. (7) and labelled 

as P2(Y,P,r2=0.02) and P2(Y,P,r2= -0.02), respectively, for the nonsymmetric case, are also shown in these 
plots.  

 
Fig. 8. Probability mass functions of [1]( )P Y  with p = 0.44 and p  and [2]( )P Y  with (2)r  = 0.02. 

 
Fig. 9. Probability mass functions of [1]( )P Y  with p = 0.44 and p  and [2]( )P Y  with (2)r  = −0.02. 

From these plots, we observe that (1) the tail probabilities for Y  (e.g., for 1Y ≤  or 4Y ≥ ) based on the 
generalized Bernoulli trials with unequal marginal probabilities (P1(Y, P)) are smaller than those for the 
symmetric marginal probability p (P1(Y, p=0.44)); (2) when (2)r is positive, the tail probabilities with 

dependent X  and with the symmetric marginal probability p  (P2(Y, p=0.44, r2=0.02)) are larger than 

those with dependent X  (P2(Y, P,r2=0.02)), and this is the same for negative (2)r = −0.02; (3) when (2)r is 

positive, the tail probabilities with dependent X  and with the symmetric marginal probability p  (P2(Y, 
p=0.44, r2=0.02)) are larger than those with independent X  (P1(Y, p=0.44)) and vice versa for a negative 

(2)r .  
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4.  Estimating the Parameters of the Correlated Binomial Distribution 
 

As stated earlier, when the CMC method is applied to a set of cartridge cases, the analysis, in general, 
includes certain KM image pair comparisons and a larger number of KNM image pair comparisons. Any 
image pair in the KM set is known by design to be images of two cartridge cases fired from same firearm. 
The image pairs in the KNM set are also known, in that sense, to be images of two cartridge cases fired 
from different firearms. Statistical models are fitted separately to sets of KM and KNM data, respectively, 
to estimate the two different types of error rates described in Sec. 2, which are of fundamental interest for 
characterizing matching performance.  

When assessing method performance using M image pairs, the random variables for the sums of the 
CMC values for each image pair comparison are denoted by 1,..., MY Y . As discussed in Ref. [2], the error 
rates are calculated from the conditional probabilities of Y  based on the sets of KM or KNM data. Again, 
as pointed out in Sec. 2, to estimate error rates, the key is to find an appropriate probability distribution to 
describe Y .  

Based on the practical application described in Ref. [2], the binomial distribution fits the CMC values 
very well for KNM data but does not appear to fit the KM data as well. Therefore, we focus here on fitting 
dependent binomial models to the KM data. We assume that 1,..., MY Y  from the M  KM image 
comparisons are independent from each other, but for each image comparison, we have a sequence of N  
symmetric dependent Bernoulli trials. Two approaches for estimating the parameters of the correlated 
binomial distribution are proposed.  

 
4.1 Maximum Likelihood Estimator of the Parameters 
 

In Sec. 3, approximations of the probability mass function of the correlated binomial random variable 
are discussed. For illustration, we will discuss the second-order approximation given in Eq. (11),  

 
          [2] [1] (2) 2( ) ( ){1 ( , )}P Y P Y r g Y p= + ,     (16) 

where 2g , given by Eq. (10), is expressed here by 2 ( , )g Y p  to show it is a function of Y  as well as p . We 

first use maximum likelihood (ML) estimation to estimate the p  and (2)r  [10]. The CMC measurements 

from M  independent image pair comparisons are denoted by 1,..., My y , where fοr 1,..., ,jy j M,  =  is the 

sum of the CMC results from jN  dependent Bernoulli trials for the thj  image pair. jN  ( 1,..., )j M= is 

known. The likelihood function for the given p  and (2)r  is given by  

 [2] (2) (2) 2
1 1

( | , ) (1 ) {1 ( , )}j j j j

j

M M
y y N y

j jN
j j

L P y p r C p p r g y p−

= =

= = − +∏ ∏ .   (17) 

The log-likelihood function is equivalent to  
 

     (2) 2
1

log( ) ( ) log(1 ) log{1 ( , )} ,
M

j j j j
j

y p N y p r g y p
=

 + − − + + ∑    (18) 

denoted by log( )L . The maximum likelihood estimators (MLEs) of p  and (2)r  are obtained when the 

respective log( )L reaches its maximum using the quasi-Newton algorithm or other appropriate numerical 
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optimization algorithms. A Z-test can be used to check whether (2)r  is significantly different from zero 

using an asymptotic normal distribution of the parameter estimators. See Ref. [11], p. 283–295. 
 
4.2 Use of Nonlinear Regression Models 
 

Similarly, we discuss the case of the second-order approximation in Eq. (16). For the CMC values 
from M  independent image pair comparisons, each of 1,..., My y  is a sum of the results from N dependent 
Bernoulli trials. For 0,1,...,i N= , we define the frequency of y i=  by 

 

     {# )}( ) of y for y ih i
M

    ( =
= .      (19) 

Since { , 1,..., }jY j M=  are independently and identically distributed, based on the property of the empirical 

distribution, ( )h y  is an approximation of [2] ( )P Y  or ( )P Y . In Eq. (16), approximating [2] ( )P Y  by ( )h y , 
we have  
 

              [1] (2) 2( ) ( ){1 ( , )}h y P y r g y p ε= + + ,     (20) 

where 2 ( , )g y p  is the nonlinear function of p  given in Eq. (10), and ε  is a random error with zero mean. 

Thus, ( )h y  is approximated by a nonlinear function of p  and (2)r . This nonlinear regression model is 

fitted to ( )h y  to find optimal estimates of p  and (2)r , which are denoted by p  and (2)r , based on the 

criterion of minimum error sum of squares ([12], p. 21–24) using the Levenberg-Marquardt nonlinear least 
squares algorithm or other appropriate algorithms. The error sum of squares is defined as 
 

       2
[1] (2) 2

0
ESS [ ( ) ( , ){1 ( , )}]

N

y
h y P y p r g y p

=
= − +∑   

.    (21) 

For nonlinear regression, the underlying assumption is that the nonlinear function can be approximated by a 
linear function. Based on that, the approximate variance-covariance matrix of the estimators of the 
parameters can be obtained. In addition, a Z-test can be used to check whether (2)r  is significantly different 

from zero. Note that if { }ε are correlated and have different variances, a generalized least squares model 
and the corresponding estimates can be obtained. For this, we refer the reader to Ref. [12], p. 27–30, Ref. 
[13], p. 96–98, and Ref. [14], p. 225–226.  
 
5. Estimating the Parameters of the Correlated Binomial Distribution for the 

Weller Data Set 
 

The Weller data set of cartridge cases was obtained from a set of 11 firearm slides produced by the 
same manufacturer using the same process. The data set has 370 KM and 4095 KNM pairs. The details of 
the data set can be found in Ref. [15] and Ref. [2]. We applied the two approaches in Sec. 4 to the KM data 
set. For the KM data, N = 47 and M = 370. Under the assumption of a binomial distribution, p̂  = 0.7864 
is obtained from Eq. (2).  
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If we only include the second-order correlation, the MLE estimates from Eq. (17) for p  are p̂  = 

0.7823 and (2)r̂  = 0.0191. Using nonlinear regression, for the second-order correlation model in Eq. (16), 

the least squares (LS) estimates are: p  = 0.7979 and (2)r  = 0.0149. The standard deviations of the 

estimators are: ˆ pσ


 = 0.0032 and 
(2)

ˆrσ


= 0.0013. Parameters p  and (2)r  are significantly different from 

zero based on the Z-test.  
The third-order correlation was also considered. However, it seems that including (3)r  makes only a 

minor difference. If we include the third-order correlation term, the LS estimates are given by p = 0.7997, 

(2)r  = 0.0145, and (3)r  = 0.0005. The standard deviations of the estimators are: ˆ pσ


 = 0.0031, 
(2)

ˆrσ


= 

0.0013, and 
(3)

ˆrσ


= 0.0004. The parameter (3)r  is not significantly different from zero and thus would likely 

be omitted in the model. Figure 10 demonstrates that the correlated binomial distribution model with 
parameters estimated using nonlinear regression fits the data much better than the simpler model based on 
the binomial distribution.  

For completeness, we also applied the model based on the correlated binomial distribution to the KNM 
data set with N = 42 and M = 4095. If we only include the second-order correlation, the LS estimates of 
p  and (2)r  are 0.0011116 and 0.00023, respectively, with both parameters determined to be significantly 

different from zero. However, in this case, the results are not distinctly different from those when the model 
is based on the binomial distribution, which produces an estimate of ˆ 0.0011105p = . 

 
Fig. 10. Frequency distribution of CMC numbers of KM image pairs of the Weller data set with binomial and correlated binomial 
mass probability functions.  

 
6. Use of the Beta-Correlated Binomial Distribution for CMC Measurements 
 

In Ref. [2], it was proposed to relax the assumption of a fixed probability of congruency for the 
binomial distribution when modeling the CMC measurements. This revised model allows one to vary p  
for different image pair comparisons. In this case, we assume that within one image pair comparison, the 
probability p  for all the Bernoulli trials is the same, while for different image pair comparisons, p  varies. 
See Ref. [16]. As in the framework of Bayesian statistics, we assume that the parameter p  is a random 
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variable with a beta distribution. For the first image pair with N  cell pairs, we have a sequence of 
Bernoulli trials, 11 1,..., NX X , which are independent from each other and have a common probability of 

1p p= . The sum of the CMC values for the first image pair is 1Y , which for a given 1p  has a binomial 

distribution. Namely, 1 1 1| ( , )Y p Bin N p . In general, for M  image pairs, we have | ( , )j j jY p Bin N p , 

1,...,j M= , where p  has a beta distribution, i.e., ( , ),p Beta α β  with positive α  and β  as parameters to 
be fitted to the data. The probability mass function of the beta-binomial random variable Y  for given N , 
α , and β  is then given by 
 

 

1
[1] 1 1

0
1

1 1

0

( , )
( | , , ) (1 )

( , )

(1 )
( , )

( , ) ,
( , )

k
k N kN

k
N

P k p
P Y k N p p dp

B

C
p p dp

B

B k N kC
B

α β

α β

α β
α β

α β

α β
α β

− −

+ − − + −

= = −

= −

+ − +
=

∫

∫    (22) 

where ( , )B α β  is a beta function with parameters α  and β , and [1] ( , )P k p  is the binomial probability 
mass function in Eq. (1) when Y k= .  

In Ref. [2], comparisons were made of the fits of the beta-binomial probability model and the binomial 
probability model for different data sets, including the Weller data set for cartridge cases. Here, we need to 
emphasize that although use of the beta-binomial distribution can relax the assumption of the same p  for 
all image pairs, it still assumes that within each image pair, all cell pair comparisons are independent from 
each other. We checked this assumption by considering correlations among cell pair comparisons.  

Now instead of the independent Bernoulli trials, we assume that the cell pair comparisons within each 
image pair are dependent Bernoulli trials. The corresponding probabilities of the sum are approximated by 

[2] ( )P Y  as given by Eq. (16) when only the second-order correlation with a constant (2)r  is assumed. 

Assume that p  in the correlated binomial distribution is random with a beta distribution. Namely, 

(2) (2)| , . ( , , )j j jY p r corr Bin N p r , for 1,..., ,j M=  where p  has a beta distribution, i.e., ( , )p Beta α β . 

Similar to Eq. (22), the probability mass function of Y  for given N , α , β , and (2)r  is given by 
 

 

(2)

1
[2] 1 1

0
1

1 1
(2) 2

0
1

1 1
(2) 2

0

( | , , , )

( , )
(1 )

( , )

(1 ) {1 ( , )} (1 )
( , )

(1 ) {1 ( , )} ,
( , )

k
k N kN

k
k N kN

P Y k N r

P k p
p p dp

B

C
p p r g k p p p dp

B

C
p p r g k p dp

B

α β

α β

α β

α β

α β

α β

α β

− −

− − −

+ − − + −

=

= −

= − + −

= − +

∫

∫

∫

   (23) 

where 2 ( , )g k p  is given by Eq. (10). In this case, the marginal probability (2)( | , , , )P Y k N rα β=  for 

0,1,...,k N=  has no explicit expression. However, it can be calculated by numerical integration. In this 
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case, the random variable Y  has a compound probability distribution called a beta-correlated binomial 
distribution.  
 
7. Conclusions 
 

The recently proposed CMC method improves the accuracy of ballistic identification. From a statistical 
point of view, the CMC results are based on pass-or-fail tests for comparison of individual cell pairs taken 
from an image pair of breech face impressions. To estimate the expected error rates of the CMC 
measurements, several probability models have been proposed. However, the assumption of independence 
among the cell pair comparisons from the CMC method required by some models may not be valid. To 
relax the assumption of independence, we propose using correlated binomial and beta-correlated binomial 
probability distribution models to fit the CMC measurements. Application to practical data demonstrates 
that the correlated binomial probability distribution model fits the data much better than the binomial 
probability distribution model. The statistical models proposed in this article can be applied to other types 
of data with N  dichotomous comparisons as well. 
 
8. Appendix: Proof of Eq. (13) 
 

The proof is as follows.  
 
For 0,1,...,Y N= ,  
  

              

[ ] [ ]

[ ]

[ ]

,

[1] ( ) ( )
0 2 1

[1] ( )
0 1

, [1] ( )
0 1
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∑ ∑
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From [9], Eq. (4.3), p. 164–165, { ( ), 0,1,..., }jg Y j N=  are orthogonal associated with [1] ( )P Y . Namely,  

the inner product [1]
0

( ( ), ( )) ( ) ( ) ( ) 0
N

i j i j
m

g Y g Y g Y m g Y m P Y m
=

= = ∗ = ∗ = =∑  for i j≠  and 

2|| ( ) ||j
N

g Y
j

 
=  

 
 for 0,1,...,j N= ; see Eq. (4.8) in Ref. [9]. Thus, 

[1] ( )
0 1

( ) ( ) ( )
N i

k
Y j j

m j k

m P Y m r g Y mµ
= = +

− = =  ∑ ∑ = 0 because ( )k
YY µ−  can be expressed as a linear 

combination of { ( ), 0,1,..., }jg Y j k=  in the corresponding inner product space with an orthogonal basis of 
0.5

{ ( ) , 0,1,..., }j
N

g Y j N
j

 
= 

 
. This implies

[ ] [ ], ,( ) ( )
i kk P k PY Yµ µ=  when i k> . 
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