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1. Introduction

The polar codes are a class of linear block error-correcting codes transmitted over symmetric binary-
input discrete memoryless channels [1, 2, 3]. As their length N, N = 2n, increases, their performance tends 
to the Shannon limit. Subsequent publications (e.g., [4, 5]) have addressed practical aspects of the polar 
codes such as the size length, N, of a polar code that can support a specific feasible performance profile and 
the impact of the available arithmetic precision on the performance of the polar decoder. 

As shown in Refs. [6, 7], the polar codes can be used in the reconciliation stage of the quantum key 
distribution (QKD) protocol. The QKD protocol [8] creates shared secrets by using a quantum channel for 
“data” that suffers massive deletions (50 % or more) and high bit-error rates (typically between 1 % and 
4%, and in theory as high as 11%) and it resolves the bit-value discrepancies through information 
exchanged over a classical channel that supports data integrity, origin authentication, and protection against 
replays. The first sound error-correcting protocol to be used by QKD, Cascade [9, 10], is interactive.  

Cascade went out of fashion because it was believed that it has latency problems. As a result, the use 
of other, noninteractive decoding schemes, such as the “Low-density parity-check”, LDPC, code [11–13] 
and polar codes [1–7] were proposed. It should be noted, however, that Cascade is performing a return [14, 
15] and there are claims [15] that Cascade currently has no real latency problems.

The objective of the QKD protocol’s reconciliation stage is to correct errors in the quantum channel
data in such a way that the expected secrecy yield is as high as possible. This translates into maximizing the 
following: 

    (1 − FER)×(K −N ×h(QBER) − signature_length. 

where K is the number of information bits in the code, QBER is the estimated error rate in the quantum 
channel, FER is the frame error rate (i.e., the probability of erroneous decoding), signature_length is the 
length, in bits, of a hash value used to detect incorrect decoding, and h(QBER) is the Shannon entropy.  

This paper introduces an interactive polar decoder, studies the performance of such a decoder, and 
shows that such a decoder can efficiently produce good classical polar codes. 

It should be noted that the presented simulation data hold for the QKD protocol and not necessarily for 
its implementations; the latter must adjust to changes to their environment and parameter values that are 
variable over time and never fully known. 
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2. Polar Coding/Decoding Summary 
 
The Polar coding/decoding has been described in detail in several papers [1, 2, 5] and we shall assume 

basic familiarity with the encoding/decoding setup of polar codes. Nevertheless, we do provide an appendix 
that presents a description of the polar transform and we summarize the parts of the polar encoding and 
decoding processes that are directly linked to the error correction in general, and in particular to the 
alternatives studied herein.  

 
2.1 The Encoder 

 
The encoder accepts a bit-string, u, of length N, N = 2n, the values of which are stored in the N entries 

of the 0th column of a N × (n + 1) matrix (this paper follows the programming convention that all indices 
start with the value 0). The following hold for the encoding matrix and its contents: 

• There is a subset of {0, 1,…,N − 1}, known as the frozen bits, such that the values of u over the 
frozen-bits are known prior to decoding. The performance of the polar decoding depends on the 
choice of the frozen bits’ locations, not on their bit values.  

• For m = 0, 1, 2, …, n, the encoder views the mth column as a sequence of 2m segments of 2(n − m) 
bit slots.  

• If (X, Y) are the slots (2s, 2s+1) of column m and the slots (2t, 2t + 1) of the kth segment, where  k 
= 0, 1,…,2(n − m) − 1, in column m, then 2s = k2(n − m) + 2t.  
o The polar encoder will store bit[X]⊕ bit[Y] and bit[Y] in slots X* and Y* of the (m + 1)th 

column, with X*= k2(n − m) + t and Y*= X* + 2(n − m − 1). 
o If X, Y, X*, and Y* are as above, knowledge of the location of any one of them fully defines 

the quadruple (X, Y, X*, Y*). 
 

The following property of the polar codes is critical for the polar decoder: 
  If u* is the bit-vector in column n (i.e., u* is the polar encoding of u), then 
• bit[X*] and bit[Y*] are the parities of u* over nonintersecting subsets of {0,1,2,…,N − 1}, S[X*] 

and S[Y*], which have the same cardinality. 
• In the absence of side information, bit[X*] and bit[Y*] are independent variables (hence the f-

transform below). 
• S[X] = is the union of S[X*] and S[Y*], and S[Y] = S[Y*]. 
• If a value has been assigned to bit[X], bit[X*] and bit[Y*] cease to be independent (hence the g-

transform below).  
 

2.2 The Decoder 
 
The decoder creates an N × (n+1) matrix, the entries of which can hold a real number; the probability, 

or an equivalent parameter, that the corresponding slot of the encoder holds the value 0. What follows 
shows that unless one is careful, the computer may compute probabilities that convey little information or 
even none. The polar decoder functions as follows: 

1. If p is the estimated QBER value, u* is the bit vector sent, and v* is the bit vector received, the 
probability that u*[i] = 0, p[n, i], equals 1 − p if v*[i] = 0 and p otherwise. 

2. When the probabilities p[X*] and p[Y*] have been computed, the decoder will, unless side 
information is available, compute p[X] through the f-transform:  

         p[X] = f(p[X*],p[Y*]) = p[X*]p[Y*] + (1 − p[X*])(1 − p[Y*]). (1) 

3. When probabilities p[X*] and p[Y*] have been computed and a bit value has been assigned to 
entry X, the decoder will, unless additional side information is available, compute p(bit[Y] = 
0|bit[X]) through the g-transform as follows: 

         If (bit[X] = 0), p[Y] = p[X*]×p[Y*]/f(p[X*],p[Y*]). (1a)
  

         If (bit[X] = 1), p[Y] = (1 − p[X*])×p[Y*]/(1 − f(p[X*],p[Y*])).  (1b) 
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2.3 The r Parameter 
 
In the following the parameter r[Z] = 1-2×p(Z = 0)  (hence p(Z = 0) = (1 + r[Z])/2) is used because this 

parameter shows more clearly how and why some computed probabilities tend to cluster around 0.5 (i.e., 
the corresponding r value is close to 0). In terms of the r parameter, the formulae (1), (1a), and (1b) become  

r[X] = r[X*]×r[Y*],    (2) 

r(Y|X = 0) = (r[X*] + r[Y*])/(1 + r[X*]×r[Y*])  (2a) 

r(Y|X = 1) = (r[Y*] − r[X*])/(1 − r[X*]r[Y*]).  (2b) 

Note: In the rare instance that the product r[X*]r[Y*] is equal to 1 or −1, the values of X* and Y* are       
known, and the same holds for X and Y. 

 
If r = 1– 2×QBER, the probabilities assigned to the entries of column n are (1 + r)/2, if entries v*[i] = 

0, and (1 − r)/2 otherwise. In the following, unless otherwise stated, it is assumed that the decoder works 
with the r values. 

Note that: 
1. If slot X is in column n − m, m = 1, 2,…,n  and p[X] is computed exclusively through f-

operations, p[X] will be equal either to (1 + rM)/2 or to (1 − rM)/2 with M = 2m. 
2. If a bit value has been assigned to X in column n − m, and the probabilities p[X*] and p[Y*] have 

been computed exclusively through f-operations, then the g-operation for Y will return the value 
0.5 with probability exceeding (1 − uM)/2. Indeed, either r[X*] = r[Y*], with probability (1 + 
rM)/2, or r[X*] + r[Y*] = 0, with probability (1 − rM)/2). As a result, 
o if r[X*] = r[Y*] and bit[X] = 1, then r(Y|X = 1) = 0, and  
o if r[X*] + r[Y*] = 0 and bit[X] = 0, then r(Y|X = 0) = 0 

 Eqs. (2, 2a, 2b). 
The r[X] value’s collapse to 0 is an artifact of inadequate precision and can be avoided if sufficient 

precision is available, typically by software libraries up to the task. The collapse of r[Y] to zero can be 
either an artifact of inadequate precision or a true value.  

A way to bypass these situations, if the resultant latency is accepted, is to use an interactive decoder 
that will query the encoder for the corresponding bit value whenever a computed r value falls within the 
interval (−δ/2,  δ/2) with an appropriately small value for δ. 

 
2.4 Interactive and Proximate QKD Polar Decoders 

  
As shown in Ref. [7], the QKD polar decoders can, through sampling, collect data and mimic the 

classical polar encoder. Given that the native computer operations and number representations have limited 
precision, two polar-proximate algorithms were investigated herein. The first, P_D in what follows, uses 
limited precision versions of the f and g functions. The second, I_D in what follows, is an interactive 
version of the polar decoder. 

The limited-precision version is based on the idea that the f and g operations will never be allowed to 
return (directly or indirectly) an r value that falls within the interval (−δ, δ). Whenever the r value falls 
within (−δ, δ), the decoder will set r value= −δ, if the computed r value is negative; otherwise, it will set r 
value = δ. 

The I_D version is based on the following ideas: 
1. If the absolute value of the computed r value is sufficiently small, the decoder can ask that the 

corresponding cell’s bit value of the encoder be released. Sufficiently small in the following will 
be mean that the r value falls within (−δ, δ); in what follows, and for reasons listed in Section 4 
δ2 ≤ 1/N.  

2. If the decoder has computed p[k], the probability that the bit value in the kth slot of column 0 is 
0, and p[k] is sufficiently close to 0.0 or to 1.0 we use p[k] to assign a value to the kth slot of the 
encoder. Otherwise, the decoder asks the encoder to reveal the value of the kth bit in column 0. 
Sufficiently close is decided as follows: 
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(a) The decoder has a constant c, c ≤ 0.5, a desired upper bound for the frame error rate, U_FER, 
and a gauge, unused_fer, the starting value of which is U_FER.  

 For k = 0, 1, 2, …, N − 1, 
(b) x = min(c, unused_fer/(N − k));  
(c) if (p[k] > 1 – x), slot k is assigned the value 0, and unused_fer = unused_fer − (1 – x); 
(d) if (p[k] < x),       slot k is assigned the value 1, and unused_fer = unused_fer – x; 
(e) if (x ≤ p[k]≤ 1 −x, the decoder demands that the encoder release the kth bit’s value in column 

0. 
 
The linearity of the encoder implies that any plausible decoder executes clauses 1 and 2 M1 and M2 

times, respectively, M1 + M2 < N. As shown in Sec. 4, if the constant δ is properly chosen, after the M1 
instances of interactivity, Eve’s knowledge will increase by up to M1 bits, while the decoder’s knowledge 
will increase by at least M1-1 bits. The impact of the M2 instances of interactivity in column 0 cannot be 
estimated prior the I_D decoding. Nevertheless, the simulations run suggest that typically M2 ~ 0.12 × (M1 
+ M2). The impact of the M2 instances of interactivity on secrecy can be estimated during the decoding and 
guide the privacy amplification phase of the QKD protocol.  

The simulations of the I_D algorithm suggest that  
• the rules for column 0 are extremely conservative (in the batches run, the observed FER was, as a 

rule, smaller than U_FER/10), and 
• the bulk of interactivity takes place out of column 0.  
 
The following data are indicative of the typical outcome: 
For N = 220, target FER = 0.04, and QBER = 0.04 after 1000 simulations: 
• observed FER = 0;  
• on average, there were 269,367 peeks to encoder’s data (nearest integer), of which 33,664 (nearest 

integer) were in column 0; a perfect scheme would need peek at least 254,062 bit values,  
• the observed γ value was 0.501; the maximum possible γ value is 0.515 (it should be noted that the 

maximum possible γ-values are limits as N tends to infinity.) 
If the latency is not a factor, and the decoder can process the input values as fast as they are collected 

(e.g., by running multiple decoding threads in parallel), the I_D algorithm will outperform the limited-
precision version. If not, one can decide which version of the polar decoder (interactive or classical and 
minimally interactive, as in Ref. [7]), best meets the needs of the QKD system in place.  

In the following, the results collected for the interactive version and will show that even if is not 
retained for operational purposes, it can be used to design efficiently good sets of frozen bits. 

 
 

3. Metrics of Performance 
  
Metrics of performance were presented implicitly and explicitly in Ref. [6], the focus of which was to 

compare the low-density parity-check, LDPC, and the polar codes in the context of QKD reconciliation. 
Obviously, for any QKD implementation, one would like to minimize the latency and maximize the 
number of secret bits produced per unit of time. Given its focus, Ref. [6] proposed the following metrics: 

1. β = K/(N(1 − h(p))), where β shows how near the decoder is to the Shannon limit; and 
2. the expected secrecy (measured in bits) of the decoder’s output per unit of time.  

 
The purpose here is more modest. Since the relevant metrics of an implementation depend on the 

environment, on the expected demands for keys, and on the hardware available (such as the ability to 
efficiently run multiple decoding threads in parallel), attention here is limited to the maximum number of 
secret bits one can produce. The metric, however, should allow direct comparison between algorithms 
using different N values. For this reason, the expected secrecy content per bit processed (γ in what follows) 
is used. As in Ref. [6], the signature_length value is dropped, because when N ≥216, its impact is negligible. 
As a result, if a K/N encoding is used, 
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 γ = (1 − FER)(K/N − h(p)),  

and in the terms of the metrics in Ref. [4],  

 γ = (1 − FER)(β(1 − h(p)) − h(p)). 
 

In what follows, γ as a metric of performance is used, but the U_FER value will also often be reported 
because the (N, QBER, U_FER) triplet guides the choice of the frozen bits and impacts the value of γ. The 
performance profiles reported in Ref. [6], augmented with the corresponding γ values, are as shown in 
Table 1. 

 
Table 1. Performance profiles and corresponding γ values from Ref. [6]. 

 
N QBER β FER γ 
216 0.02 0.935 0.09 0.602 
220 0.02 0.963 0.11 0.610 
224 0.02 0.98 0.08 0.644 

 
Similar results to those of Ref. [6] were reported in Ref. [7], which used a different method for 

choosing the frozen bits and froze more bits (compare the β values) but obtained lower FER rates and 
marginally better yields  

 
Table 2. Performance profiles and corresponding γ-values from Ref. [7].  

 
N QBER β FER γ 
216 0.02 0.93 0.073 0.609 
216 0.04 0.901 0.071 0.409 
216 0.06 0.878 0.068 0.290 
220 0.02 0.962 0.086 0.626 
220 0.04 0.945 0.092 0.430 
220 0.06 0.931 0.092 0.271 

 
 

4. The Impact of Interactivity in the I_D Algorithm 
 
Wikipedia (at https://en.wikipedia.org/wiki/Binary_entropy_function) and Taylor’s theorem, as well, 

inform us that the binary entropy function, Hb(p) = −(p × log2(p) + (1 − p) × log2(1 − p)), is in a 
neighborhood of 1/2 is equal to 
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and given that (1/(2ln(2)) < 1 and that n(2n − 1) ≥1, if −δ ≤ 1 − 2p ≤ δ, an Hb(p) > 1 − δ2/(1 − δ2), it follows 
that if M δ2/(1 − δ2) < 1, and the decoder receives in the clear the values of M bits, the value of which is 
known by the decoder with probability p such that (1 − δ)/2 ≤ p ≤ (1 + δ)/2, then the eavesdropper will 
receive at most M bits of information, and the decoder will receive at least (M – 1) bits of information.. The 
encoding of the polar codes is linear; as a result, any collection of N values in the encoding matrix either 
fully defines the contents of column 0 and of the matrix or are the values of entries that are linearly 
dependent. Therefore, any reasonable decoder will demand the values of M, where M < N, matrix values. 
As a result, if δ ≤ (N − 1)−0.5, and M is as described above, the eavesdropper will receive at most M bits of 
information, and the decoder will receive at least M − 1. 
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5. Interactive Decoder’s Performance 
 
Simulations of the interactive version of the polar decoder produced the following indicative observed 

performance data and corresponding γ_max values (Table 3). The γ_max value, 1 − 2×h(QBER), is the 
theoretical upper limit for γ as N→ +∞ when a good set of frozen bits is used. 
 

Table 3. Indicative observed performance data and corresponding γ_max values. 
 

N, p_rate, U_FER, δ Average peeks to column 0/Average of total peeks f_rate γ γ_max 
216, 0.02, 0.01, 2−8 2 206.670/1085.496 0.000 0.697 0.717 
216, 0.06, 0.01, 2−8 4 274.076/23 667.681 0.001 0.311 0.345 
220, 0.02, 0.01, 2−10 21 776.258/159 517.176 0.000 0.706 0.717 
220, 0.04, 0.01, 2−10 34 677.084/270 380.156 0.000 0.500 0.515 
220, 0.06, 0.01, 2−10 44 613.777/363 029.560 0.000 0.326 0.345 
220, 0.06, 0.20, 2−10 44 613.777/360 421.119 0.000 0.329 0.345 

 
The data in Table 3, collected through groups of 1000 simulations, suggest that good performance 

might be achieved if, at the very beginning of reconciliation, the decoder were given the values in the 
entries that are often the objects of interactive information exchanges. These entries could be anywhere in 
the sender’s polar matrix and would be functionally the equivalent of the frozen bits/entries in the classical 
polar codes. Nevertheless, the raw data suggest that such a set of frozen bits may not exist. As an example, 
after 1000 simulations for the (216, 0.02, 0.01,2-8) profile, the numbers of the observed interactivity 
instances within the ranges 0–0, 1–99, 100–199, 200–299, ..., 900–999, and 1000–1000 were {898 605, 125 
860, 11 128, 5393, 2661, 17 282, 683, 199, 252, 323, 941, 749}. 

It is worth noting, Table 4, that the interactive polar decoding works well for high QBER values, and 
the observed γ value increases as N increases.  

 
Table 4. Performance of interactive decoding for high QBER values. 

 
N QBER U_FER Observed FER γ γ_max 
215 0.08 0.01 0.000 0.1527 0.1956 
217 0.08 0.01 0.000 0.1634 0.1956 
219 0.08 0.01 0.000 0.1717 0.1956 

 
It is also worth noting that the U_FER value is typically a very crude upper bound for the observed 

FER. As an example, for N = 216, QBER = 0.02, and δ = 2−8 1000 simulations were run for each U_FER 
instance and there was a single failure to decode correctly, which was, for U_FER = 0.80.  

 
Table 5. Impact of U_FER on the γ-value. 

 
U_FER Average calls to the encoder Observed γ 

0.02 10 524.735 0.6980 
0.04 10 465.769 0.6989 
0.08 10 403.272 0.6998 
0.20 10 323.062 0.7010 
0.40 10 260.286 0.7020 
0.80 10 200.664 0.7022 

 
 

6. Frozen Bit Sets Discovered Through Limited Precision and Interactivity 
 
There are two reasons why the interactive approach requires less information and exhibits much better 

FER values. The first is that in columns 1 to n − 1, information is demanded when very little information 
for the bit’s value is available. The second reason is the fact that the demands for information are tailored to 
the data received, while the frozen bits’ approach must select a set of frozen bits that will work well with all 
possible error-patterns minus a set of error patterns of probability that does not exceed U_FER.  

Nevertheless, the data suggest that some entries in the decoding matrix are more likely than others to 
be the subject of interactive demands for bit values. One may therefore ask the following questions: 
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• Can the interactive polar decoder provide information that enables the construction of good sets of 
frozen bits? 

• Can the interactive polar decoder provide information that will enable us to improve the polar 
decoder by allowing us, in the QKD context, to mark as frozen entries anywhere in the encoding 
matrix? 

The plausibility of these ideas was tested through decoding algorithm variants that proceeded as 
follows: 

1. The entries of the decoding matrix are classified as frozen (values known prior to decoding), 
known-value (their value can be computed from the frozen bits), or hidden-value. 

2. Simulations are run, and the interactive algorithm is called to retrieve u from the received vector, 
v*. In each decoding instance,  
o The bits in column 0 that demand interactivity are classified as frozen. 
o At the end of each simulation, the bits for which values can be computed from the bits already 

classified as frozen are classified as known-value. 
o For the hidden-value entries, the instances in which the decoder queried the value of the bits 

in question are counted.  
3. Once sufficiently many simulations have been run, the hidden-value bits that have high counts 

(e.g., 80 % of the simulations run in stage 2) are classified as frozen. 
4. A new testing group of simulations is run. Their purpose is to mark as frozen the entries in 

column 0 that demand interactivity and to use the new frozen bits in order to expand the class of 
known-value bits. At this step, the limited-precision versions of the f and g transforms are used, 
and interactivity is used, as needed, only for column 0 entries.  

5. Finally, a group of simulated encoding-transmission-decoding instances is run in order to 
estimate the FER value. 

The simulations run showed that the entries that were promoted from hidden-value to frozen in step 3 
fell in two categories: 

a. If M = 2(n – m) is the smallest integer such that (1 − 2p)M < δ, the N/M entries 0, M, 2M, , ..,, N − M 
of column n − m were marked frozen and remained frozen. Freezing these entries is equivalent to 
freezing the first N/M entries in column 0, i.e. the entries 0, 1, …, N/M -1 of column 0; a property 
that will be used later herein.   

b. Barring the entries in (a) above, the few bits in columns 1 − n that were initially marked frozen 
were eventually reclassified as known-value in step 4 above. 

As a result, three closely connected algorithms were tested G0, G1, and G2, for the purpose of 
developing good sets of frozen entries:  

G0: Bypasses steps 1–3 executes steps 4 and 5.  
G1: Computes M as in (a), freezes the first M points in column 0, and runs steps 4 and 5. 
G2: Computes M, freezes bits 0, M, 2M, 3M, …, N − M in column (n − m), executes steps 4 and 5. 
 
Simulations showed that, as a rule, algorithms G0, G1, and G2 have similar performance levels and the 

performance data for algorithm G1 are used in the following.  The following symbols are used:  
• Md, the numbers of simulations used to design a classical polar code for which the observed FER 

does not exceed U_FER. 
• Me, the number of simulations that will be run to estimate the code’s FER.  
• K*, the number of the frozen bits, and  
• F, the number of the observed decoding failures over Me decoding simulations. 
 
The frozen bits in column #0 are determined through simulations as follows: 
a. If side information is available (see, as an example, algorithm G1), the bits of known value in 

column 0 are marked as frozen.  
b. The algorithm runs Md instances of the P_D version of the classical polar decoder.  
c. Variables unused_fer, x, and p[i] are defined and handled as in the I_D algorithm above; i.e., for i 

= 0, 1,…,N − 1: 
(c1) if p[i] < x, unused_fer = unused_fer − p[i] and the bit-value is set equal to 1; 
(c2) if p[i] >(1 − x, unused_fer = unused_fer − (1 − p[i]) and the bit-value is set equal to 0;. or 
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(c3) if x ≤ p[i] ≤ 1 − x, the ith bit of column 0 is marked as frozen and the correct bit value is 
inserted in the ith entry of column 0. 

 
Table 6 shows the observed performance profiles (frozen bits, failures to decode correctly, γ) over nine 

combinations of (U_FER, Md) while the other inputs (N, QBER, δ, Me) are held fixed and equal to (220, 
0.02, 2−10, 640). We note that 640 simulations for N = 220 required ~15 minutes.  

 
Table 6. Observed performance profiles.  

 
U_FER Md = 160 Md = 320 Md = 640 

0.01 189 749, 6, 0.6712 191 566, 4, 0.6716 193 262, 3, 0.6711 
0.02 189 052, 8, 0.6698 190 843, 4, 0.6723 192 587, 4, 0.6707 
0.04 188 370, 8, 0.6704 190 179, 4, 0.6730 19 1916, 4, 0.6713 
 
These data (and those below) suggest that the search for perfection does not necessarily produce a 

better code. 
In theory, QKD can create secrets, provided that h(QBER) < 0.5. Practice is another matter. If QBER = 

0.11, γ_max ~ 0.00017, and N = 220, γ_max×N ~ 176.25. Practically no algorithm will be able to extract a 
meaningful secret unless it operates with higher N values. For QBER = 0.10, the maximum γ -value is  
1 − 2 × h(QBER) = 0.0620. Table 7 suggests that for high QBER, the better profiles are found when the  
U_ FER parameter is high (even exceeding 1.0) and, as a result, the K/N ratio is, relatively speaking, high 
as well.  

The simulation results cited below were obtained for N = 220, δ = 2−10, QBER = 0.10 (γ_max = 0.0620), 
and Me = 1024.  

 
Table 7. Observed performance profiles. 

 
N = 220, δ = 2−10, QBER = 0.10 K*, observed γ, errors per Me simulations 

U_FER = 0.25, Md = 512 549 574, 0.0068, 14/1024 
U_FER = 0.50, Md = 512 548 673, 0.0076, 17/1024 
U_FER = 0.75, Md = 512 548 155, 0.0081, 19/1024 
U_FER = 0.75, Md = 256 545 795, 0.0101, 39/1024 
U_FER = 1.00, Md = 512 547 797, 0.0084, 20/1024 

 
The simulation data suggest that for high QBER, the better profiles are found when the U_FER value is 

high and/or the design simulations are few. The actual data show that the coarsely derived sets of frozen 
bits perform better because they freeze fewer bits, while the strong FER proportional gains do not result in 
proportionally strong (1 − FER) gains; e.g., 

1. (U_FER = 0.75, Md = 512) will produce on average 
(1 − 19/1024)(N – 548 155 – N × h(0.10)) ~ 8483.1 bits. 

2. (U_FER = 0.75, Md = 256) will produce on average: 
(1 − 39/1024)(N – 545 795 – N × h(0.10)) ~ 10 584.4 bits. 

 
 

7. Appendix A: Basic Properties of the Polar Transform 
 
If u is a vector of N entries, N = 2n, each of which is equal to 0 or 1, and if 
1. ueven and uodd consist, respectively, of the N/2 even/odd indexed entries of u,  
2.  the symbol & represents vector concatenation, and  
3. the symbol PN is the operator that maps u onto u’s polar transform,  

 
the N-point polar transform PN is recursively defined as follows: 

(u0, u1)P2 = (u0⊕ u1, u1)   (3a) 

and  
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uPN = (ueven⊕ uodd)PN/2&uoddPN/2  (3b)  

Obviously, what is defined in Eq. (3) is a recursive transformation that can be implemented as a 
recursive routine.  The tables below, 8 and 9, illustrate the Polar transform, and the “transformation of order 
2” nature of the Polar transform; i.e. that for every bit-vector u of length N, N=2n, (uPN)PN =u.  

 
Table 8. Illustration of the Polar transform.  

 
Col. 0 Col. 1 Col. 2 Col. 3 
u0 u0 ⊕ u1 u0 ⊕ u1 ⊕ u2 ⊕ u3 u*[0] = u0⊕ u1⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5 ⊕ u6 ⊕ u7 
u1  u2⊕ u3 u4 ⊕ u5 ⊕ u6 ⊕ u7 u*[1] = u4 ⊕ u5 ⊕ u6 ⊕ u7 
u2 u4 ⊕ u5 u2 ⊕ u3 u*[2] = u2 ⊕ u3 ⊕ u6 ⊕ u7 
u3 u6 ⊕ u7 u6 ⊕ u7 u*[3] = u6 ⊕ u7 
u4 u1 u1 ⊕ u3 u*[4] = u1⊕ u3 ⊕ u5 ⊕ u7 
u5 u3 u5 ⊕ u7 u*[5] = u5 ⊕ u7 
u6 u5 u3 u*[6] = u3 ⊕ u7 
u7 u7 u7 u*[7] = u7 

 
* The change of color indicates different encoding segments within each column.  
 

Table 9. Illustrating that the Polar transformation is of order 2. 
 

Col. 0 Col. 1 Col. 2 Col. 3 
u*[0] = u over {0,1,2,3, 4,5,6,7} u over {0,1,2,3} u over {0,1} u over {0} 
u*[1] = u over {4,5,6,7} u over {2,3} u over {1}  u over {1} 
u*[2] = u over {2,3,6,7} u over {1,3} u over {2,3} u over {2} 
u*[3] = u over {6,7} u over {3} u over {3} u over {3} 
u*[4] = u over {1,3,5,7} u over {4,5,6,7} u over {4,5} u over {4} 
u*[5] = u over {5,7} u over {6,7} u over {5} u over {5} 
u*[6] = u over {3,7} u over {5,7} u over {6,7} u over {6} 
u*[7] = u over {7} u over {7} u over {7} u over {7} 

 
Nota bene: “vector_name over set S” stands for the “mode(2) sum of the vector_name’s entries whose 
índices are  in S; e.g., ”u over {0,1,2,3, 4,5,6,7}”  stands for u0⊕ u1⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5 ⊕ u6 ⊕ u7   

and “u over {5,7}” stands for u[5] ⊕ u[7]; moreover, we treat  symbols such as  u index and u[index] as 
synonymous. 

 
The reader can observe that the sets of indices in column 0 such those of Table 9, can be found as 

follows: 
 
1. Form the binary expansion of the index. 
2. Reverse the bits of the index. 
3. Form all indices that can be obtained by flipping in all possible ways the 0 bits 

Examples are:  
0000000xyz{0,1,2,3,4,5,6,7}, 10011001yz{4,5,6,7} 
301111011z{6,7} and   4100001xy1{1,3,5,7} 
The same rule applies to the computations of u* from u; i.e., 
u*[0] is the parity of u over {0, 1, 2, … ,7}; u*[1] is the parity of u over {4,5,6,7}; 
u*[3] is the parity of u over {6,7}; u*[4] is the parity of u over {1,3,5,7}. 
 
The entries of Table 8 are also the parities of u over subsets of {0,1,2,…,N-1}.  For N=8, these subsets 

are shown in Table 9, beneath:  
 
The following properties of the polar transform are significant; item 3, in particular, is the foundation 

of the polar decoder and the f/g probability computations: 
1. The PN  transform is its own inverse; i.e., if u is a bit-vector of N entries, and uPN = u*, 

then u*PN = u. 
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2. For j = 0, 1 ,…., n − 1, the j-th column consists of 2j consecutive segments, each of which 
contains M = 2(n − j) bit values. 

3. If the bit values in column j are known, 0 ≤ j < n, the bit-values of column (j + 1) are computed as
follows:
o If X and Y are entries jM + 2t, where 0 ≤t < M/2, and Y = X + 1 in column j, and if X* and Y*

are entries jM + t and X* + M/2 in column j + 1, then, by definition:
 bit[X*] = bit[X] ⊕ bit[Y] and bit[Y*] = bit[Y] (note that 1 ⊕ 1 = 0), and therefore
 bit[X] = bit[X*] ⊕ bit[Y*] and bit[Y] = bit[Y*].

o For any quadruple such as (X, Y, X*, Y*) above and S = {0,1, 2, 3,…,N − 1}, the following
hold:

There are subsets S[X*] and S[Y*] of S such that: 
 S[X*] and S[Y*] have the same cardinality;
 the intersection of S[X*] and S[Y*] is the void set;
 the value bit[X*] is the parity of u* over S[X*], and
 the value bit[Y*] is the parity of u* over S[Y*].
 the QKD polar decoder sees the values sent by the encoder as independent random

variables;
 in the absence of side information, the decoder treats bit[X*] and bit[Y*], the parities of

non-overlapping sets, as independent random variables; and
 the preceding properties are essential for the f and g computations of the polar decoder.
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	1. Introduction
	The polar codes are a class of linear block error-correcting codes transmitted over symmetric binary-input discrete memoryless channels [1, 2, 3]. As their length N, N = 2n, increases, their performance tends to the Shannon limit. Subsequent publications (e.g., [4, 5]) have addressed practical aspects of the polar codes such as the size length, N, of a polar code that can support a specific feasible performance profile and the impact of the available arithmetic precision on the performance of the polar decoder.
	As shown in Refs. [6, 7], the polar codes can be used in the reconciliation stage of the quantum key distribution (QKD) protocol. The QKD protocol [8] creates shared secrets by using a quantum channel for “data” that suffers massive deletions (50 % or more) and high bit-error rates (typically between 1 % and 4%, and in theory as high as 11%) and it resolves the bit-value discrepancies through information exchanged over a classical channel that supports data integrity, origin authentication, and protection against replays. The first sound error-correcting protocol to be used by QKD, Cascade [9, 10], is interactive. 
	Cascade went out of fashion because it was believed that it has latency problems. As a result, the use of other, noninteractive decoding schemes, such as the “Low-density parity-check”, LDPC, code [11–13] and polar codes [1–7] were proposed. It should be noted, however, that Cascade is performing a return [14, 15] and there are claims [15] that Cascade currently has no real latency problems. 
	The objective of the QKD protocol’s reconciliation stage is to correct errors in the quantum channel data in such a way that the expected secrecy yield is as high as possible. This translates into maximizing the following:
	                                     (1 − FER)×(K −N ×h(QBER) − signature_length.
	where K is the number of information bits in the code, QBER is the estimated error rate in the quantum channel, FER is the frame error rate (i.e., the probability of erroneous decoding), signature_length is the length, in bits, of a hash value used to detect incorrect decoding, and h(QBER) is the Shannon entropy. 
	This paper introduces an interactive polar decoder, studies the performance of such a decoder, and shows that such a decoder can efficiently produce good classical polar codes.
	It should be noted that the presented simulation data hold for the QKD protocol and not necessarily for its implementations; the latter must adjust to changes to their environment and parameter values that are variable over time and never fully known.
	The Polar coding/decoding has been described in detail in several papers [1, 2, 5] and we shall assume basic familiarity with the encoding/decoding setup of polar codes. Nevertheless, we do provide an appendix that presents a description of the polar transform and we summarize the parts of the polar encoding and decoding processes that are directly linked to the error correction in general, and in particular to the alternatives studied herein. 
	2.1 The Encoder

	The encoder accepts a bit-string, u, of length N, N = 2n, the values of which are stored in the N entries of the 0th column of a N × (n + 1) matrix (this paper follows the programming convention that all indices start with the value 0). The following hold for the encoding matrix and its contents:
	 There is a subset of {0, 1,…,N − 1}, known as the frozen bits, such that the values of u over the frozen-bits are known prior to decoding. The performance of the polar decoding depends on the choice of the frozen bits’ locations, not on their bit values. 
	 For m = 0, 1, 2, …, n, the encoder views the mth column as a sequence of 2m segments of 2(n − m) bit slots. 
	 If (X, Y) are the slots (2s, 2s+1) of column m and the slots (2t, 2t + 1) of the kth segment, where  k = 0, 1,…,2(n − m) − 1, in column m, then 2s = k2(n − m) + 2t. 
	o The polar encoder will store bit[X]⊕ bit[Y] and bit[Y] in slots X* and Y* of the (m + 1)th column, with X*= k2(n − m) + t and Y*= X* + 2(n − m − 1).
	o If X, Y, X*, and Y* are as above, knowledge of the location of any one of them fully defines the quadruple (X, Y, X*, Y*).
	The following property of the polar codes is critical for the polar decoder:
	  If u* is the bit-vector in column n (i.e., u* is the polar encoding of u), then
	 bit[X*] and bit[Y*] are the parities of u* over nonintersecting subsets of {0,1,2,…,N − 1}, S[X*] and S[Y*], which have the same cardinality.
	 In the absence of side information, bit[X*] and bit[Y*] are independent variables (hence the f-transform below).
	 S[X] = is the union of S[X*] and S[Y*], and S[Y] = S[Y*].
	 If a value has been assigned to bit[X], bit[X*] and bit[Y*] cease to be independent (hence the g-transform below). 
	2.2 The Decoder

	The decoder creates an N × (n+1) matrix, the entries of which can hold a real number; the probability, or an equivalent parameter, that the corresponding slot of the encoder holds the value 0. What follows shows that unless one is careful, the computer may compute probabilities that convey little information or even none. The polar decoder functions as follows:
	1. If p is the estimated QBER value, u* is the bit vector sent, and v* is the bit vector received, the probability that u*[i] = 0, p[n, i], equals 1 − p if v*[i] = 0 and p otherwise.
	2. When the probabilities p[X*] and p[Y*] have been computed, the decoder will, unless side information is available, compute p[X] through the f-transform: 
	         p[X] = f(p[X*],p[Y*]) = p[X*]p[Y*] + (1 − p[X*])(1 − p[Y*]). (1)
	3. When probabilities p[X*] and p[Y*] have been computed and a bit value has been assigned to entry X, the decoder will, unless additional side information is available, compute p(bit[Y] = 0|bit[X]) through the g-transform as follows:
	         If (bit[X] = 0), p[Y] = p[X*]×p[Y*]/f(p[X*],p[Y*]). (1a) 
	         If (bit[X] = 1), p[Y] = (1 − p[X*])×p[Y*]/(1 − f(p[X*],p[Y*])).  (1b)
	2.3 The r Parameter

	In the following the parameter r[Z] = 1-2×p(Z = 0)  (hence p(Z = 0) = (1 + r[Z])/2) is used because this parameter shows more clearly how and why some computed probabilities tend to cluster around 0.5 (i.e., the corresponding r value is close to 0). In terms of the r parameter, the formulae (1), (1a), and (1b) become 
	r[X] = r[X*]×r[Y*],    (2)
	r(Y|X = 0) = (r[X*] + r[Y*])/(1 + r[X*]×r[Y*])  (2a)
	r(Y|X = 1) = (r[Y*] − r[X*])/(1 − r[X*]r[Y*]).  (2b)
	Note: In the rare instance that the product r[X*]r[Y*] is equal to 1 or −1, the values of X* and Y* are       known, and the same holds for X and Y.
	If r = 1– 2×QBER, the probabilities assigned to the entries of column n are (1 + r)/2, if entries v*[i] = 0, and (1 − r)/2 otherwise. In the following, unless otherwise stated, it is assumed that the decoder works with the r values.
	Note that:
	1. If slot X is in column n − m, m = 1, 2,…,n  and p[X] is computed exclusively through f-operations, p[X] will be equal either to (1 + rM)/2 or to (1 − rM)/2 with M = 2m.
	2. If a bit value has been assigned to X in column n − m, and the probabilities p[X*] and p[Y*] have been computed exclusively through f-operations, then the g-operation for Y will return the value 0.5 with probability exceeding (1 − uM)/2. Indeed, either r[X*] = r[Y*], with probability (1 + rM)/2, or r[X*] + r[Y*] = 0, with probability (1 − rM)/2). As a result,
	o if r[X*] = r[Y*] and bit[X] = 1, then r(Y|X = 1) = 0, and 
	o if r[X*] + r[Y*] = 0 and bit[X] = 0, then r(Y|X = 0) = 0
	 Eqs. (2, 2a, 2b).
	The r[X] value’s collapse to 0 is an artifact of inadequate precision and can be avoided if sufficient precision is available, typically by software libraries up to the task. The collapse of r[Y] to zero can be either an artifact of inadequate precision or a true value. 
	A way to bypass these situations, if the resultant latency is accepted, is to use an interactive decoder that will query the encoder for the corresponding bit value whenever a computed r value falls within the interval (−δ/2,  δ/2) with an appropriately small value for δ.
	2.4 Interactive and Proximate QKD Polar Decoders

	As shown in Ref. [7], the QKD polar decoders can, through sampling, collect data and mimic the classical polar encoder. Given that the native computer operations and number representations have limited precision, two polar-proximate algorithms were investigated herein. The first, P_D in what follows, uses limited precision versions of the f and g functions. The second, I_D in what follows, is an interactive version of the polar decoder.
	The limited-precision version is based on the idea that the f and g operations will never be allowed to return (directly or indirectly) an r value that falls within the interval (−δ, δ). Whenever the r value falls within (−δ, δ), the decoder will set r value= −δ, if the computed r value is negative; otherwise, it will set r value = δ.
	The I_D version is based on the following ideas:
	1. If the absolute value of the computed r value is sufficiently small, the decoder can ask that the corresponding cell’s bit value of the encoder be released. Sufficiently small in the following will be mean that the r value falls within (−δ, δ); in what follows, and for reasons listed in Section 4 δ2 ≤ 1/N. 
	2. If the decoder has computed p[k], the probability that the bit value in the kth slot of column 0 is 0, and p[k] is sufficiently close to 0.0 or to 1.0 we use p[k] to assign a value to the kth slot of the encoder. Otherwise, the decoder asks the encoder to reveal the value of the kth bit in column 0. Sufficiently close is decided as follows:
	(a) The decoder has a constant c, c ≤ 0.5, a desired upper bound for the frame error rate, U_FER, and a gauge, unused_fer, the starting value of which is U_FER. 
	 For k = 0, 1, 2, …, N − 1,
	(b) x = min(c, unused_fer/(N − k)); 
	(c) if (p[k] > 1 – x), slot k is assigned the value 0, and unused_fer = unused_fer − (1 – x);
	(d) if (p[k] < x),       slot k is assigned the value 1, and unused_fer = unused_fer – x;
	(e) if (x ≤ p[k]≤ 1 −x, the decoder demands that the encoder release the kth bit’s value in column 0.
	The linearity of the encoder implies that any plausible decoder executes clauses 1 and 2 M1 and M2 times, respectively, M1 + M2 < N. As shown in Sec. 4, if the constant δ is properly chosen, after the M1 instances of interactivity, Eve’s knowledge will increase by up to M1 bits, while the decoder’s knowledge will increase by at least M1-1 bits. The impact of the M2 instances of interactivity in column 0 cannot be estimated prior the I_D decoding. Nevertheless, the simulations run suggest that typically M2 ~ 0.12 × (M1 + M2). The impact of the M2 instances of interactivity on secrecy can be estimated during the decoding and guide the privacy amplification phase of the QKD protocol. 
	The simulations of the I_D algorithm suggest that 
	 the rules for column 0 are extremely conservative (in the batches run, the observed FER was, as a rule, smaller than U_FER/10), and
	 the bulk of interactivity takes place out of column 0. 
	The following data are indicative of the typical outcome:
	For N = 220, target FER = 0.04, and QBER = 0.04 after 1000 simulations:
	 observed FER = 0; 
	 on average, there were 269,367 peeks to encoder’s data (nearest integer), of which 33,664 (nearest integer) were in column 0; a perfect scheme would need peek at least 254,062 bit values, 
	 the observed γ value was 0.501; the maximum possible γ value is 0.515 (it should be noted that the maximum possible γ-values are limits as N tends to infinity.)
	If the latency is not a factor, and the decoder can process the input values as fast as they are collected (e.g., by running multiple decoding threads in parallel), the I_D algorithm will outperform the limited-precision version. If not, one can decide which version of the polar decoder (interactive or classical and minimally interactive, as in Ref. [7]), best meets the needs of the QKD system in place. 
	In the following, the results collected for the interactive version and will show that even if is not retained for operational purposes, it can be used to design efficiently good sets of frozen bits.
	3. Metrics of Performance
	Metrics of performance were presented implicitly and explicitly in Ref. [6], the focus of which was to compare the low-density parity-check, LDPC, and the polar codes in the context of QKD reconciliation. Obviously, for any QKD implementation, one would like to minimize the latency and maximize the number of secret bits produced per unit of time. Given its focus, Ref. [6] proposed the following metrics:
	1. β = K/(N(1 − h(p))), where β shows how near the decoder is to the Shannon limit; and
	2. the expected secrecy (measured in bits) of the decoder’s output per unit of time. 
	The purpose here is more modest. Since the relevant metrics of an implementation depend on the environment, on the expected demands for keys, and on the hardware available (such as the ability to efficiently run multiple decoding threads in parallel), attention here is limited to the maximum number of secret bits one can produce. The metric, however, should allow direct comparison between algorithms using different N values. For this reason, the expected secrecy content per bit processed (γ in what follows) is used. As in Ref. [6], the signature_length value is dropped, because when N ≥216, its impact is negligible. As a result, if a K/N encoding is used,
	 γ = (1 − FER)(K/N − h(p)), 
	and in the terms of the metrics in Ref. [4], 
	 γ = (1 − FER)(β(1 − h(p)) − h(p)).
	In what follows, γ as a metric of performance is used, but the U_FER value will also often be reported because the (N, QBER, U_FER) triplet guides the choice of the frozen bits and impacts the value of γ. The performance profiles reported in Ref. [6], augmented with the corresponding γ values, are as shown in Table 1.
	Table 1. Performance profiles and corresponding γ values from Ref. [6].
	N
	QBER
	β
	FER
	γ
	216
	0.02
	0.935
	0.09
	0.602
	220
	0.02
	0.963
	0.11
	0.610
	224
	0.02
	0.98
	0.08
	0.644
	Similar results to those of Ref. [6] were reported in Ref. [7], which used a different method for choosing the frozen bits and froze more bits (compare the β values) but obtained lower FER rates and marginally better yields 
	Table 2. Performance profiles and corresponding γ-values from Ref. [7]. 
	N
	QBER
	β
	FER
	γ
	216
	0.02
	0.93
	0.073
	0.609
	216
	0.04
	0.901
	0.071
	0.409
	216
	0.06
	0.878
	0.068
	0.290
	220
	0.02
	0.962
	0.086
	0.626
	220
	0.04
	0.945
	0.092
	0.430
	220
	0.06
	0.931
	0.092
	0.271
	4. The Impact of Interactivity in the I_D Algorithm
	Wikipedia (at https://en.wikipedia.org/wiki/Binary_entropy_function) and Taylor’s theorem, as well, inform us that the binary entropy function, Hb(p) = −(p × log2(p) + (1 − p) × log2(1 − p)), is in a neighborhood of 1/2 is equal to
	and given that (1/(2ln(2)) < 1 and that n(2n − 1) ≥1, if −δ ≤ 1 − 2p ≤ δ, an Hb(p) > 1 − δ2/(1 − δ2), it follows that if M δ2/(1 − δ2) < 1, and the decoder receives in the clear the values of M bits, the value of which is known by the decoder with probability p such that (1 − δ)/2 ≤ p ≤ (1 + δ)/2, then the eavesdropper will receive at most M bits of information, and the decoder will receive at least (M – 1) bits of information.. The encoding of the polar codes is linear; as a result, any collection of N values in the encoding matrix either fully defines the contents of column 0 and of the matrix or are the values of entries that are linearly dependent. Therefore, any reasonable decoder will demand the values of M, where M < N, matrix values. As a result, if δ ≤ (N − 1)−0.5, and M is as described above, the eavesdropper will receive at most M bits of information, and the decoder will receive at least M − 1.
	5. Interactive Decoder’s Performance
	Simulations of the interactive version of the polar decoder produced the following indicative observed performance data and corresponding γ_max values (Table 3). The γ_max value, 1 − 2×h(QBER), is the theoretical upper limit for γ as N→ +∞ when a good set of frozen bits is used.
	Table 3. Indicative observed performance data and corresponding γ_max values.
	N, p_rate, U_FER, δ
	Average peeks to column 0/Average of total peeks
	f_rate
	γ
	γ_max
	216, 0.02, 0.01, 2−8
	2 206.670/1085.496
	0.000
	0.697
	0.717
	216, 0.06, 0.01, 2−8
	4 274.076/23 667.681
	0.001
	0.311
	0.345
	220, 0.02, 0.01, 2−10
	21 776.258/159 517.176
	0.000
	0.706
	0.717
	220, 0.04, 0.01, 2−10
	34 677.084/270 380.156
	0.000
	0.500
	0.515
	220, 0.06, 0.01, 2−10
	44 613.777/363 029.560
	0.000
	0.326
	0.345
	220, 0.06, 0.20, 2−10
	44 613.777/360 421.119
	0.000
	0.329
	0.345
	The data in Table 3, collected through groups of 1000 simulations, suggest that good performance might be achieved if, at the very beginning of reconciliation, the decoder were given the values in the entries that are often the objects of interactive information exchanges. These entries could be anywhere in the sender’s polar matrix and would be functionally the equivalent of the frozen bits/entries in the classical polar codes. Nevertheless, the raw data suggest that such a set of frozen bits may not exist. As an example, after 1000 simulations for the (216, 0.02, 0.01,2-8) profile, the numbers of the observed interactivity instances within the ranges 0–0, 1–99, 100–199, 200–299, ..., 900–999, and 1000–1000 were {898 605, 125 860, 11 128, 5393, 2661, 17 282, 683, 199, 252, 323, 941, 749}.
	It is worth noting, Table 4, that the interactive polar decoding works well for high QBER values, and the observed γ value increases as N increases. 
	Table 4. Performance of interactive decoding for high QBER values.
	N
	QBER
	U_FER
	Observed FER
	γ
	γ_max
	215
	0.08
	0.01
	0.000
	0.1527
	0.1956
	217
	0.08
	0.01
	0.000
	0.1634
	0.1956
	219
	0.08
	0.01
	0.000
	0.1717
	0.1956
	It is also worth noting that the U_FER value is typically a very crude upper bound for the observed FER. As an example, for N = 216, QBER = 0.02, and δ = 2−8 1000 simulations were run for each U_FER instance and there was a single failure to decode correctly, which was, for U_FER = 0.80. 
	Table 5. Impact of U_FER on the γ-value.
	U_FER
	Average calls to the encoder
	Observed γ
	0.02
	10 524.735
	0.6980
	0.04
	10 465.769
	0.6989
	0.08
	10 403.272
	0.6998
	0.20
	10 323.062
	0.7010
	0.40
	10 260.286
	0.7020
	0.80
	10 200.664
	0.7022
	6. Frozen Bit Sets Discovered Through Limited Precision and Interactivity
	There are two reasons why the interactive approach requires less information and exhibits much better FER values. The first is that in columns 1 to n − 1, information is demanded when very little information for the bit’s value is available. The second reason is the fact that the demands for information are tailored to the data received, while the frozen bits’ approach must select a set of frozen bits that will work well with all possible error-patterns minus a set of error patterns of probability that does not exceed U_FER. 
	Nevertheless, the data suggest that some entries in the decoding matrix are more likely than others to be the subject of interactive demands for bit values. One may therefore ask the following questions:
	 Can the interactive polar decoder provide information that enables the construction of good sets of frozen bits?
	 Can the interactive polar decoder provide information that will enable us to improve the polar decoder by allowing us, in the QKD context, to mark as frozen entries anywhere in the encoding matrix?
	The plausibility of these ideas was tested through decoding algorithm variants that proceeded as follows:
	1. The entries of the decoding matrix are classified as frozen (values known prior to decoding), known-value (their value can be computed from the frozen bits), or hidden-value.
	2. Simulations are run, and the interactive algorithm is called to retrieve u from the received vector, v*. In each decoding instance, 
	o The bits in column 0 that demand interactivity are classified as frozen.
	o At the end of each simulation, the bits for which values can be computed from the bits already classified as frozen are classified as known-value.
	o For the hidden-value entries, the instances in which the decoder queried the value of the bits in question are counted. 
	3. Once sufficiently many simulations have been run, the hidden-value bits that have high counts (e.g., 80 % of the simulations run in stage 2) are classified as frozen.
	4. A new testing group of simulations is run. Their purpose is to mark as frozen the entries in column 0 that demand interactivity and to use the new frozen bits in order to expand the class of known-value bits. At this step, the limited-precision versions of the f and g transforms are used, and interactivity is used, as needed, only for column 0 entries. 
	5. Finally, a group of simulated encoding-transmission-decoding instances is run in order to estimate the FER value.
	The simulations run showed that the entries that were promoted from hidden-value to frozen in step 3 fell in two categories:
	a. If M = 2(n – m) is the smallest integer such that (1 − 2p)M < δ, the N/M entries 0, M, 2M, , ..,, N − M of column n − m were marked frozen and remained frozen. Freezing these entries is equivalent to freezing the first N/M entries in column 0, i.e. the entries 0, 1, …, N/M -1 of column 0; a property that will be used later herein.  
	b. Barring the entries in (a) above, the few bits in columns 1 − n that were initially marked frozen were eventually reclassified as known-value in step 4 above.
	As a result, three closely connected algorithms were tested G0, G1, and G2, for the purpose of developing good sets of frozen entries: 
	G0: Bypasses steps 1–3 executes steps 4 and 5. 
	G1: Computes M as in (a), freezes the first M points in column 0, and runs steps 4 and 5.
	G2: Computes M, freezes bits 0, M, 2M, 3M, …, N − M in column (n − m), executes steps 4 and 5.
	Simulations showed that, as a rule, algorithms G0, G1, and G2 have similar performance levels and the performance data for algorithm G1 are used in the following.  The following symbols are used: 
	 Md, the numbers of simulations used to design a classical polar code for which the observed FER does not exceed U_FER.
	 Me, the number of simulations that will be run to estimate the code’s FER. 
	 K*, the number of the frozen bits, and 
	 F, the number of the observed decoding failures over Me decoding simulations.
	The frozen bits in column #0 are determined through simulations as follows:
	a. If side information is available (see, as an example, algorithm G1), the bits of known value in column 0 are marked as frozen. 
	b. The algorithm runs Md instances of the P_D version of the classical polar decoder. 
	c. Variables unused_fer, x, and p[i] are defined and handled as in the I_D algorithm above; i.e., for i = 0, 1,…,N − 1:
	(c1) if p[i] < x, unused_fer = unused_fer − p[i] and the bit-value is set equal to 1;
	(c2) if p[i] >(1 − x, unused_fer = unused_fer − (1 − p[i]) and the bit-value is set equal to 0;. or
	(c3) if x ≤ p[i] ≤ 1 − x, the ith bit of column 0 is marked as frozen and the correct bit value is inserted in the ith entry of column 0.
	Table 6 shows the observed performance profiles (frozen bits, failures to decode correctly, γ) over nine combinations of (U_FER, Md) while the other inputs (N, QBER, δ, Me) are held fixed and equal to (220, 0.02, 2−10, 640). We note that 640 simulations for N = 220 required ~15 minutes. 
	Table 6. Observed performance profiles. 
	U_FER
	Md = 160
	Md = 320
	Md = 640
	0.01
	189 749, 6, 0.6712
	191 566, 4, 0.6716
	193 262, 3, 0.6711
	0.02
	189 052, 8, 0.6698
	190 843, 4, 0.6723
	192 587, 4, 0.6707
	0.04
	188 370, 8, 0.6704
	190 179, 4, 0.6730
	19 1916, 4, 0.6713
	These data (and those below) suggest that the search for perfection does not necessarily produce a better code.
	In theory, QKD can create secrets, provided that h(QBER) < 0.5. Practice is another matter. If QBER = 0.11, γ_max ~ 0.00017, and N = 220, γ_max×N ~ 176.25. Practically no algorithm will be able to extract a meaningful secret unless it operates with higher N values. For QBER = 0.10, the maximum γ -value is 1 − 2 × h(QBER) = 0.0620. Table 7 suggests that for high QBER, the better profiles are found when the U_ FER parameter is high (even exceeding 1.0) and, as a result, the K/N ratio is, relatively speaking, high as well. 
	The simulation results cited below were obtained for N = 220, δ = 2−10, QBER = 0.10 (γ_max = 0.0620), and Me = 1024. 
	Table 7. Observed performance profiles.
	N = 220, δ = 2−10, QBER = 0.10
	K*, observed γ, errors per Me simulations
	U_FER = 0.25, Md = 512
	549 574, 0.0068, 14/1024
	U_FER = 0.50, Md = 512
	548 673, 0.0076, 17/1024
	U_FER = 0.75, Md = 512
	548 155, 0.0081, 19/1024
	U_FER = 0.75, Md = 256
	545 795, 0.0101, 39/1024
	U_FER = 1.00, Md = 512
	547 797, 0.0084, 20/1024
	The simulation data suggest that for high QBER, the better profiles are found when the U_FER value is high and/or the design simulations are few. The actual data show that the coarsely derived sets of frozen bits perform better because they freeze fewer bits, while the strong FER proportional gains do not result in proportionally strong (1 − FER) gains; e.g.,
	1. (U_FER = 0.75, Md = 512) will produce on average(1 − 19/1024)(N – 548 155 – N × h(0.10)) ~ 8483.1 bits.
	2. (U_FER = 0.75, Md = 256) will produce on average:(1 − 39/1024)(N – 545 795 – N × h(0.10)) ~ 10 584.4 bits.
	7. Appendix A: Basic Properties of the Polar Transform
	If u is a vector of N entries, N = 2n, each of which is equal to 0 or 1, and if
	1. ueven and uodd consist, respectively, of the N/2 even/odd indexed entries of u, 
	2.  the symbol & represents vector concatenation, and 
	3. the symbol PN is the operator that maps u onto u’s polar transform, 
	the N-point polar transform PN is recursively defined as follows:
	(u0, u1)P2 = (u0⊕ u1, u1)   (3a)
	and 
	uPN = (ueven⊕ uodd)PN/2&uoddPN/2  (3b) 
	Obviously, what is defined in Eq. (3) is a recursive transformation that can be implemented as a recursive routine.  The tables below, 8 and 9, illustrate the Polar transform, and the “transformation of order 2” nature of the Polar transform; i.e. that for every bit-vector u of length N, N=2n, (uPN)PN =u. 
	Table 8. Illustration of the Polar transform. 
	Col. 0
	Col. 1
	Col. 2
	Col. 3
	u0
	u0 ⊕ u1
	u0 ⊕ u1 ⊕ u2 ⊕ u3
	u*[0] = u0⊕ u1⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5 ⊕ u6 ⊕ u7
	u1
	 u2⊕ u3
	u4 ⊕ u5 ⊕ u6 ⊕ u7
	u*[1] = u4 ⊕ u5 ⊕ u6 ⊕ u7
	u2
	u4 ⊕ u5
	u2 ⊕ u3
	u*[2] = u2 ⊕ u3 ⊕ u6 ⊕ u7
	u3
	u6 ⊕ u7
	u6 ⊕ u7
	u*[3] = u6 ⊕ u7
	u4
	u1
	u1 ⊕ u3
	u*[4] = u1⊕ u3 ⊕ u5 ⊕ u7
	u5
	u3
	u5 ⊕ u7
	u*[5] = u5 ⊕ u7
	u6
	u5
	u3
	u*[6] = u3 ⊕ u7
	u7
	u7
	u7
	u*[7] = u7
	* The change of color indicates different encoding segments within each column. 
	Table 9. Illustrating that the Polar transformation is of order 2.
	Col. 0
	Col. 1
	Col. 2
	Col. 3
	u*[0] = u over {0,1,2,3, 4,5,6,7}
	u over {0,1,2,3}
	u over {0,1}
	u over {0}
	u*[1] = u over {4,5,6,7}
	u over {2,3}
	u over {1} 
	u over {1}
	u*[2] = u over {2,3,6,7}
	u over {1,3}
	u over {2,3}
	u over {2}
	u*[3] = u over {6,7}
	u over {3}
	u over {3}
	u over {3}
	u*[4] = u over {1,3,5,7}
	u over {4,5,6,7}
	u over {4,5}
	u over {4}
	u*[5] = u over {5,7}
	u over {6,7}
	u over {5}
	u over {5}
	u*[6] = u over {3,7}
	u over {5,7}
	u over {6,7}
	u over {6}
	u*[7] = u over {7}
	u over {7}
	u over {7}
	u over {7}
	Nota bene: “vector_name over set S” stands for the “mode(2) sum of the vector_name’s entries whose índices are  in S; e.g., ”u over {0,1,2,3, 4,5,6,7}”  stands for u0⊕ u1⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5 ⊕ u6 ⊕ u7  
	and “u over {5,7}” stands for u[5] ⊕ u[7]; moreover, we treat  symbols such as  uindex and u[index] as synonymous.
	The reader can observe that the sets of indices in column 0 such those of Table 9, can be found as follows:
	1. Form the binary expansion of the index.
	2. Reverse the bits of the index.
	3. Form all indices that can be obtained by flipping in all possible ways the 0 bits
	Examples are: 
	0(000(000(xyz({0,1,2,3,4,5,6,7}, 1(001(100(1yz({4,5,6,7}
	3(011(110(11z({6,7} and   4(100(001(xy1({1,3,5,7}
	The same rule applies to the computations of u* from u; i.e.,
	u*[0] is the parity of u over {0, 1, 2, … ,7}; u*[1] is the parity of u over {4,5,6,7};
	u*[3] is the parity of u over {6,7}; u*[4] is the parity of u over {1,3,5,7}.
	The entries of Table 8 are also the parities of u over subsets of {0,1,2,…,N-1}.  For N=8, these subsets are shown in Table 9, beneath: 
	The following properties of the polar transform are significant; item 3, in particular, is the foundation of the polar decoder and the f/g probability computations:
	1. The PN  transform is its own inverse; i.e., if u is a bit-vector of N entries, and uPN = u*,
	then u*PN = u.
	2. For j = 0, 1 ,…., n − 1, the j-th column consists of 2j consecutive segments, each of which contains M = 2(n − j) bit values. 
	3. If the bit values in column j are known, 0 ≤ j < n, the bit-values of column (j + 1) are computed as follows:
	o If X and Y are entries jM + 2t, where 0 ≤t < M/2, and Y = X + 1 in column j, and if X* and Y* are entries jM + t and X* + M/2 in column j + 1, then, by definition: 
	 bit[X*] = bit[X] ⊕ bit[Y] and bit[Y*] = bit[Y] (note that 1 ⊕ 1 = 0), and therefore
	 bit[X] = bit[X*] ⊕ bit[Y*] and bit[Y] = bit[Y*].
	o For any quadruple such as (X, Y, X*, Y*) above and S = {0,1, 2, 3,…,N − 1}, the following hold:
	There are subsets S[X*] and S[Y*] of S such that: 
	 S[X*] and S[Y*] have the same cardinality;
	 the intersection of S[X*] and S[Y*] is the void set;
	 the value bit[X*] is the parity of u* over S[X*], and 
	 the value bit[Y*] is the parity of u* over S[Y*].
	 the QKD polar decoder sees the values sent by the encoder as independent random variables;
	 in the absence of side information, the decoder treats bit[X*] and bit[Y*], the parities of non-overlapping sets, as independent random variables; and
	 the preceding properties are essential for the f and g computations of the polar decoder.
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