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The development of standards for evaluating the performance of X-ray computed tomography (XCT) instruments is ongoing within 
the American Society of Mechanical Engineers (ASME) and the International Organization for Standardization (ISO) working 
committees. A key challenge in developing documentary standards is to identify test procedures that are sensitive to known error 
sources. In Part I of this work, we described the effect of geometry errors associated with the detector and determined their influence 
through simulations on sphere center-to-center distance errors and sphere form errors for spheres located in the tomographically 
reconstructed measurement volume. We also introduced a new simulation method, the single-point ray tracing method, to efficiently 
perform the distance and form error computations and presented data validating the method. In this second part, also based on 
simulation studies, we describe the effect of errors associated with the rotation stage on sphere center-to-center distance errors and 
sphere form errors for spheres located in the tomographically reconstructed measurement volume. We recommend optimal sphere 
center locations that are most sensitive to rotation stage errors for consideration by documentary standards committees in the 
development of test procedures for performance evaluation. 
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1. Introduction

A key aspect to developing documentary standards for performance evaluation is the design of test
procedures that are sensitive to known error sources. Currently, standards groups within the American 
Society of Mechanical Engineers (ASME) and the International Organization for Standardization (ISO) are 
discussing test procedures to include in documentary standards for performance evaluation of X-ray 
computed tomography (XCT) instruments. In Part I [1] of this two-part study, we recommended optimal 
placement of spheres in the measurement volume so that sphere center-to-center distance errors and sphere 
form errors are most sensitive to geometry errors associated with the detector. We presented a novel 
method, called the single-point ray tracing method, that efficiently estimates these sensitivities. In this 
second part, we discuss optimal placement of spheres in the measurement volume so that the sphere center-
to-center distance errors and sphere form errors are most sensitive to errors associated with the rotation 
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stage. We make recommendations on sphere center locations for consideration by documentary standards 
committees that are involved in the development of performance evaluation test procedures for XCT 
instruments. For our purposes in this paper, form error is considered to be the difference between the 
maximum and minimum residuals from a least-squares best-fit sphere fit to given point cloud data 
associated with a spherical surface. 

We refer to Part I [1] for the coordinate system and the reference object used, and for a description of 
the single-point ray tracing method. We refer to Marsh [2] for an overview of rotation stage error sources. 
More specific to XCT instruments, Ferrucci et al. [3] have addressed the topic of sphere center-to-center 
distance errors, radius errors, and form errors in the presence of rotation stage errors by considering a 
reference object composed of 27 spheres arranged in a helical pattern. The objective of their research was 
to determine the highest magnification position for which the modelled rotation stage errors had negligible 
effect on dimensional measurements. For that purpose, their simulations considered all rotation stage errors 
together, not in isolation. Thus, they did not provide recommendations on sphere center locations that are 
most sensitive to individual rotation stage error sources. However, we do acknowledge that the publications 
by Ferrucci et al. [3, 4] serve as the basis for work reported here and in Part I [1], and that our 
parameterization of XCT rotation stage errors is also based on Ferrucci et al. [3].  

This paper is organized as follows. We discuss errors associated with the rotation stage in Sec. 2. 
Discussion and conclusions follow in Sec. 3 and Sec. 4, respectively. 

2. Error Sources Associated with the Rotation Stage

The location of the sample stage rotation axis is a quantity required during the reconstruction process.
This is typically determined by a geometrical calibration process. In this section, we quantify the effects of 
error in the rotation axis position and in the error motions of the rotation stage (i.e., axial, radial, wobble, 
and encoder scale [2, 3]) on sphere center-to-center distance errors and sphere form errors. Figure 1 depicts 
the different rotation stage error sources considered in this paper.  

We note that the definition of the coordinate system given in Part I defines the rotation stage axis as 
orthogonal to the Z and X axes, and hence any fixed tilt error with respect to the detector appears as a 
detector angular error and not as a rotation stage error. The sensitivity values reported in this section are for 
the XCT instrument rotation axis and detector distances from the X-ray source focal spot of 400 mm and 
1177 mm, respectively. The sign convention for the errors is as described in Part I, Sec. 3. 

As in the case of detector error sources, the magnitude of the simulated geometry errors is intentionally 
large and was determined by trial and error to provide easily observable sphere center-to-center distance 
errors or sphere form errors. Sensitivity is reported as mm/mm and mm/° depending on the units of the 
geometry error source, i.e., linear or angular. Such a sensitivity statement implies that the dimensional 
errors are linearly proportional to the magnitude of the geometry error sources. This linearity was 
confirmed by simulating various error source magnitudes and observing the resulting dimensional errors.  

2.1 Rotation Stage Z Location Error 

Description: This parameter describes an error in the location of the measurement volume center P 
(which is the intersection of the rotation axis and the line from the source to the detector along the Z axis); 
see Fig. 1(a). 

Distance error: This error is negatively correlated with the detector Z location error (see Part I), and 
the ratio of the sensitivity coefficients for the two cases is equal to the magnification factor. The negative 
sign of the correlation arises because moving the rotation axis closer to the source has the same effect as 
moving the detector away from the source; i.e., both result in an increase of the magnification factor. Figure 
7(a) in Part I [1] showed the lines that are most sensitive to this error source. These are diagonal lines 
joining spheres farthest apart from each other and passing through the center of the measurement volume P. 
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We use the term body diagonal to refer to these lines. Two such body diagonals are shown in Figs. 2(a) and 
(b). The distance error for these lines is approximately −0.017 mm for −0.1 mm error in the rotation axis Z 
location and +0.017 mm for +0.1 mm error in the rotation axis Z location. The magnitude of the distance 
error sensitivity is thus 0.17 mm/mm. This sensitivity is larger than the sensitivity for detector Z location 
error (see Sec. 3.3, Part I) by a factor approximately equal to the magnification value of 2.94.  

Form error: This error source does not result in any noticeable form error in the spheres. 

(a) (b) (c) 

(d) (e) (f) 

Fig. 1. Rotation stage errors. (a) Error in the location of the rotation axis along Z. The location of point P′ along the Z axis is used in 
the reconstruction, whereas P is the true location of that point. (b) Axial error motion of the rotation stage, i.e., errors along the Y 
direction at a given index angle θ. (c) Radial error motion of the rotation axis at a given index angle θ; this error can be parameterized 
as two separate components along X and Z. (d) The X component of the wobble error of the rotation stage (i.e., component of axis tilt 
in the YZ plane) for a given index angle θ. (e) The Z component of the wobble error of the rotation stage (i.e., component of axis tilt in 
the XY plane) for a given index angle θ. (f) Error in the angular position of the rotation stage for a given index angle θ. 

2.2 Axial Errors 

Description: Axial error is the error motion of the rotation stage along the Y direction, i.e., parallel to 
the axis of rotation; see Fig. 1(b). The magnitude of the axial error is a function of the rotation stage index 
angle θ. We consider individual harmonic components of the axial error of the form 𝑎𝑎 cos𝑛𝑛𝑛𝑛 and 𝑎𝑎 sin 𝑛𝑛𝑛𝑛, 
where a is the amplitude, n is the order of the harmonic, and θ is the index angle. Note that θ = 0° is along 
the positive X axis. The amplitude a is 0.1 mm, and we consider low-order harmonics n ranging from 1 to 
10.  

Distance error: Figures 2(a) and (b) show the lines of maximum sensitivity for the first-order axial 
error motion case; these are the body diagonals passing through P. In the case of the cosine term, the lines 
are located on the YZ plane, whereas in the case of the sine term, the lines are located on the XY plane. The 
magnitude of the distance error is 0.01 mm; the distance error sensitivity is therefore 0.1 mm/mm. The 
error is positive for one of the lines and negative for the other. The sign of the distance error reverses when 
the amplitude of the axial error is −0.1 mm. Higher-order harmonics did not result in a distance error.  

Form error: Because axial errors result in all spheres moving up and down along the Y axis, the 
resulting spheres appear elongated along the Y direction, with the magnitude, number, and orientation of 
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the lobes depending on the order of the harmonic. The magnitude of the form error is approximately 0.2 
mm, 0.16 mm, 0.14 mm, 0.12 mm, and 0.1 mm for the second-, fourth-, sixth-, eighth-, and tenth-order 
(both cosine and sine) terms, respectively. The form error is approximately 0.1 mm for all odd-order terms. 
The largest sensitivity is therefore approximately 2 mm/mm for the cases of the second-order sine and 
cosine terms. For any given order, the form error is identical for all spheres. Figure 3 shows the form error 
for the second- and fourth-order cosine and sine terms. 

(a) (b) 

Fig. 2. The lines of maximum sensitivity for distance errors for (a) first-order cosine, and (b) first-order sine axial error motion. 

(a) (b) 

(c) (d) 

Fig. 3. Form error in the presence of (a) second-order cosine, (b) fourth-order cosine, (c) second-order sine, and (d) fourth-order sine 
axial error. 
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2.3 Radial Error Component Along the X Axis 

Description: Radial error is the error motion of the rotation stage in the XZ plane, i.e., perpendicular to 
the rotation axis; see Fig. 1(c). The magnitude of the radial error is a function of the rotation stage index 
angle θ. This error motion is resolved into components along the X and the Z axes. We discuss the X 
component of radial error here and the Z component in the next subsection. As in the case of axial errors, 
we consider individual harmonic components of the X component of the radial error, which have the form 
𝑎𝑎 cos𝑛𝑛𝑛𝑛 and 𝑎𝑎 sin𝑛𝑛𝑛𝑛, where a is the amplitude, n is the order of the harmonic, and θ is the index angle.  In 
this study, the amplitude a is 0.1 mm, and we consider low-order harmonics n ranging from 1 to 10.  

Distance errors: Figure 4 shows the lines with the highest sensitivity to the second-order cosine and 
sine terms of the radial error motion component along X. These lines join spheres located diametrically 
apart from each other on any given horizontal (XZ) plane. We use the term face diagonals to refer to such 
lines. The magnitude of the distance error is approximately 0.01 mm; the distance error sensitivity is 
therefore 0.1 mm/mm. The sign of the distance error reverses when the amplitude of the radial error is −0.1 
mm. There are no significant distance errors for any other harmonic component.

Form error: Because radial errors result in all spheres moving radially together, all spheres appear
elongated in the horizontal (XZ) plane, with the magnitude, number, and orientation of the lobes depending 
on the order of the harmonic. The magnitude of the form error for the first-order sine and cosine terms is 
negligibly small. For all other orders, the form error is at least 0.1 mm. The magnitude of the form error is 
approximately 0.2 mm, 0.2 mm, 0.16 mm, and 0.14 mm for the third-, fifth-, seventh-, and ninth-order 
(both cosine and sine) radial error motion components along the X axis, respectively. The form error is 
approximately 0.1 mm for all even-order terms. The largest sensitivity is therefore about 2 mm/mm for the 
case of the third- and fifth-order sine and cosine terms. For any given order, the form error is identical for 
all spheres. Figure 5 shows the form error for the third- and fifth-order cosine and sine radial error motion 
components along the X axis. 

(a) (b) 

Fig. 4. Lines of highest sensitivity for (a) second-order sine, and (b) second-order cosine radial error motion along X. 

2.4 Radial Error Component Along the Z Axis 

Description: We discuss the Z component of radial error here, see Fig. 1(c). As in the previous case, 
we consider individual harmonic components of the Z component of the radial error, which is of the form 
𝑎𝑎 cos𝑛𝑛𝑛𝑛 and 𝑎𝑎 sin𝑛𝑛𝑛𝑛, where a is the amplitude, n is the order of the harmonic, and θ is the index angle. In 
this study, the amplitude a is 0.1 mm and we consider low order harmonics n ranging from 1 to 10.  

Distance errors: For the second order harmonic component, distance errors were approximately 0.01 
mm with Fig. 4(a) showing the sensitive lines for the cosine term and Fig. 4(b) showing the sensitive lines 
for the sine term. There are no significant distance errors for any other harmonic component. 
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Form error: There is no discernable form error in the spheres resulting from the radial error 
component along the Z direction. This error source simply results in the spheres appearing larger or 
smaller, without significant error in the center location in the radiographic image for any index angle θ. 

(a) (b) 

(c) (d) 

Fig. 5. Form error in the presence of (a) third-order cosine, (b) fifth-order cosine, (c) third-order sine, and (d) fifth-order sine radial 
error motion along the X axis. 

2.5 Wobble about the X Axis 

Description: Wobble is the tilt of the rotation axis as a function of index angle θ. We resolve this tilt 
into two components—rotations about two fixed axes parallel to the global X and Z coordinate axes and 
passing through P. In this section, we consider wobble about the fixed axis parallel to the X axis, with the 
pivot point located at the center P of the measurement volume; see Fig. 1(d). We consider individual 
harmonic components of the form 𝑎𝑎 cos𝑛𝑛𝑛𝑛 and 𝑎𝑎 sin𝑛𝑛𝑛𝑛, where a is the amplitude, n is the order of the 
harmonic, and θ is the index angle. The amplitude a is 0.2°, and we consider low-order harmonics n 
ranging from 1 to 10. Zero-order wobble is a constant tilt of the rotation stage as a function of azimuth and 
is indistinguishable from a tilted part mounted on a perfectly rotating stage [3]. 

Distance error: Sensitive lines for first-order cosine and sine wobble about a local X axis are the body 
diagonals shown in Figs. 2(a) and (b), respectively. The magnitude of the distance error is 0.06 mm; the 
distance error sensitivity is therefore 0.3 mm/°. The error is positive for one of the lines and negative for the 
other. The sign of the distance error reverses when the amplitude of the wobble error is −0.2°. Second-order 
harmonics result in a distance error of about 0.01 mm, while higher-order harmonics have negligible 
distance errors. 

Form error: The magnitude, number, and orientation of the resulting lobes depend on the order of the 
harmonic and the distance of the sphere from the axis of rotation. The magnitude of the maximum form 
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error observed is approximately 0.1 mm, 0.15 mm, 0.14 mm, 0.12 mm, and 0.1 mm for first-, third-, fifth-, 
seventh-, and ninth-order (both cosine and sine) wobble, respectively. The form error is about 0.1 mm for 
even-order wobble. The largest sensitivity is therefore approximately 0.75 mm/° for third-order sine and 
cosine wobble. For any given order, the form error is larger for spheres that are radially farther away from 
the axis of rotation. Figure 6 shows the form error for third- and fifth-order sine and cosine wobble for the 
sphere located at (0, −25, −375) mm. 

(a) (b) 

(c) (d) 

Fig. 6. Form error for the sphere located at (0, −25, −375) mm in the presence of (a) third-order cosine, (b) fifth-order cosine, (c)
third-order sine, and (d) fifth-order sine wobble about the X axis. 
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Form error:  The magnitude, number, and orientation of the resulting lobes depend on the order of the 
harmonic and the distance of the sphere from the axis of rotation. The magnitude of the form error is 
approximately 0.1 mm, 0.24 mm, 0.2 mm, 0.19 mm, and 0.17 mm for first-, third-, fifth-, seventh-, and 
ninth-order (both cosine and sine) wobble, respectively. The form error is about 0.13 mm for an even-order 
wobble. The largest sensitivity is therefore approximately 1.2 mm/° for the third-order sine and cosine 
wobble. For any given order, the form error is larger for spheres that are radially farther away from the axis 
of rotation. Figure 7 shows the form error for the third- and fifth-order sine and cosine wobble for the 
sphere located at (0, −25, −375) mm. 

(a) (b) 

(c) (d) 

Fig. 7. Form error for the sphere located at (0, −25, −375) mm in the presence of (a) third-order cosine, (b) fifth-order cosine, (c) third-
order sine, and (d) fifth-order sine wobble about a local Z axis. 

2.7 Scale Errors in the Rotation Axis Encoder 
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sensitivity is therefore 0.4 mm/°. The error is positive for one of the lines and negative for the other. The 
sign of the distance error reverses when the amplitude of the scale error is −0.05°. First-order scale error 
results in a small distance error of 0.001 mm, while higher harmonics produce negligible distance errors. 

Form error: Despite the relatively large encoder scale error amplitude of 0.05° considered in this 
paper, the magnitude of the resulting form error is lower than 0.05 mm for all harmonics. For any given 
order, the spheres farther away from the axis of rotation show larger form error than those closer to the 
axis. 

 
2.8 Sensitivity Matrix for Rotation Axis Errors 

 
We discussed the sensitivity of distance and form error to different rotation stage geometry errors in 

the previous subsections. In Table 1, we summarize these sensitivities in the form of a sensitivity matrix 
using the 16 spheres (A–H, J–M, Q–T) shown in Fig. 8. Spheres A, B, C, and D are located on the bottom 
plane (Y = −25 mm) and on a circle of 50 mm diameter. Spheres E, F, G, and H are located on the top plane 
(Y = 25 mm) and on a circle of 50 mm diameter. The spheres create four body diagonals (AG, CE, DF, BH) 
and four face diagonals (AC, BD, FH, EG).  

 
Table 1. Sensitivity matrix for rotation axis errors based on the spheres shown in Fig. 8. 

 

Source Distance error Form error Description 

 Lines Sensitivitya Spheresb Sensitivitya  

Z location AG, CE, 
DF, BH 

0.17 
mm/mm None 0 Distance error: Body diagonals through P 

Axial AG, CE, 
DF, BH 

0.1 
mm/mm All 

1 mm/mm 
to  

2 mm/mm 

Distance error: First order, body diagonals through P 
Form error: Depends on order, with higher sensitivity to 
second, fourth, sixth, eighth order 

Radial 
component 

along X 

AC, BD, 
FH, EG, 
JL, KM, 
QS, RT 

0.1 
mm/mm All 

1 mm/mm 
to  

2 mm/mm 

Distance error: Second order, face diagonals through P 
Form error: Depends on order, with higher sensitivity to 
third, fifth, seventh order 

Radial 
component 

along Z 

AC, BD, 
FH, EG, 
JL, KM, 
QS, RT 

0.1 
mm/mm None 0 Distance error: Second order, face diagonals through P 

Wobble 
about X 

AG, CE, 
DF, BH 0.3 mm/° All 

0.5 mm/°  
to 

 0.75 mm/° 

Distance error: First order, body diagonals through P 
Form error: Depends on order, with higher sensitivity to 
third, fifth, seventh order 

Wobble 
about Z 

AG, CE, 
DF, BH 0.3 mm/° All 

0.5 mm/°  
to 

 1.2 mm/° 

Distance error: First order, body diagonals through P 
Form error: Depends on order, with higher sensitivity to 
third, fifth, seventh, ninth order 

Scale errors 

AC, BD, 
FH, EG, 
JL, KM, 
QS, RT 

0.4 mm/° All 1 mm/°  Distance error: Second order, face diagonals through P 

a Absolute magnitude is shown, i.e., without sign of sensitivity coefficient. 
b ‘All’ in this column refers to the eight spheres in Fig. 8(a) and eight spheres in Fig. 8(b) only. 

 
At the initial angular position of the object (index angle of 0°), spheres A, C, E, and G form a plane 

parallel to the detector, while spheres B, D, F, and H form a plane perpendicular to the detector. 
Dimensional measurements of these spheres are most sensitive to the different detector geometry errors 
discussed in Part I [1]. These spheres are also sensitive to several rotation stage geometry errors. Figure 
8(b) shows an additional eight spheres forming four face diagonals that are sensitive to rotation stage 
errors. Spheres J, K, L, and M are located on the bottom (Y = −25 mm) plane and form a circle of 50 mm 
diameter. Spheres Q, R, S, and T are on the top (Y = 25 mm) plane and form a circle of 50 mm diameter. 
Dimensional measurements of these spheres are most sensitive to the remaining rotation stage errors.  
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Here, we summarize the sensitivity observations made in the previous sections as they pertain to the 
sensitive spheres in the reference object. The table shows the magnitude of distance and form errors, along 
with the sensitivity coefficients, which are the ratio of the magnitude of the distance/form errors to the 
magnitude of the corresponding geometry error. The table shows that distance errors are sensitive to 
rotation stage Z location error and some harmonics of axial, radial, wobble, and scale errors. Sphere form 
errors are relatively sensitive to certain orders of axial, radial, wobble, and scale errors. 

 

 
(a)   

(b)  
 
Fig. 8. (a) Eight of the 125 spheres form four face diagonals and four body diagonals that can be used to capture all detector geometry 
errors as shown in Part I [1] and some rotation stage errors. (b) Eight additional spheres forming four face diagonals can be used to 
detect the remaining rotation stage errors. 
 
3. Discussion 

 
3.1 Sensitive Sphere Locations for Detector and Rotation Stage Errors 

 
Our recommendations and rationale for sphere center locations to detect detector and rotation stage 

errors are as follows (see Fig. 8):  
• eight spheres located at index angles of 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°, radially as 

far away from the axis of rotation as possible and in the lowest Y position possible; 
• eight spheres located at index angles of 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°, radially as 

far away from the axis of rotation as possible and in the highest Y position possible; 
• eight spheres in the lower horizontal plane and eight spheres in the upper horizontal plane 

allowing for the determination of four face diagonals each (AC, BD, EG, FH, JL, KM, QS, RT); 
and 

• four spheres in the lower horizontal plane and four spheres in the upper horizontal plane in Fig. 
8(a) allowing for the determination of four body diagonals (AG, CE, DF, BH). 

• The face diagonals in the lowest and highest Y positions and the body diagonals are recommended 
test positions to capture both detector and rotation stage errors in XCT instruments. 

• The form error on the 16 spheres is sensitive to the different geometry errors discussed in this 
paper. Monitoring form error of spheres located in the measurement volume, especially those 
located further away from P along both the radial and Y directions, is therefore a quick and easy 
test of detector and rotation stage errors. 

 
3.2 Sensitivity Values at Other Rotation Axis and Detector Locations 
 

In Sec. 2, we reported the sensitivity values for the specific case of source to rotation axis and source 
to detector distances of 400 mm and 1177 mm, respectively. While the simulations can easily be performed 
for other rotation axis and detector distances, for some geometry error parameters, the sensitivity values at 
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other distances are either directly or inversely proportional to the magnification. This allows for efficient 
calculation of sensitivity values for any rotation axis and detector distances if sensitivity values are known 
for one combination of rotation axis and detector distances.  
 
3.3 Reference Object Design for Geometry Parameter Determination 
 

The idea of projecting sphere centers instead of the entire sphere provides for an efficient method to 
investigate suitable geometry for a reference object that is sensitive to instrument geometry errors. Ferrucci 
et al. [4] presented the design of one reference object and a method to determine the instrument geometry 
parameters. Their method relies on the acquisition of radiographs in the presence of noise, followed by 
determination of sphere centers and geometry parameter estimation by fitting to a model. Subsequently, 
they estimated the uncertainty in the parameters for 10 different cases where different systematic errors 
were introduced for each case.  

Our method of projecting only sphere centers allows for the determination of instrument parameters in 
the presence of both systematic errors and noise without the need to generate radiographs, thus making it 
possible to perform a Monte Carlo simulation for thousands of conditions and for different reference object 
designs. Thus, it is possible to identify candidate reference object designs that yield the geometry 
parameters with the largest possible sensitivity. 
 
3.4 Validation of the Single-Point Ray Tracing Method 
 

We presented some examples validating the single-point ray tracing method in Part I. Here, we present 
additional examples that involve rotation stage errors. 

In the presence of the first harmonic cosine term of the wobble error component along the X axis of 
amplitude 0.2°, the magnitude of the error in the body diagonals shown in Fig. 2(a) is 0.062 mm using the 
radiograph-based method. The corresponding value obtained using the single-point ray tracing method is 
0.061 mm, which is in excellent agreement with the radiograph-based method. 

Figure 9(a) shows the form error for one of the spheres in the presence of the third harmonic sine term 
of the radial error component along the X axis using the radiograph-based method, while Fig. 9(b) shows 
the form error for the same sphere using the single-point ray tracing method. The form error is 0.2 mm for 
both methods. 

Figure 9(c) shows the form error for one of the spheres in the presence of the second harmonic cosine 
term of the axial error using the radiograph-based method, while Fig. 9(d) shows the form error for the 
same sphere using the single-point ray tracing method. The form error is 0.16 mm for the radiograph-based 
method and 0.19 mm for the single-point ray tracing method, and so the agreement in the form error is 
within a few tens of micrometers. 

 
3.5 Experimental Validation 
 

In this study, we used our single-point ray tracing method to identify optimal sphere center locations 
that are sensitive to XCT instrument geometry errors. No radiographs are required for this method, and so 
no reconstruction is needed. We verified our method for all of the geometry errors presented in this paper 
through the radiograph-based method (see previous subsection for some examples), where radiographs are 
generated numerically and reconstructed using commercially available software.  
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(a) (b) 

(c) (d) 

Fig. 9. (a) Form error for a sphere in the presence of the third harmonic sine term of the radial error component along the X axis using 
the radiograph-based method. (b) Form error for the same sphere using the single-point ray tracing method. (e) Form error for a sphere 
in the presence of the second harmonic cosine term of the axial error using the radiograph-based method. (d) Form error for the same 
sphere using the single-point ray tracing method. 

It is possible to test some of the claims made in this paper experimentally. For example, radiographs 
can be acquired at certain rotation axis and detector distances, but the reconstruction software can be 
provided incorrect values for these distances, thus confirming the sensitivity claims made here. We are in 
the process of performing such experiments and have reported preliminary results in Ref. [5]. We have also 
used third-party software, e.g., aRTist,2 to generate radiographs for some cases, and the results agree with 
both the radiograph-based method and our single-point ray tracing method. 

4. Conclusions

In Part II of this study, we have described the effect of rotation stage errors in XCT instruments on 
sphere center-to-center distance errors and sphere form errors for spheres located in the measurement 
volume for the specific case of source to rotation axis and detector distances of 400 mm and 1177 mm, 
respectively. In particular, we considered errors associated with the rotation axis such as its location error, 
and axial, radial, wobble, and scale errors. We performed our simulations using two different approaches, 
the radiograph-based method and the single-point ray tracing method.  

2 Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does 
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials 
or equipment identified are necessarily the best available for the purpose. 
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The radiograph-based method involves generating radiographs of the spheres in the presence of 
geometry errors, performing reconstruction from the radiographs assuming ideal geometry, and performing 
surface determination and fitting to determine sphere centers, followed by calculation of sphere center-to-
center distance error and sphere form error. This method is labor-intensive and takes several hours on a 
personal computer for each set of radiographs.  

In Part I, we therefore reported on a novel single-point ray tracing method where sphere centers are 
forward projected onto the detector in the presence of geometry errors. We then back project the rays 
assuming ideal geometry to determine sphere center locations using a least-squares approach. This method 
does not involve any reconstruction and therefore only takes a few minutes on a personal computer.  

Using the single-point ray tracing method (and validated using the radiograph-based method), we 
quantified the sensitivity of the distance and form error to each of the rotation stage error parameters 
considered in this paper. Based on the analysis, we made recommendations on the optimal positions of 
spheres in the measurement volume to detect these geometry errors. The motivation for this work is to 
provide input to ongoing standards efforts within ASME and ISO so that the test procedures they specify 
are sensitive to all known geometry errors. 
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