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1. Summary

We present a software package aimed at simulating photon-number probability distributions of a range
of classical and non-classical states of light. This software can generate arbitrary probability distributions 
from user-defined mode structure of a light field. It can also solve the reverse problem, i.e., reconstructing 
the mode structure of a light field from a given probability distribution. The mode structure fully defines a 
light field. Thus it provides information about the source of light without having to directly access the 
source. The multimode fields simulated by this software include those comprised of a number of thermal 
modes, a Poisson mode, and single-photon modes. In addition, conjugated multimode sources (such as those 
created via parametric downconversion (PDC) or four-wave mixing (FWM)) can be simulated. This 
software provides for a nearly-perfect reconstruction of multimode fields comprised of several correlated 
and uncorrelated thermal and Poisson modes. The code is particularly effective at characterizing mesoscopic 
quantum states of light. This software can be modified to include other types of modes (i.e., governed by 
other statistical distributions), as needed. 
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2. Software Specifications

NIST Operating Unit Physical Measurement Laboratory, Quantum Measurement Division, Quantum 
Optics Group 

Category Evaluation of probability distributions. Designed to pair with 
Levenberg-Marquardt non-linear fitting algorithm. 

Operating Systems Generation: Any OS 
Reconstruction: Any OS supporting GNU Scientific Library 

Programming Language C 

Inputs/Outputs 

Generation: 
number and population of light modes of simulated light source/ Square JPD 
matrix as a column of double numbers ASCII format file 
Reconstruction: 
Square JPD matrix as a column of double numbers ASCII format file and an 
initial guess for a fitting algorithm/ populations of light modes of used for light 
source reconstruction 

Documentation Source code and binaries: https://github.com/usnistgov/FSMR 

Disclaimer https://www.nist.gov/disclaimer 

3. Methods

Using statistical approaches for complex system analysis is a powerful, broadly applicable technique.
More specifically, basic sub-systems comprising an object under investigation can be identified by their 
contribution to that object’s statistical properties. We find that this idea works well for mesoscopic and 
macroscopic states of light [1, 2]. Using the measured photon number statistics of such a state of light, we 
extract the contributions of its elementary sub-processes, i.e., its constituent optical modes. 

In the simplest case of a multimode light field, all the modes are independent; we refer to this type of 
light source as an uncorrelated light source (ULS). There, however, are particular types of light sources with 
highly dependent modes. For example, there are sources that generate photons in pairs into separate modes. 
These sources provide a correlated contribution to their photon statistics. We refer to this type of a light 
source as conjugated light source (CLS). These two types of multimode fields cover a large class of classical 
and non-classical sources important in quantum optics. We introduce statistical mode decomposition 
methods for both types of sources. First, we consider a ULS comprised of one or more modes. In this case, 
light sources are described by a one-dimensional photon number distribution (PND) expressed as a series of 
probabilities P(M), where M is the number of photons in the field. Typically, a PND P(M) can be measured 
directly. The PND contains the information about underlying modes [1]. Second, we extend our method to 
CLS that generate two correlated beams (called signal and idler for historical reasons). Such sources are 
described by a two-dimensional joint probability distribution (JPD) P(ns, ni), i.e., probabilities to get ns and 
ni photons in the signal and the idler arms correspondingly, also accessible through an experiment. Just like 
in the case of the PND, the JPD contains rich information about the underlying modes and their correlations 
[2]. Our software builds PNDs and JPDs of multimode fields from statistical distributions of elementary 
modes and includes losses. We also implement the reverse algorithm: i.e., finding elementary modes and 
loss (efficiency) coefficients from a PND or a JPD. 
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3.1 Photon Number Distribution of a Multimode Uncorrelated Light Source 

Consider the lossless case of a multimode ULS first. The probability to generate k photons in a mode 
pµ (k) is governed by that mode’s statistics and its mean photon number µ . As defined, the modes are 
independent. Therefore, the probability to simultaneously generate k j photons in each mode j is given by 
the product of the probabilities: 

P(k1, ...k j...) = ∏
pµ j (k j).
j 

We are interested in finding a probability of generating a total of M photons. The additive rule for a 
probability of mutually exclusive events gives: 

P(M) = ∏
∑
 pµ j (k j). (1) 
∑ k j=M j 

In quantum optics losses are modeled as a beam splitter operator acting on a state [3]. Thus, loss factors L 
can be written in form of binomial coefficients Ln,k(η) = ηn(1 − η)k−nk!/((k − n)!n!), where η is an 
efficiency coefficient that includes propagation losses and detection efficiency (beam splitter transmittance), 
k is the number of impinging photons, and n is the number of photons at the output of this beam splitter. 

∞

∑
k M= 

∑
Σk j=k 

Σm j =M 

PoisNote that loss applied to photon states represented by Poissonian pµ (k) = exp(−µ)µk/k!, Binomial
SP SP SP Thermpµ (0) = (1 − µ); pµ (1) = µ; pµ (k > 1) = 0 or Bose-Einstein pµ (k) = µk/(1 + µ)k+1 statistics does

not change statistics [3]. For these states, the mean photon number simply gets reduced by an efficiency 
coefficient η . This property allows the introduction of adjusted mean photon numbers for uncorrelated 
modes, µ̃ j = ηµ j, significantly simplifying the master equation set: 

∏
P(M) = pµ j (k j)Lm j ,k j (η j). (2) 
j 

P(M) = ∏
∑
 pµ̃ j (k j), (3) 
∑ k j=M j 

Note that Eq. (1) is mathematically identical to Eq. (3). Therefore, for our types of statistics, losses cannot 
be extracted from ULS PNDs. Thus, losses are not separately considered. 

3.1.1 PND Generation 

To generate a PND from a known set of modes call a C function defined in file func.c:
 

i n l i n e i n t g e n r p d z ( d ou b l e ∗ x i n i t , i n t ∗ pp , i n t nn , d ou b l e ∗ z ) ;
 

where pp[3]= {nT , nSP, nP} is the vector containing the number of modes of all three types (Thermal,
 
Single Photon, Poisson);
 
p=pp[0]+pp[1]+pp[2] is the total number of modes;
 
*x_init is the vector of mode occupations (average photons per mode per observation time bin) of length p;
nn is the length of PND (or the maximal photon number plus one);
*z is the PND array of length nn.

Example: To generate a PND for the first 50 photon number states of ULS, comprised of three thermal
 
and one Poisson modes with the average numbers of photons µT = 5, µT = 3, µT = 1, µP = 2.5, use the1 2 3 4 
following C code: 
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# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e <s t r i n g . h>
# i n c l u d e <math . h>

# i n c l u d e ” fu nc . c ”

i n t main ( ) {
i n t i ;
i n t pp [ 3 ] ={3 , 0 , 1} ;
i n t p = pp [ 0 ] + pp [ 1 ] + pp [ 2 ] ;
i n t nn =50;
do ub l e ∗ x i n i t = ( d o ub l e ∗ ) ma l l oc ( p∗ s i z e o f ( d o u b l e ) ) ;
x i n i t ={5 .0 , 3 . 0 , 1 . 0 , 2 . 5} ;
do ub l e ∗z = ( d o u b l e ∗ ) ma l l oc ( nn∗ s i z e o f ( d o u b l e ) ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
g e n r p d z ( x i n i t , pp , nn , z ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
f o r ( i =0 ; i<nn ; i ++){

p r i n t f ( ”P(%d )=% l f \n ” , i , z [ i ] ) ;
}

r e t u r n 0 ;
}

3.1.2 PND Reconstruction

To reconstruct a PND (i.e., to obtain mode parameters for a given PND) we adapted gen_rpd_z in
func.c to conform with the input and the output format of a Levenberg-Marquardt non-linear fitting
algorithm from the GNU Scientific Library (GSL), for details see the GSL manual [4].

i n l i n e i n t m o d e r e c o n s t r u c t i o n R P D f ( c o n s t g s l v e c t o r ∗ x , vo id ∗ da ta , g s l v e c t o r ∗ f )

An example of a PND reconstruction source code using the GSL can be found in rpd fit.c .

Example A precompiled binary can be called from a bash command line:
. / r p d f i t pp [ 0 ] pp [ 1 ] pp [ 2 ] x i n i t [ 0 ] . . . x i n i t [ p ] / p a t h / t o /PND/ d a t a . d a t

This contains the appropriate number of modes pp of the three types described in section 3.1.1 and an initial
guess for the average number of photons x_init in each of these modes. The last argument points to a
tab-separated text file containing PND values starting with P(M = 0).

3.2 Joint Probability Distribution of a Multimode Conjugated Light Source

We extend our treatment to the characterization of CLS. By CLS here we mean a wide class of
parametric down-conversion or four-wave mixing sources resulting in multimode correlated fields and
probably containing background, uncorrelated fields. Correlated fields are pairs of fields in which the
photons are generated simultaneously: one in each field. As mentioned before, the photon-number statistics
of the two outputs is represented by a JPD P(ns,ni), i.e., the probability to get ns and ni photons in the signal
and the idler arms respectfully. Again, we start with a lossless case.

The conjugated fields are comprised of correlated “c” and uncorrelated “u” modes. For the probability
of generating M photons in all uncorrelated modes one writes:

Pus,i(M) = ∑
∑k j=M

∏
j

pµ j(k j).

Photons in correlated modes are generated in pairs: the same number in both “s” and “i” fields: Ns = Ni.
Similarly,

Pc(Ns,Ni) = ∑
∑k j=Ns=Ni

∏
j

pµ j(k j).
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Then, the joint probability distribution is given by applying probability multiplication and additive rules: 

P(ns,ni) = ∑ Pc(Ns,Ni)Pus (Ms)Pui (Mi). (4) 
Ns+Ms =ns 
Ni+Mi=ni 

This result can be generalized for the case of losses. As before, losses for uncorrelated modes 
represented by Poissonian, Binomial and Bose-Einstein statistics are described through adjusted mean 
photon numbers: 

Pus,i (M) = ∑ ∏pµ̃ j (k j), (5) 
∑ k j =M j 

For correlated modes, losses in each arm should be independently considered, therefore introducing 
effective mean photon numbers is no longer possible: 

∞ 

Pc(Ns,Ni) =	 ∑ ∑ ∏pµ j (k j)Lns 
j ,k j (η

s 
j )Lni 

j ,k j 
(η i 

j). (6) 
k= Σk j =k j 

Max 
Σns =Nsj(Ns,Ni) 
Σni =Nij 

Equation (4) is not affected by the losses. Therefore, Eqs. (4), (5), (6) describe multimode fields comprised 
of modes with Poissonian, Binomial and Bose-Einstein statistics. Using Eqs. (4), (2), (6) generalizes our 
method to modes with any underlying combinations of statistical distributions. 

Our algorithm follows the structure of Eq. (4). We separately compute Pc(Ns,Ni) (including losses) and 
Pus,i (M). Then, appropriate summations take place. 

Each underlying probability distribution is coded as a separate function, thus simplifying the possible 
extention of the code to the more exotic modes. The three functions supplied with this code correspond to 

Thermthermal modes governed by Bose-Einstein statistics: pµ (k) = µk/(1 + µ)k+1, Poisson modes:
Pois SPpµ (k) = exp(−µ)µk/k!, and single-photon modes governed by binomial statistics: pµ (0) = (1 − µ);
SP SPpµ (1) = µ; and pµ (k > 1) = 0.

3.2.1 JPD Generation 

To generate a JPD given the underlying modes and their parameters, call the C function defined in func.c 
file: 

i n l i n e i n t g e n j p d z ( do ub l e ∗ x i n i t , i n t ∗ pp , i n t nn , d ou b l e ∗ z ) ; 

where pp[9] is a 3x3 matrix (3 vectors that defines the types of modes for each arm: Conjugated
 
(pp[0..2]), Signal (pp[3..5]) and Idler (pp[6..8])). These vectors describe number of mode of each
 
type (Thermal, Single Photon, Poisson), cf. a PND generation function, described earlier.
 
*x_init is a vector of parameters of length (p=∑pp[i] + 2) [Average number of photons in each mode +
2 efficiency parameters which describe losses];
nn - is the size of the output JPD matrix nn*nn;
*z - is the array of length nn*nn where the output JPD is stored.
The source code that implements the JPD generation can be found in jpd gen.c file.

Example The precompiled binary is called from the bash command line: 

. / g e n j p d pp [ 0 ] . . . pp [ 8 ] nn x i n i t [ 0 ] . . . x i n i t [ p ] 

For example, to generate a 20x20 JPD matrix of a source comprised of a single squeezed vacuum mode with 
an average photon number 5, a Poisson background with an average number of photons equal to 1 and 2 for 
signal and idler arms respectively, and corresponding efficiencies of 40% and 60% run: 
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. / g e n j p d 1 0 0 0 0 1 0 0 1 20 5 1 2 0 . 4 0 . 6 

As a result, a file 
gen JPD20 100 001 001 mu1 5.00000 mu2 1.00000 mu3 2.00000 etaS 0.40000 etaI 0.60000.dat will be 
generated. The output file contains the 20x20 JPD matrix in the form of a single column of 400 
double-precision numbers in ASCII format. The first 20 elements correspond to the first column of JPD 
giving the probability to get 0 to 19 photons in the Idler arm for zero photons in the Signal arm, etc. 

3.2.2 JPD Reconstruction 

To solve the reverse problem i.e., to reconstruct mode structure, our code uses a GNU Scientific Library 
implementation of Levenberg-Marquardt non-linear fitting algorithm [4]. The JPD generation function is 
used by the algorithm to fit the input JPD data. The complete example source code for JPD reconstruction 
can be found in jpd fit.c file. To call the reconstruction algorithm, run: 

. / f i t j p d pp [ 0 ] . . . pp [ 8 ] x i n i t [ 0 ] . . . x i n i t [ p ] / p a t h / t o / JPD / d a t a . d a t 

The call is supplemented with the appropriate number of modes in each arm pp (9 parameters) and an initial 
guess for the average number of photons in each mode (p-2 parameters) and detection efficiency (2 
parameters). The last argument points to a tab-separated text file containing JPD values starting with P(0, 0). 

Using the data generated in the previous example, we now reconstruct the mode populations: 

. / f i t j p d 1 0 0 0 0 1 0 0 1 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 . / gen JPD20 100 001 001 mu1 5 .00000 mu2 1 
. 00000 mu3 2 .00000 e t a S 0 .40000 e t a I 0 . 6 0 0 0 0 . d a t 

Note that in this example we keep the number and types of modes exactly the same as in the generating 
code, but use an arbitrary initial guess. As a result, a file 
fit JPD20 100 001 001 mu1 5.00000 mu2 1.00000 mu3 2.00000 etaS 0.40000 etaI 0.60000.dat will be 
generated, containing the reconstructed JPD matrix of the same size as the input JPD in the form of column 
if double numbers in ASCII format. The console output will display the final fit result (mode populations, 
detection efficiencies, and associated uncertainties), along with information on each iteration of the fitting 
algorithm. 

3.3 Intended Usage: An Unknown Mode Structure Reconstruction Example 

We found [2] that a JPD reconstruction through photon-number statistics works well when the number 
of modes and their types are known beforehand. Furthermore, adding unoccupied modes to the 
reconstruction only requires expanding the experimental data sets to achieve the same accuracy, but 
otherwise does not negatively affect the reconstruction. However, not including all modes present in a 
reconstruction leads to significant errors in the entire set of recovered parameters. In the most general case, 
it is useful to establish a method to identify an a priori unknown mode structure based on a series of 
reconstructions, a situation typical for the experimental data. 

We propose to use reduced probability distributions (RPD) to determine the number and type of modes 
in each arm. RPD is a particular case of a PND for ULS obtained from JPD for CLS by summation over the 
Signal or Idler channels. RPDs fit faster and potentially with better accuracy because the uncertainty of the 
RPD values is typically lower than that of the JPD data. In most cases, it is important to determine if a 
Poisson mode is present, or a distribution can be well-described by a finite number of thermal modes. If 
reconstructions yield mode populations that changes with the number of thermal modes allowed, the number 
of thermal modes in the reconstruction should be increased (and/or a Poisson mode allowed) until the 
reconstruction no longer depends on the number of modes allowed, see [2] for details. The size of the 
experimental data set, including both the maximum photon number detected and the uncertainty of JPD 
data, will ultimately limit the number of modes that can be included in an accurate reconstruction. 
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3.3.1 Example 

We start from an arbitrary JPD provided in file data.dat. First, we obtain RPDs: 

. / j p d 2 r p d d a t a . d a t 

This step produces the two files data.dats and data.dati that contain RPDs for signal and idler arms 
correspondingly. We recover mode structure in each arm by iteratively choosing a trial number and type of 
modes (but not their brightness) and applying RPD fitting algorithm: 

. / r p d f i t pp [ 0 ] pp [ 1 ] pp [ 2 ] x i n i t [ 0 ] . . . x i n i t [ p ] d a t a . d a t i 

. / r p d f i t pp [ 0 ] pp [ 1 ] pp [ 2 ] x i n i t [ 0 ] . . . x i n i t [ p ] d a t a . d a t s 

As a result, we get two arrays of types and number of modes pp, one for each arm. These are all the modes 
(correlated and uncorrelated) that exist in the system. We now need to sort these modes into correlated and 
uncorrelated by fitting a full JPD to a model given by the previous step. 

The accuracy of the full reconstruction is seen from the fit’s uncertainty (its P-value) and comparison 
with the mode brightness obtained in an RPD measurement. 

For more detailed discussion on experimental data reconstruction, mode number extraction and 
reconstruction robustness versus shot noise see our paper [2]. 
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