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Executive Summary 

In response to calls from the broader scientifc community [1, 2] and concerns of the general public, 
experts in many disciplines of forensic science have increasingly sought to develop and use objective or 
quantitative methods to convey the meaning of evidence to others, such as an attorney or members of a jury. 
Support is growing, especially in Europe [3, 4], for a recommendation that forensic experts communicate 
their fndings using a “likelihood ratio” (see Appendix A for an introduction to likelihood ratios). 
Proponents of this approach [5 11] appear to believe that it is supported by Bayesian reasoning, a paradigm 
often viewed as normative (i.e., the right way; what someone should use) for making decisions when 
uncertainty exists [12 14]. 

Individuals following Bayesian reasoning may establish their personal degrees of belief regarding the 
truth of a claim in the form of odds (i.e., ratio of their probability that the claim is true to their probability 
that the claim is false), taking into account all information currently available to them. Upon encountering 
new evidence, individuals quantify their “weight of evidence” as a personal likelihood ratio. Following 
Bayes’ rule, individuals multiply their previous (or prior) odds by their respective likelihood ratios to obtain 
their updated (or posterior) odds, refecting their revised degrees of belief regarding the claim in question. 
Because the likelihood ratio is subjective and personal, we fnd that the proposed framework in which a 
forensic expert provides a likelihood ratio for others to use in Bayes’ equation is unsupported by Bayesian 
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decision theory, which applies only to personal decision making and not to the transfer of information from 
an expert to a separate decision maker, such as a juror. 

Nevertheless, a likelihood ratio may be viewed as a potential tool for experts in their communications to 
triers of fact. If a likelihood ratio is reported, however, experts should also provide information to enable 
triers of fact to assess its ftness for the intended purpose. A primary concern should be the extent to which a 
reported likelihood ratio value depends on personal choices made during its assessment. Even career 
statisticians cannot objectively identify one model as authoritatively appropriate for translating data into 
probabilities, nor can they state what modeling assumptions one should accept. Rather, they may suggest 
criteria for assessing whether a given model is reasonable. We describe a framework that explores the range 
of likelihood ratio values attainable by models that satisfy stated criteria for reasonableness. The exploration 
of several such ranges, each corresponding to different criteria, provides the opportunity to better understand 
the relationships among interpretation, data, and assumptions. We propose the concept of a lattice of 
assumptions leading to an uncertainty pyramid as a framework for such an analysis. 

Recent reports from the U.S. National Research Council and the President’s Council of Advisors on 
Science and Technology [1, 2] primarily focus on the scientifc validity of expert testimony, requiring 
empirically demonstrable error rates. In particular, they promote the value of “black-box” studies [15] in 
which practitioners from a particular discipline assess constructed control cases where ground truth is 
known (to researchers, but not the participating practitioners) as surrogates for casework in order to evaluate 
the collective performance of the discipline. Although we are primarily focused on the use of likelihood 
ratios, which these reports only tangentially consider, the concerns identifed in this article also apply to 
subjectively selecting the pool of control scenarios required to estimate case-specifc error rates. 
Practitioners adhering to Bayesian principles appear to consider likelihood ratio to be the only logical 
approach for expert communication, and they seek to implement its use in all forensic disciplines. We 
acknowledge that likelihood ratios provide a potential tool but emphasize that an extensive uncertainty 
analysis is critical for assessing when and how likelihood ratios should be used. 

In the absence of an uncertainty assessment, likelihood ratios may still be useful as metrics for 
differentiating between competing claims when adequate empirical information is available to provide some 
meaning to the quantity offered by the expert. Free of normative claims requiring the use of likelihood 
ratios, forensic experts may openly consider what communication methods are scientifcally valid and most 
effective for each forensic discipline. 

1. Introduction 

In criminal and civil cases alike, the judicial system involves many individuals making decisions after 
consideration of some form of evidence (e.g., district attorneys deciding whether or not to fle criminal 
charges, prosecution or defense attorneys deciding or advising their clients whether to accept a plea 
agreement or proceed to trial, jurors voting guilty or not guilty). These decision makers (DMs) often rely on 
the fndings of forensic experts, whether expressed as a written report or through testimony at a trial, to help 
inform their decision. How experts express their fndings and how DMs factor that information into their 
ultimate decisions remain areas of great public importance and current research; see, for example, in Refs. 
[16 17]. 

Lindley [18] presented a subjective Bayesian perspective for evaluating the weight of evidence1 in 
forensic science. Within this framework, the odds form of the Bayes’ rule, namely, 

Posterior OddsDM = Prior OddsDM × LRDM (1) 

separates the ultimate degree of doubt a DM feels regarding the guilt of a defendant, as expressed via 
posterior odds (i.e., probability of guilt after considering the evidence divided by probability of innocence 

1The term “weight of evidence” appears in the book Probability and the Weighing of Evidence by I. J. Good [19], much earlier than 
Lindley’s Biometrika paper [18]. In fact, Chapter 6 in this book is entirely devoted to weighing evidence. 
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after considering the evidence), into degree of doubt felt before consideration of the evidence at hand (prior 
odds) and the infuence or weight of the newly considered evidence expressed as a likelihood ratio for the 
DM (LRDM). A brief introduction to likelihood ratios is given in Appendix A. For a general exposure to the 
potential role of probability and statistics in the law, the reader may consult Fienberg [20], Dawid [21], and 
Kaye and Freedman [22]. 

In theory, the subjective Bayesian framework provides a uniquely rational and coherent2 approach for an 
individual to make decisions in the presence of uncertainty. As such, it has garnered much attention among 
the statistical forensics community, with many scholars advocating that forensic experts summarize their 
fndings by presenting their own personal LR to DMs, who could then apply (or envision others applying) 
Bayes’ rule to modify their respective prior odds by the reported LR and arrive at their posterior odds as to 
the guilt or innocence of the defendant and choose actions accordingly (e.g., a district attorney decides to fle 
criminal charges, a juror decides to vote not guilty, etc.). This proposed hybrid adaptation can be expressed 
by the equation 

Posterior OddsDM = Prior OddsDM × LRExpert. (2) 

See Aitken and Taroni [5] (chapter 3) or the European Network of Forensic Science Institutes (ENFSI) 
guidance document [4] for several examples illustrating how forensic examiners may use subjective 
probabilities to arrive at an LR value, which they can then use to convey to the DMs the strength of the 
evidence they examined. Furthermore, this guidance document also indicates that forensic examiners may 
convert the numerical LR value into a verbal equivalent following some scale of conclusions. Verbal 
expressions, however, cannot be multiplied by prior odds to obtain posterior odds. 

The proclaimed appeal of the hybrid approach in Eq. (2) is that an impartial expert examiner could 
determine and convey the meaning of the evidence by computing a likelihood ratio (LR), while leaving 
strictly subjective initial perspectives regarding the guilt or innocence of the defendant to the DM. This 
adaptation has been embraced by many forensic scientists in several European countries and is currently 
being evaluated as a candidate framework for adoption in the United States. Kadane [23], Lindley [13], and 
others, however, clearly state that the LR in Bayes’ formula is the personal LR of the DM due to the 
inescapable subjectivity required to assess its value. 

Many researchers before us, privately and publicly, have considered whether or not it is appropriate to 
associate an uncertainty with an LR value offered as weight of evidence. The reader may refer to a special 
issue in Science & Justice [24] that is wholly devoted to this debate. Some of those who adhere to Bayesian 
decision theory have asserted that it is nonsensical to try to associate an uncertainty to an LR since its 
computation has already taken into account all the evaluator’s uncertainty. Others who acknowledge 
sampling variability, measurement errors, and variability in choice of assumptions and choice of models 
have felt a need to express the effect of such variabilities on an LR value by offering an interval estimate 
(either a frequentist confdence interval or a Bayesian credible interval) or a posterior distribution. 

Our paper explicitly identifes the swap from Eq. (1) to Eq. (2) as having no basis in Bayesian decision 
theory; this also applies to any related claims suggesting that the use of an LR to transfer knowledge from an 
expert to a DM is somehow normative. We further suggest it is necessary to conduct an uncertainty 
evaluation regarding the potential difference between LRDM and LRExpert, requiring consideration of the 
range of results attainable under a wide-ranging and explicitly defned class of models. This is a broad and 
systematic view of uncertainty, for which limited sensitivity analyses or use of weighting tools such as 
Bayesian model averaging will generally be inadequate. Instead, we propose using an assumptions lattice 
and uncertainty pyramid to enable an audience to evaluate whether an LR characterization is well ftted for 
the intended purpose. 

We begin by outlining the general steps required to theoretically evaluate an LR. 

• The DM constructs a collection of scenarios to consider (i.e., possible sequences of acts of those who 
may have been involved in the event that is the focus of the legal proceedings or its investigation). 

2For a systematic introduction to the statistical meanings of “rational” and “coherent,” see Lindley [13]. 
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Constructing an LR requires partitioning this collection of considered scenarios into two sets. Suppose 
the DM is a juror who will cast a vote of either ‘guilty’ or ‘not guilty’ at the conclusion of a trial. The 
DM may assign any considered scenario to one of two categories, guilty and not guilty, according to 
how he or she would vote if that scenario were known to be exactly true. Suppose there are a mutually 
exclusive scenarios under which the DM would declare the defendant to be guilty. For notational 
convenience, we refer to this set as Hp = {Hpi}i

a 
=1. Similarly, we refer to the collection of b mutually 

exclusive scenarios under which the DM would declare the defendant to be not guilty as 
Hd = {Hd j}b

j=1. 

• After sorting the set of considered scenarios, the DM assigns his or her (prior) degree of belief in each 
scenario before considering the totality of trial evidence, E. This is done by assigning a probability to 
each scenario such that the sum of all the probabilities is one. Let the probability assigned to scenarios 
Hpi and Hd j be denoted by πpi and πd j, respectively. Denote the sum ∑a

i=1 πpi by π0. Then the sum 
∑

b
j=1 πd j equals 1 − π0. Here, π0 is the prior probability from the perspective of the DM that the 

defendant is guilty, and 1− π0 is the corresponding prior probability that the defendant is not guilty. 
The conditional probability of scenario Hpi given that the defendant is guilty is 

πpiwpi = Pr[Hpi|Hp] = . Similarly, the conditional probability of scenario Hd j given that the 
π0 

πd j defendant is not guilty is wd j = Pr[Hd j|Hd ] = . Note that any scenario not explicitly given a 
1− π0 

positive prior weight is given a prior weight of zero, where a prior weight of zero indicates that the 
DM would never consider the scenario as plausible regardless of what data were presented. This 
hardline stance would seem more likely to be taken unintentionally or as a matter of convenience 
rather than conviction. (Here, convenience occurs from the fact that the entire collection of scenarios 
with an assigned prior weight of zero can be removed from further consideration to produce a 
manageable problem.) Additionally, even the most outlandish scenarios could become seemingly 
irrefutable, provided suffcient data. By this notion, it seems unlikely that any prior probability is rigid 
and exactly zero. 

• For each scenario with nonzero prior weight, the DM is to assess the probability of the presented 
evidence E occurring among all outcomes that could result from the described scenario. Let Lpi 
denote the probability of observing the evidence under scenario Hpi. (Some may fnd it more natural 
to denote this quantity as Pr[E|Hpi], but we will use Lpi for succinctness.) Similarly, let Ld j denote the 
probability of observing the evidence under scenario Hd j. 

• Once a weight and a likelihood have been determined for each scenario of the observed evidence, the 
likelihood ratio is given as the sum of the products of the likelihood and the corresponding prior 
weight for each scenario in the guilty set divided by the sum of the products of the likelihood and the 
corresponding prior weight for each scenario in the not guilty set. This may be expressed algebraically 
as follows: 

∑
a 
i=1 LpiwpiLR = . (3)

∑
b 
j=1 Ld jwd j 

This formulation highlights that computing an LR is generally not free from prior probability 
assignment at the level of specifc scenarios. The LR is insensitive to the redistribution of prior 
weights among scenarios that share a common likelihood within the guilty set (or within the not guilty 
set). In the context of source attribution, for instance, the DM may believe the alternative sources are a 
random sample from a particular population and not have any additional information that would lead 
to assigning different likelihoods among the alternative sources. In this instance, the DM might assign 
each alternative source a likelihood representing the probability of observing the evidence by random 
selection from that population, and the denominator becomes that same probability, regardless of what 
weights wd j would be chosen. 
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As a more concrete and narrowly focused example, suppose that evidence y has been recovered from a 
crime scene and that, for simplicity, the DM is only interested in the identity of its source. Further suppose 
that, given which potential source actually produced y, there are no further relevant and unknown details 
from the perspective of the DM.3 Let S0,S1, . . . ,SN denote the totality of potential sources, one of which is 
responsible for y. The actual source of y is denoted by Sq, where q is unknown. The source S0 is of particular 
interest to the DM because it is attributed to the defendant. Thus, the primary proposition in question is 

H0 : S0 is the source of y (i.e., q = 0). 

The complement of the proposition H0 is Hd = H0
c, given by 

Hd : S1 or S2 or . . . SN is the source of y (i.e., q ∈ {1,2, . . . ,N}). 

In addition to y, suppose one or more control samples (that is, samples from known sources) are available 
from one or more of the sources S j, j = 0, . . . , N. Denote these, collectively, by x. 

Suppose I denotes the totality of information available to the DM prior to being exposed to the 
information supplied by y and x. According to the framework Lindley presents, a DM has prior probability 
π0 = Pr[H0|I] for the proposition H0 based on whatever information I is available to him or her apart from y 
and x. After being informed about the available new information y and x, the DM would like to update his or 
her belief concerning H0 in a rational and coherent manner. 

The DM is interested in Pr[H0|y,x, I], the probability that S0 is the source of y given all the information 
available in the crime scene evidence (y), the control samples (x), and whatever else (I). Using the odds form 
of Bayes’ rule, and following Lindley [18], Neumann et al. [26], and others, we get 

Pr[y|x,H0, I]LR = . (4)
Pr[y|x,Hd , I] 

In the context of this example, there is only one scenario under which S0 is considered the source of y. 
Hence, the LR numerator requires only the conditional probability of y given x, H0, and I. Suppose this is 
denoted by Pr[y|x,H0]. For simplicity of presentation, we have dropped the term I with the proviso that all 
probabilities mentioned are conditional on I . Furthermore, it is to be understood that expressions such as 
Pr[y] (or Pr[y|x]) refer to marginal (or conditional) probabilities or probability densities depending on 
whether y is treated as discrete or continuous. 

When the number of possible alternative sources is greater than one, evaluating the LR denominator, 
which corresponds to scenarios under which S0 is not the source of y, is more complex. The proposition Hd 
does not say anything about which of S1, . . . , SN is in fact the source. We can decompose Hd as the union of 
the propositions Hj, j = 1, . . . ,N, where 

Hj : S j is the source of y. 

Because Hd involves multiple scenarios, computing the LR denominator requires both a weight and 
conditional probability of y given x for each Hj. Suppose π0,π1, . . . ,πN are the prior probabilities, from the 
perspective of the DM, associated with the propositions Hj, j = 0,1, . . . ,N, respectively. Then the 
denominator of the LR takes the form 

N 
Pr[y|x,Hd ] = ∑ wjPr[y|x,Hj], 

j=1 

3For example, if y were a fngerprint, suppose the only relevant component of uncertainty to the DM is which person, or more specifcally 
which fnger, left the impression, or, if y consisted of striation marks on a bullet fragment, suppose the DM is only concerned about 
identifying the gun from which the bullet was fred. For real situations involving multiple pieces of evidence and multiple experts, some 
forensic scientists suggest the use of Bayesian networks. See, for instance, Taroni et al. [25]. 
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π jwhere Pr[y|x,Hj] is the probability of y given x and Hj (and I) and wj = . Thus, wj are the prior 
1− π0 

probabilities of the DM associated with H1, . . . ,HN , given H0 is false. 
Given the quantities Pr[y|x,Hj], j = 0,1, . . . ,N, and π0,π1, . . . ,πN , the LR corresponding to H0 is 

computed as 
Pr[y|x,H0]LR = . 

∑
N
j=1 wjPr[y|x,Hj] 

1.1 List of Concerns 

The recommendation that an individual substitute someone else’s LR for his or her own, as represented 
in Eq. (2), is indefensible, rather than normative, under the subjective Bayesian paradigm. Nevertheless, if it 
can be argued that LRExpert is suffciently close to LRDM , then such a substitution may be acceptable to the 
DM and ft for his or her purpose. However, there are many reasons why an LR value offered by the expert 
may differ from that of the DM. 

The following considerations are intended to highlight some of the more prominent subjective choices 
infuencing the value of an LR. 

1.1.1 Whose Scenarios? 

According to the defnition of the LR, any scenario given a nonzero prior probability by the DM can 
infuence the value of the LR and is therefore relevant; scenarios given a prior probability of zero cannot 
infuence the value of the LR regardless of the value of the corresponding likelihood 
Pr[y|x,Hj], j = 1, . . . , N, and are therefore irrelevant to the DM. Even if Pr[y|x,Hj] is exactly known for any 
scenario proposed, the LR still depends upon the collection of scenarios that are considered as well as the 
corresponding weights given to them by the DM, neither of which is known to the expert. 

As in the source attribution example above, the set of sources with positive prior probability forms the 
relevant population for the DM. If there are several DMs, then each one could have their own set of weights 
wj and hence their own relevant population. Given a particular relevant population, the weights assigned to 
elements of that population can affect the LR unless the assigned likelihoods are constant across all members 

1of the population. In particular, wj = is a special case, not a mandate. The question remains: How N 
sensitive is the LR value to any particular defnition of a relevant population? 

1.1.2 Whose Likelihoods? 

In practice, probability functions Pr[y|x,Hj] ( j = 0, 1, . . . ,N) are rarely known in any authoritative 
sense. A forensic analyst will commonly begin with a prior distribution over a class of models that will then 
be updated by consideration of empirical data.4 That is, crime scene data y and control data x are assumed to 
be conditionally independent, given the parameter θ and the event Hj, with known distributions g(y|θ ,Hj) 
and h(x|θ ,Hj) ( j = 0,1, . . . ,N), respectively. Given Hj, θ is assumed to have a distribution described by the 
probability function f (θ |Hj), which is used to express a prior belief about likelihood functions for x and y 
given Hj (not to be confused with the prior π j, which refects prior belief in the proposition Hj). Hence, the 
joint distribution of y, x, and θ , given the proposition Hj, is described by the probability function 

a(y,x,θ |Hj) = g(y|θ ,Hj)h(x|θ ,Hj) f (θ |Hj). (5) 

4This framework includes Bayesian model averaging (BMA) (see Hoeting et al. [27]), whereby the DM specifes a collection of 
probability model families along with his or her personal probabilities attached to each model. Other DMs implementing BMA may 
choose differently, leading to different model averaging results. Thus, BMA does not remove the need to examine how assumptions 
affect uncertainty if it is to represent or inform interpretations of multiple individuals. Depending on what is considered to be a 
reasonable class of priors on the model space, the corresponding range of plausible LR values may tend to be narrower when using 
BMA than otherwise. 
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The quantity Pr[y|x,Hj] can be expressed as 

R 
a(y,x,θ |Hj)dθ

Pr[y|x,Hj] = . (6)R R 
a(y,x,θ |Hj)dθ dy 

Thus, the distribution of interest for source j, Pr[y|x,Hj], has been exactly specifed through the choice of f , 
g and h. Asymptotically, as the number of control observations goes to infnity for each potential source 
j = 0,1, . . . ,N, the value of Pr[y|x,Hj] may converge to the same answer for many different choices of f , g 
and h. In real applications with fnite data, however, subjective choices of f , g and h remain infuential. 

Support for particular choices of f , g and h is sometimes given by showing them to be consistent (as 
defned by some user-selected process for evaluating such things) with empirical data from similar 
situations. Even when all DMs agree on what data are appropriate to consider for the case at hand and the 
criteria to use in assessing whether or not a model is consistent with those data, multiple choices of f , g, and 
h will satisfy that requirement. The question remains: How sensitive is the result to any particular modeling 
choice? 

1.1.3 Approximation 

When following a subjective Bayesian approach, one uses a defnition of personal probability that could 
be viewed as an individual’s assessment of a fair value for a bet of H0 versus its complement. It is assumed 
that for any required probability, such a value exists and is unique, and that the individual is able to identify 
this value without any doubts. Some authors have considered the practical diffculties associated with 
precisely identifying fair values for bets, and this has led to the consideration of imprecise probabilities. For 
a systematic introduction to this topic see, for instance, Walley [28]. This feld remains an active area of 
research (Augustin et al. [29]). Moreover, it is assumed that the collection of specifed probabilities satisfes 
the requirement of coherence (i.e., the standard rules of probability are obeyed). Lindley et al. [30] discussed 
the practical issues one must address in order to reconcile the generally incoherent probability assessments 
by an individual. They considered several different approaches that one could use in such a reconciliation 
process. See also Kadane and Winkler [31]. The fact that such reconciliation efforts are necessary points to 
uncertainties associated with subjective probability assessments. Nevertheless, results derived using such 
probability models are sometimes treated as free from uncertainties (see, e.g., Taroni et al. [32]). 

Computing an LR for anything but the simplest of problems will involve approximations. Rather than 
assign prior weights that exactly and genuinely refect one’s personal belief, tractable and familiar 
substitutions are made. In the absence of a rigorous uncertainty analysis demonstrating that the resulting 
value is suffciently insensitive to such replacements, the computed value can only provide an approximation 
of unknown accuracy for the rational and coherent ratio between posterior and prior odds of the DM. 
Although any DM only needs to be personally satisfed regarding the suitability of using any given LR in 
Bayes’ formula, guiding the probabilistic interpretation of others requires greater care. 

We note that the considerations listed here are not addressed by explaining the assumptions that underlie 
a given statistical interpretation. Stating assumptions promotes transparency, enabling a trained audience to 
assess whether a presented analysis seems reasonable, much like a statistical hypothesis test. It does not, 
however, even begin to inform the range of results attainable under alternative analyses that may also be 
deemed reasonable, the analog of a statistical confdence interval. The transferability of an analyst’s 
statistical interpretation (i.e., its value as a surrogate for that of a DM) depends on its robustness across the 
set of analyses that the DMs would deem plausible. The book by Morgenthaler and Tukey [33] titled 
Confgural Polysampling: A Route to Practical Robustness provides an interesting discussion of the need for 
considering multiple plausible models and emphasizes the development of robust methods of statistical 
analysis of data and approaches for assessing small sample robustness of statistical inference procedures. 

To assess robustness in a systematic manner, an analyst must frst defne the space of models to be 
considered, possibly by providing an explicit plausibility criterion, so that robustness has a precise meaning. 

7 https://doi.org/10.6028/jres.122.027 

https://doi.org/10.6028/jres.122.027


Volume 122, Article No. 27 (2017) https://doi.org/10.6028/jres.122.027 

Journal of Research of National Institute of Standards and Technology 

When extensively characterizing uncertainty, justifying why models in the defned space are reasonable 
seems less important than justifying why models not in the defned space are unreasonable. The analyst then 
explores the corresponding range of attainable results by ftting multiple models from within the defned 
space.5 In instances where this exploration is incomplete, the full range of plausible results, and thus the 
suitability of relying on any one particular interpretation, is unknown. To begin to explore the relationships 
among data, assumptions, and interpretations, we consider multiple assumption sets in a form we refer to as 
the lattice of assumptions and present the resulting ranges of LRs as an uncertainty pyramid. This approach 
is intended to encourage analysts to explicitly recognize and systematically evaluate the infuence of their 
subjective modeling choices and is illustrated in the following section. 

2. The Infuence of Modeling Assumptions 

We are concerned about seemingly innocuous modeling assumptions latently constraining the space of 
plausible interpretations as might be presented by a forensic expert. In this section, we demonstrate a 
process for evaluating the restrictive infuence of unsubstantiated information that can creep in solely on the 
basis of distributional assumptions made by an analyst. It should be noted that the data and modeling 
approaches used in this section are not exhaustive and are not intended to represent analyses generally 
undertaken by any particular forensic practice. As such, the actual numerical results obtained in this section 
are not of primary interest. Our intention is to illustrate a process for assessing the infuence of modeling 
assumptions on concrete examples. 

Evaluating the infuence of a given assumption set (say, assumption set A) requires considering the 
results of multiple analyses, one in which assumption set A was made and others in which different 
assumption sets (say, assumption sets Bi, i = 1,2, . . .), each consistent with empirically observed data, were 
made. The infuence of assumption set A is refected by the differences among the conclusions drawn upon 
evaluation of each set of results. In cases where the differences are considered to be substantial, assumption 
set A has played a critical role, and the conclusion reached from results of the analysis in which assumption 
set A was made stretches beyond what the data used in the analysis can in fact support. In such a case, it may 
be inappropriate to rely on any particular assumption set. 

2.1 Illustration 1: Glass Example 

In an illustrative example discussing the use of RI values in the interpretation of glass evidence, Evett 
[42] considers the following scenario. Suppose a window is believed to have been broken during the 
commission of a crime and fragments of glass are recovered from the crime scene. Suppose also that 
fragments of glass were found on a suspect.6 Denote by x1, . . . ,xm the RIs of the crime scene fragments 
(bulk sample) and by y1, . . . ,yn the RIs of suspect fragments (receptor sample). The two propositions of 
interest are 

Hp : The receptor sample is from the same source as the bulk sample 

Hd : The receptor sample is from a different source than the bulk sample. 

In Evett’s example, m = 10 and n = 5, and the RI values of the corresponding glass fragments are given in 
Table 1. 
5When a plausibility criterion pertains to a theoretical probability distribution used to model empirical data, the collection of all plau-
sible models defnes a region in the space of all cumulative distribution functions (CDFs). This region is sometimes referred to as a 
Probability Box (p-box, for short). See for instance, Williamson [34], Williamson and Downs [35], Hoffman and Hammonds [36], 
Ferson et al. [37], Zhang and Berleant [38, 39], Ferson and Siegrist [40], and references contained therein. These and other authors 
have investigated methods for propagating uncertainties when component distributions are specifed in terms of p-boxes. 

6The fact that fragments of glass were found on the defendant’s clothes is in itself of evidential value. However, for our illustration, we 
focus only on the source question. 
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Table 1. Refractive index (RI) measurements from the window and from the suspect. 
(Source: Evett [42]) 

Measurement Location RI 

Measurements from 1.51844 1.51848 1.51844 1.51850 1.51840 
the window 1.51848 1.51846 1.51846 1.51844 1.51848 

Measurements from the 
suspect 1.51848 1.51850 1.51848 1.51844 1.51846 

2.1.1 Within-Source and Between-Source Distributions 

Interpreting the information contained in the observed RIs regarding these two propositions requires 
understanding the distribution of RIs within each source and how that distribution varies from one source to 
the next. (Note that if the RI distribution did not vary across sources, then the RI observations would not 
provide any useful information about their source.) Considering how the RI distribution varies from one 
glass pane to the next results in a distribution of distributions. The collection of possible descriptions or 
models for the distribution of distributions is overwhelmingly vast. The tendency is to limit the class of 
potential descriptions by specifying properties of RI distributions that are assumed to remain constant from 
one window to the next. In particular, the RI distributions across glass panes are often assumed to be 
identical except for their location (e.g., mean or median). That is, the RI distribution for every potential 
source is assumed to have exactly the same shape and exactly the same scale (or spread). Such a family of 
distributions is referred to as a location family. This assumption implies that the distribution for the 
difference between the RIs of each fragment within a glass pane and the median RI of all fragments from 
that glass pane (i.e., x− median(x)) is exactly the same for any glass pane in the considered relevant 
population. 

In general, the results of analyses (e.g., LR) can be highly sensitive to deviations from the assumption 
that RI distributions differ only by their median from one glass pane to another. Generating empirical 
confdence in such a strong assumption would require collecting RI data from many windows with enough 
measurements from each window so as to convince oneself that strictly limiting the set of plausible 
distributions to a location family will have only a negligible effect on the interpretation of the analysis results 
compared to, for instance, when the shape and scale of the presumed location family are allowed to vary 
from one source to another. Even with such a vast and consistent data set, the possibility remains that the RI 
distribution of any unexamined window differs substantially from the observed characteristics of the other 
windows. Further illustration of the potential infuence of assuming a location family on the interpretation of 
the observed RI from a particular case is beyond the scope of this paper. That is, the notion of uncertainty 
we portray in these examples is incomplete. The uncertainty resulting from a more complete examination is 
expected to be greater than what is illustrated here. 

For the sake of simplicity, we proceed by supposing that the informed DM is willing to make the 
location family assumption. To compute an LR for this scenario, let us frst introduce some notation. 
Suppose the cumulative distribution function (CDF) of RI values from any single window belongs to the 
location family of distributions G(y;θ) = G0(y− θ) for some continuous distribution with CDF G0 for 
which the median value is zero. Denote the corresponding probability density function (PDF) by g0. 
Furthermore, suppose that, across the (relevant) population of windows, the median RIs θ ( j), j = 0,1, . . . ,N, 
are independently and identically distributed (iid) with an unknown PDF f (θ) and corresponding CDF 
F(θ ). That is, we have assumed that f (θ |Hj) = f (θ) for all j = 0,1, . . . ,N. For completeness, we display 
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the expression for the resulting LR in Eq. (7). Z ! ! 
m n 

∏g0(xi− θ) ∏g0(y j− θ) dF(θ ) 
i=1 j=1

LR = ! . (7)Z ! ! Z ! 
m n 

∏g0(xi− θ ) dF(θ) ∏g0(y j− θ) dF(θ ) 
i=1 j=1 

This example provides an illustration where there is no information available for us to justify assigning 
different likelihoods to each particular potential source. Hence, we consider the probabilities in the 
numerator and the denominator of the LR from the perspective of a population of windows rather than 
weighting likelihoods from individual windows according to their prior probability; see related comments 
following Eq. (3). 

2.1.2 Illustrative Analyses 

In the educational example provided in chapter 10 (section 10.4.2) of Aitken and Taroni [5], it is 
assumed that g0 is the PDF of a normal distribution with a standard deviation equal to 0.00004. That is, RI 
values that could be observed from window j are iid according to a normal distribution with unknown 
window-specifc mean θ ( j), j = 1, . . . ,N, and known standard deviation σ equal to 0.00004. The 
distribution of {θ ( j)} is modeled using data from Table 10.5 of Lambert and Evett [41], which gives the 
average RI measurements from 2269 different samples of foat glass. These sample data are assumed to be 
representative of the mean RIs associated with sources S j, j = 0,1, . . . ,N, and the density f (or the CDF F) 
is estimated via kernel density estimation (KDE), using a Gaussian kernel with varying bandwidths. The 
resulting estimates are then used to evaluate the LR corresponding to various hypothetical pairs of average 
RI measurements from the source (window) and receptor (suspect). See Table 10.6 of Aitken and Taroni [5]. 

2.1.3 Multiple Plausible Models 

The consideration of multiple kernel bandwidths for estimating f begins to illustrate the potential 
uncertainty due to the infuence of modeling choices. A more complete evaluation may be obtained by 
considering how variable the computed LR is across the set of all combinations of g0 and f that might be 
considered plausible. The criteria for establishing the plausibility of a prosed model is personal and likely to 
vary from one person to the next. However, it is possible for the criteria of a specifc individual to be 
expressed in an objective manner. Analogous to selecting prior distributions when conducting Bayesian 
inference, the choice of a plausibility criterion should not be guided by the set of LR values it permits, but by 
the information available before application to the case at hand. When criteria for plausibility have been 
established, the objective intention is to characterize the range of results attainable by any model meeting 
those criteria rather than identifying a single plausible model (or a narrow set of closely related models in 
the case of multiple kernel density estimates of f obtained from different bandwidths) and proceeding as 
though it is the only plausible model or representative of all plausible models. 

2.1.4 Goodness-of-Fit Tests and Plausibility Criteria 

We note that it is common practice for a data analyst to use a statistical test of goodness-of-ft to assess 
plausibility of one or more models. In our example, the data modeler could assess the plausibility of a 
proposed distribution pair (g0 and f ), given sample data, using any of a number of goodness-of-ft statistical 
testing procedures. Some well-known methods are: (1) Kolmogorov-Smirnov (KS) test, (2) Cramer-von 
Mises test, and (3) Anderson-Darling test. For related other approaches the interested reader should also 
consult Owen [43], Frey [44], Liu and Tewfk [45], and Goldman and Kaplan [46]. The concept is the same 
for each criterion: the data sample itself cannot reduce the space of plausible models to a single CDF . 

10 https://doi.org/10.6028/jres.122.027 

https://doi.org/10.6028/jres.122.027


Volume 122, Article No. 27 (2017) https://doi.org/10.6028/jres.122.027 

Journal of Research of National Institute of Standards and Technology 

Here, we consider the KS test for illustrative purposes. Any other procedure can be used in place of the 
KS test, but the computations can be more challenging. The KS test leads to a confdence band consisting of 
a family of CDFs, each of which is consistent with the data at a prescribed level of confdence, say 95 %. 
When the KS test is used to assess plausibility, any CDF that lies entirely within the confdence band would 
be deemed plausible given the sample data. As the number of observations in the data set increases, the 
confdence band narrows, and the set of plausible distributions is reduced. 

We now consider the infuence of two data sets on plausible choices for g0 and f , or, equivalently, CDFs 
G0 and F . 

2.1.5 Float Glass Data 

The frst data set (see page 16, Lambert and Evett [41]) contains a collection of average RI 
measurements obtained from various within-window samples collected from different manufactured pieces 
of foat glass. The number of observations contained in each sample is not provided, so sample sizes may 
vary across the samples, and there is some uncertainty as to how these data should be viewed during 
evidence evaluation. If each sample contained a single observation, the KS confdence band might be used 
to restrict the marginal distribution of a single RI measurement obtained from a randomly selected window 
in the population. This marginal distribution is determined by the choice of g0 and f as 
h(y) = 

R 
g0(y− θ )dF(θ ). If the samples consisted only of means of many replicate observations, the KS 

bounds could serve to restrict the class of plausible choices for f , but would not provide much insight for the 
choice of g0. 

For illustrative purposes, we treat the data from this set as providing median RI values for a sample of 
2269 windows representative of the relevant population. These data are displayed in Table 2. 

Fig. 1. Histogram of foat glass data from Lambert and Evett [41]. 

11 https://doi.org/10.6028/jres.122.027 

https://doi.org/10.6028/jres.122.027


Volume 122, Article No. 27 (2017) https://doi.org/10.6028/jres.122.027 

Journal of Research of National Institute of Standards and Technology 

Table 2. Refractive index (RI) measurements for 2269 glass fragments given in Lambert and Evett [41]. 

RI Count RI Count RI Count RI Count 
1.5081 1 1.5170 65 1.5197 7 1.5230 1 
1.5119 1 1.5171 93 1.5198 1 1.5233 1 
1.5124 1 1.5172 142 1.5199 2 1.5234 1 
1.5128 1 1.5173 145 1.5201 4 1.5237 1 
1.5134 1 1.5174 167 1.5202 2 1.5240 1 
1.5143 1 1.5175 173 1.5203 4 1.5241 1 
1.5146 1 1.5176 128 1.5204 2 1.5242 1 
1.5149 1 1.5177 127 1.5205 3 1.5243 3 
1.5151 1 1.5178 111 1.5206 5 1.5244 1 
1.5152 1 1.5179 81 1.5207 2 1.5246 2 
1.5153 1 1.5180 70 1.5208 3 1.5247 2 
1.5154 3 1.5181 55 1.5209 2 1.5249 1 
1.5155 5 1.5182 40 1.5211 1 1.5250 1 
1.5156 2 1.5183 28 1.5212 1 1.5254 1 
1.5157 1 1.5184 18 1.5213 1 1.5259 1 
1.5158 7 1.5185 15 1.5215 1 1.5265 1 
1.5159 13 1.5186 11 1.5216 3 1.5269 1 
1.5160 6 1.5187 19 1.5217 4 1.5272 2 
1.5161 6 1.5188 33 1.5218 12 1.5274 1 
1.5162 7 1.5189 47 1.5219 21 1.5280 1 
1.5163 6 1.5190 51 1.5220 30 1.5287 2 
1.5164 8 1.5191 64 1.5221 25 1.5288 1 
1.5165 9 1.5192 72 1.5222 28 1.5303 2 
1.5166 16 1.5193 56 1.5223 13 1.5312 1 
1.5167 15 1.5194 30 1.5224 6 1.5322 1 
1.5168 25 1.5195 11 1.5225 3 1.5333 1 
1.5169 49 1.5196 3 1.5226 5 1.5343 1 

A histogram of these data is shown in Fig. 1. We use the median rather than the mean to reduce the 
sensitivity of the location parameter θ to the tails of the distribution g0, which cannot be well estimated from 
sample data used in this example. Figure 2 shows the empirical CDF (eCDF) for these data along with the 
lower and upper boundaries of a KS 95 % confdence band used to defne which choices for f will be 
considered plausible given the eCDF . In the lattice of assumptions illustration, we consider several 
estimates for f based on Gaussian kernel density estimates ft to the 2269 observations with bandwidths 
spanning from 0 (which corresponds to the eCDF) to 2.155 × 10−4, which is the maximum bandwidth for 
which the corresponding discrete distribution obtained by accounting for the reported measurements being 
interval censored (to plus or minus 1 × 10−4) remains entirely within the KS confdence band. CDFs for the 
discrete distributions obtained by accounting for interval censored measurements and the corresponding 
underlying continuous distributions are shown in Fig. 2 for both the eCDF and the smoothest kernel density 
estimate. Kernel density estimates resulting from the intermediate bandwidths of 10−5, 2× 10−5, 5× 10−5, 
and 10−4 were considered during computation but are not displayed. For illustration only, we also include a 
CDF not produced by kernel density estimation. This CDF , referred to as Jump, follows the lower KS 

∑
10 
i=1 yi + ∑5 

j=1 x j
bound for values less than the mean RI value m = for the 15 sample fragments, and the 

15 
upper KS bound for values greater than m, with a jump at m. This CDF is shown in blue in Fig. 2. An 
analyst might feel that the jump distribution is unrealistic and should not be considered. Our point in 
including it is to emphasize that once a plausibility criterion has been laid down, we must attempt to 
consider as broad a collection of candidate distributions meeting the criterion as possible; if not, the 
plausibility criterion and corresponding uncertainty characterization become moving targets. 
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Fig. 2. 95% Kolmogorov-Smirnov Confdence Band for the Lambert and Evett Glass Data [41]. The bold line segments 
portray the discrete distribution obtained by accounting for the reported data being interval censored to ± 0.0001. The 
faded lines display the CDF of the underlying continuous distribution. 

2.1.6 Bennett Data 

The second data set consists of 49 RI measurements on samples of fragments from 49 different locations 
on a single window and is used to evaluate the plausibility of within-window distribution choices. These 
data were collected by Bennett et al. [47] and are also mentioned in Curran [48] (see page 42).7 They are 
publicly available in the dafs package in R [49]. The original data set consists of RI measurements for a 
sample of 10 fragments from each of 49 locations on a single window pane for a total of 490 readings. We 
have selected a single fragment from each of the 49 locations (the listed value in the frst row of the 
bennett.df data frame in dafs). These data are reproduced in Table 3 for the convenience of the reader. For 
illustrative purposes, we treat these 49 RI values as representative of the RI distribution within a single 
window, providing guidance for choosing g0. The empirical CDF and corresponding KS 95 % confdence 
band for these 49 RI measurements are shown in Fig. 3. 

7Although not explicitly mentioned in Bennett et al. [47], these data appear to be interval-censored with variable interval 
half-widths (approximately) equal to 1.5×10−6. Consequently, all of our analyses based on these data take this interval-
censoring into account. 
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Table 3. Refractive index (RI) measurements from 49 different locations from a single window. (Data from 
Curran [47]) 

RI 

1.519788 1.519901 1.519941 1.519941 1.519941 1.519963 1.519970 
1.519974 1.519974 1.519974 1.519974 1.519974 1.519978 1.519978 
1.519978 1.519981 1.519981 1.519981 1.519981 1.519985 1.519989 
1.519989 1.519992 1.519992 1.519996 1.519996 1.519996 1.519996 
1.520000 1.520000 1.520003 1.520007 1.520007 1.520007 1.520007 
1.520010 1.520010 1.520014 1.520014 1.520014 1.520014 1.520025 
1.520025 1.520029 1.520040 1.520043 1.520047 1.520047 1.520069 

In the lattice of assumptions, we consider several distributional shapes, including normal distributions, t 
distributions with 1 and 0.5 degrees of freedom, respectively, and χ2 distributions with 2 and 3 degrees of 
freedom. We also consider a small simulated collection of CDFs not belonging to any particular parametric 
family. Some of these CDFs fulfll additional constraints of unimodality and/or symmetry. For each 
considered distributional shape, we identify the range of scale parameters such that the discrete distribution 
obtained by accounting for the interval-censoring of the reported within-window measurements is contained 
entirely within the confdence band. For each shape, we consider estimates of g0 obtained at 15 evenly 
spaced scale values spanning this range. For a given shape and scale parameter, the LR is evaluated for each 
pairing of g0 with each of the choices for f described above. Figure 3 provides a visual summary of the 
analysis when g0 is assumed to have the shape of a normal distribution. Analogous displays for subsets of 
other considered shapes are provided in Appendix B. 

2.1.7 Assumptions Lattice 

When modeling the distribution of RI values for fragments from any single window, Lindley [18] 
assumed normality, as did Aitken and Taroni [5]. We recognize this was done for illustrative purposes only. 
Nevertheless, it is worth noting that normal distributions represent a tiny fraction of CDFs meeting the KS 
criteria, and the impact of exclusively assuming a normal distribution is not clear until the sets of LR values 
obtainable by using other distributions lying within the KS bounds have been investigated. Because we 
recognize that a given individual’s criterion for a distribution to be plausible may include conditions beyond 
a KS test, in this section we examine the LR values obtainable by distributions satisfying a variety of 
assumption sets. These assumption sets are displayed in the form of a lattice diagram (Grätzer, [50]) as 
shown in Fig. 4. In the fgure, when a line segment connects two assumption statements, the assumption 
appearing lower in the lattice diagram is nested within (i.e., more restrictive than) the assumption appearing 
higher in the diagram. In Fig. 5, we report interval summaries of the range of LR values over the considered 
subset of the space of all possible models satisfying the criteria for a subset of nodes in Fig. 4. 

2.1.8 Discussion of Results 

Results in Fig. 5 clearly demonstrate that within this particular educational example, the distributional 
assumptions made regarding the data-generating process can have a substantial effect on the LR values that 
would be reported. Keep in mind that we examined only a small subset of all possible CDFs that would be 
deemed by the KS confdence band to be consistent with the considered RI data. As such, the uncertainty 
pyramid portrayed in Fig. 5 is likely to under represent the infuence of choices of f and g0 within this 
example. Once again, the point is that reporting a single LR value after an examination of available forensic 
evidence fails to correctly communicate to the DM the information actually contained in the data. Personal 
choices strongly permeate every model. If expert testimony is to include the computation of an LR, we feel 
an assumptions lattice and corresponding LR uncertainty pyramid provide a more accurate assessment of the 
information in the evidence itself and better enable an audience to assess the ftness-for-purpose of the 
evaluation. The proposal to present an uncertainty pyramid is neither intended to replace, nor intended to 
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Fig. 3. Top: 95% Kolmogorov-Smirnov confdence band for the CDF of refractive indices from 49 fragments 
from a single window (Bennett Data). The empirical CDF is shown in gray. The faded red and green 
smooth curves respectively correspond to normal distributions with the smallest and largest scale (standard 
deviation) parameters such that the discrete distributions obtained, to account for interval-censoring in the 
reported data (shown using solid red and solid green line segments, respectively), are entirely contained 
within the confdence band. 
Bottom: LR values corresponding to various choices of F , refected by position along the x-axis, and the 
scale factor for the shape corresponding to a normal distribution. The left-most results correspond to the 
estimate of F labeled as Jump, which is displayed in Fig. 2. The remaining positions refect the bandwidth 
of the Gaussian kernel leading to the estimate of F used in computing the LR. Within each choice of F , 
the LR values are staggered in order of the scale parameter used to defne g0 to emphasize the potential 
non-monotonic relationship between LR and scale parameter. The points are color coded to indicate the 
associated scale parameter values. 

lessen, the importance of providing objective descriptions of empirical results from analysis and 
investigation. 

2.2 Illustration 2: Score-based Likelihood Ratio based on Simulated Fingerprints 

For this illustration we used a collection of simulated fngerprints to avoid confdentiality issues 
associated with using real fnger marks from actual casework. To be clear, this example does not refect or 
assess the behavior or performance of trained latent print examiners. Rather, it is intended to examine the 
infuence of assumptions when forming a score-based likelihood ratio (SLR). The ideas expressed in this 

15 https://doi.org/10.6028/jres.122.027 

https://doi.org/10.6028/jres.122.027


Volume 122, Article No. 27 (2017) https://doi.org/10.6028/jres.122.027 

Journal of Research of National Institute of Standards and Technology 

A1: G0 is a continuous CDF 

A2: G0 is a continuous A3: G0 is a continuous 
CDF with unimodal CDF with symmetric 
PDF PDF 

A4: G0 is a continuous CDF with symmetric, 
unimodal PDF 

A5: G0 is the CDF of a scaled t distribution 
with k degrees of freedom, 1 ≤ k ≤ ∞. 

A6: G0 is the CDF of a 
scaled t distribution 
with 1 degree of free-
dom. 

A7: G0 is the CDF of a 
scaled t distribution 
with 0.5 degree of 
freedom. 

A8: G0 is the CDF of a Normal distribu-
tion with known standard deviation σ 

Fig. 4. Assumptions lattice for the glass example. 

Fig. 5. Ranges of LR values corresponding to a subset of choices from the assumptions lattice for G0 combined 
with either the Jump distribution (blue) or Gaussian kernel density estimates (red) for F . 

example are not limited to applications of SLRs for friction ridge evaluations; they apply to SLR 
formulations for any comparison discipline. 

The software system Anguli (see http://dsl.cds.iisc.ac.in/projects/Anguli/index.html; Jadhav 
[51]) was used to generate a pair of exemplar-like impressions for 10,000 simulated fngers. One impression 
from each pair was blurred, occluded, distorted, and overlaid on a background image to represent a 
questioned impression. Minutia were automatically marked in each image using the automatic minutia 
detecting program MINDTCT (NBIS [52]) from the National Institute of Standards and Technology (NIST). 
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Figure 6 displays two pairs of simulated images along with the minutia identifed by MINDTCT. We 
retained all detected minutia with a quality score of at least 20. As seen in Fig. 6, this threshold allows 
erroneous minutia detections; stricter thresholds, however, were found to remove true minutia detections. As 
the focus here is on the uncertainty in interpreting a given set of scores and not on obtaining the best scores, 
no formal optimization was performed to select a minutia quality threshold. The BOZORTH3 algorithm 
(NBIS [52]) was used to automatically assign a similarity score between two lists of marked minutia. 

Fig. 6. Left: Two simulated exemplars used as templates to construct questioned impressions. 
Center: Simulated questioned impression. Cyan dots indicate minutia detected by MINDTCT. 
Right: Simulated exemplar used for comparison with questioned impressions. Red dots indicate 
minutia detected by MINDTCT. 

Suppose a questioned impression (Q) from an unknown source is compared to a test impression (Ti) 
from source i using algorithm C( , ), resulting in score s = C(Q,Ti). Let F(s) denote the probability of 
observing score s when comparing two images from a common source, and let G(s) denote the probability 
of observing score s when comparing two images from two different sources. Interest lies in the ratio 

F(s)
SLR(s) = .

G(s) 

To inform possible choices of F and G, we consider a collection of scores obtained from comparisons 
for which we know whether or not the compared images originated from a common fnger. We refer to 
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comparisons between images generated from the same simulated fnger (e.g., comparing Questioned 1 to 
Exemplar 1 from Fig. 6) as “mated.” Comparisons between images originating from different simulated 
fngers (e.g., comparing Questioned 1 to Exemplar 2 from Fig. 6) are referred to as “nonmated.” Comparing 
the questioned and exemplar images within each simulated fnger produced a collection of 104 mated scores, 
SM,i (i = 1, . . . , 104). We compared questioned and exemplar images independently sampled from their 
respective collections of 104 images, subject to the constraint that the selected images did not originate from 
the same simulated fnger, to produce a collection of 105 nonmated scores SNM,i (i = 1, . . . , 105). The 
similarity scores output by BOZORTH3 are always nonnegative integers. In our simulation, mated scores 
ranged from 0 to 227, and nonmated scores ranged from 0 to 36. Scores of 1 and 2 did not occur among any 
of the mated or nonmated evaluations. The number of occurrences of each integer from 0 to 250 was 
tabulated for mated and nonmated scores, respectively, and is portrayed in Fig. 7. Let M = [M0, . . . , M250] 

= ∑104
and NM = [NM0, . . . , NM250] denote the corresponding vectors of occurrences, where Mj i=1 I[SM,i= j] 

= ∑105
and NMj j]. Here, the term I[S= j] is equal to 1 when S = j, and it is 0 otherwise. i=1 I[SNM,i= 

Fig. 7. Top: Histogram refecting proportion of simulations resulting in each score for the mated (red) and nonmated 
(blue) pairs. Note that x and y axes are provided on a square root scale. 
Bottom: A zoomed-in view, using linear scales. The dotted lines indicate the scores for which the SLR range 
was examined. 

The choice of reference comparisons that are suitable for informing the score distributions F and G for a 
particular case is subjective and infuential. In this illustration, we ignore this choice as a potential source of 
uncertainty and operate as though all DMs have agreed on the simulated collection of scores as being 
exclusively appropriate for informing their beliefs. That is, we suppose that all relevant DMs consider the 
mated scores to be iid from F (i.e., SM,i ∼ F) and the nonmated scores to be iid from G (i.e., SNM,i ∼ G). 

The SLR value corresponding to the score observed for a particular comparison varies as one considers 
various plausible sets of assumptions used to evaluate F and G. In this exercise, we examine SLR ranges for 
scores of 6, 13, 20, 36, 37, and 38. The scores 6, 13, and 20 were chosen because the corresponding ratios of 
relative frequencies were near 0.1, 1, and 10, respectively. The scores 36, 37, and 38 were chosen to 

18 https://doi.org/10.6028/jres.122.027 

https://doi.org/10.6028/jres.122.027


Volume 122, Article No. 27 (2017) https://doi.org/10.6028/jres.122.027 

Journal of Research of National Institute of Standards and Technology 

examine the robustness of the SLR at and just beyond the most extreme observed nonmated score (36 in our 
illustration). 

We consider a different plausibility criterion here than was used in the glass example. Suppose the 
proposed mated probability mass function (PMF) is given by F 0 = [F0

0 , . . . , F 0 = Pr(SM = j).250], where Fj 
0 

Similarly, let the proposed nonmated PMF be given by G0 = [G0 0, . . . , G
0 = Pr(SNM = j). We 250], where G0 j 

consider the test statistic � 
(EM,i− Mi)

2 (ENM,i− NMi)
2 �250 

ZF 0 ,G0 = ∑ + , (8) 
i=0 EM,i ENM,i 

where EM,i = Fi 
0 × 104 and ENM,i = Gi

0 × 105 are the expected counts associated with a score of i under F 0 

and G0, respectively. The tables of observed counts include many cells with small values, so we estimate the 
sampling distribution of this test statistic under proposed distributions F 0 and G0 using simulation rather 
than relying on an asymptotic chi-squared approximation. That is, in each of many iterations, we draw 
M ∗ ∼ multinomial(104, F 0) and NM ∗ ∼ multinomial(105, G0) and use the simulated values to obtain 
Z∗ ,G0 , computed from Eq. (8) with M ∗ and NM ∗ in place of M and NM , respectively. The collection F 0 

of ZF 
∗
0 ,G0 values is used to asses whether ZF 0 ,G0 is lower than the 95th percentile of the test statistic in 

Eq. (8) under the null distribution where F 0 and G0 are exactly correct. If so, then F 0 and G0 are considered 
plausible. 

We evaluate the range of SLR values attainable from distributions meeting the criteria described above, 
frst while considering any F 0 and G0 as candidates and then considering only those belonging to various 
classes of Gaussian kernel distribution estimates applied to power transformations of the observed scores. 
More precisely, we consider kernel distribution estimates of the form � � � � 

(s+ 0.5)K1 − iK1 (s− 0.5)K1 − iK1 
Φ − Φ227 BW1 BW1

FK
0 
1,BW1

(s) = 10−4
∑ Mi× � � 
i=3 2.5K1 − iK1 

1− Φ 
BW1 

and � � � � 
(s+ 0.5)K2 − iK2 (s− 0.5)K2 − iK2 

Φ − Φ36 BW1 BW2
GK
0 

2,BW2
(s) = 10−5

∑ NMi× � � 
i=3 2.5K2 − iK2 

1− Φ 
BW2 

for s ≥ 3, where 0 < K1, K2 ≤ 1; BW1, BW2 ≥ 0; and Φ(·) denotes the CDF of a standard normal 
distribution. For completeness, defne FK

0 
1,BW1

(0) = M0× 10−4, FK
0 
1,BW1

(1) = 0, and FK
0 
1,BW1

(2) = 0. 
Similarly, defne G0 

K2,BW2
(0) = NM0× 10−5, G0 

K2,BW2
(1) = 0, and G0 

K2,BW2
(2) = 0. Note BW1 = 0 

corresponds to F 0 being the empirical PMF for the mated scores, and BW2 = 0 corresponds to G0 being the 
empirical PMF for the nonmated scores. We also consider the class of distributions where K1 and K2 are 
fxed at 1 (still allowing BW1, BW2 ≥ 0), and the class of distributions where BW1 and BW2 are the 
bandwidth selections produced by applying the R function density [49] with default settings to the sets n o n o 

MK1 | 1≤ i≤ 104 and NMK2 | 1≤ i≤ 105 , respectively (allowing 0 < K1, K2 ≤ 1). The distributions i i 

produced using K1 = K2 = 1 and default bandwidths did not pass the plausibility criterion as the 
corresponding value of ZF 0 ,G0 was near the 99th percentile of the null distribution. The assumptions lattice 
for the considered classes of distributions is shown in Fig. 8. Corresponding SLR ranges are presented as 
uncertainty pyramids in Fig. 9. 
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A1: F and G are multinomial PMFs 

A2: F and G are multinomial PMFs arising from the kernel 
distribution family with free K and free BW 

A3: F and G are multinomial PMFs arising A4: F and G are multinomial PMFs arising 
from the kernel distribution family with from the kernel distribution family with 
free K and default BW K = 1 and free BW 

Fig. 8. Assumptions lattice for the fngerprint example. 

3. Discussion 

The viewpoints expressed in this paper are largely motivated by considerations of standard practices in 
measurement science, a discipline for which a fundamental purpose is to facilitate meaningful 
communication regarding properties of an object or system among interested parties. From the perspective 
of metrology, the hybrid LR framework asks a forensic expert to measure the weight of evidence on behalf 
of the DM and report its value for subsequent use in Bayes’ formula. As a measurement, any provided LR 
value would require an accompanying uncertainty statement (JCGM [53]; Possolo [54]) characterizing the 
analyst’s belief regarding its deviation from the “true value,” which the Bayesian paradigm defnes as the LR 
value a given DM would arrive at following careful review of the complete body of evidence considered by 
the expert. Overlooking or dismissing the relevant uncertainty would treat the value obtained by an expert as 
though it is a perfect measurement of weight of evidence, universally and exactly accurate. This directly 
contradicts the Bayesian paradigm, where no such value can be assumed to exist, as the LR is a personal and 
subjective entity. 

Although our discussion of the LR has centered around the perspective of Bayesian decision theory, our 
concerns apply to any framework motivating the use of an LR as a means for experts to communicate their 
fndings. Whether a probability is intended to be personal or communal, it is not empirical in the sense that 
it is not directly observable. A model is required in order to translate data into a probability, and the question 
of how robust the translation is among reasonable model choices remains central. 

We do not make a recommendation regarding when an uncertainty characterization yields a particular 
LR result that may be considered to be ft for the intended purpose. Our hope is that policy makers will 
assess the adequacy of relying on LR characterizations in the context of the framework presented here, 
mindful of the range of alternative results that might be reasonably obtained and of the criteria used to make 
that assessment. One might expect to fnd the least degree of uncertainty in applications of probabilistic 
evaluation of high-template, low-contributor DNA samples, and we recognize that the community may be 
well founded in its use of probability to facilitate knowledge transfer in such cases. We do not view this as 
an exception to the framework we present, but rather as a scenario in which extensive uncertainty 
evaluations would likely yield a degree of consensus leading most people to conclude an offered LR value is 
ft for the intended purpose. Forming a lattice of assumptions and uncertainty pyramid, including explicitly 
identifying what data will be considered, for applications in the feld of high-template, low-contributor DNA 
evaluations could help to provide clarity to other forensic disciplines seeking to demonstrate or develop a 
basis for using a similar LR framework. In absence of a suitable uncertainty characterization, or when the 
uncertainty is deemed too large, LR values may require less literal interpretations. 

When an LR value is the output of a computer algorithm, one may reasonably assume that, given the 
inputs, it is highly reproducible. In this sense, an LR value may be transferable as a discriminant score rather 
than the ratio of two probabilities. In this context, a discriminant score attempts to produce an optimal 
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Fig. 9. SLR uncertainty pyramids for various scores. Panels are vertically arranged according to the score for which the 
SLR is computed. The right panel excludes results from the general multinomial class in order to better depict the results 
from the classes of kernel distribution estimates. Green horizontal lines depict the ratio of relative frequencies, 

Ms10× . Vertical line segments depict the range of SLR attainable by distributions satisfying the selected plausibility 
NMs 

criterion and belonging to the class indicated along the x-axis. Points shown in the bottom two panels corresponding to 
scores of 37 and 38 indicate the lower bound of the SLR range. The corresponding upper limits and ratio of relative 
frequencies are all positive infnity. 

ordering among a collection of independent scenarios that may originate from either Hp or Hd . For a given 
ordering, a decision rule is indicated by a threshold, with all scenarios having a score to one side of the 
threshold being ascribed to Hd and scenarios with scores on the other side of the threshold ascribed to Hp. 
The ordering is optimal when any chosen threshold corresponds to the best attainable error rates given the 
total number of scenarios that will be ascribed to Hp and Hd . In a theoretical scenario where the true LR is 
known for each scenario, the LR is the optimum discriminant score. When viewed as a discriminant score, 
an LR value would not have direct, probabilistic interpretation, because its meaning only becomes apparent 
from its positioning relative to LR determinations for other scenarios, evaluated by the same process, 
including suitable, controlled reference applications. The effectiveness of a given scoring method can be 
empirically assessed using Receiver operating characteristic (ROC) plots (Peterson and Birdsall [55]; Green 
and Swets [56 57]). 
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Relying on a given scoring method, an expert could provide demonstrations or scientifcally sound 
descriptions to answer many helpful questions. For instance, in a source-level evaluation, an expert might 
address: 

• How were the scores produced and why? What collection of reference scenarios were used to evaluate 
the performance of the considered scoring methods? How were these chosen in light of the considered 
case? 

• What score was obtained corresponding to the source of interest? 

• What alternative sources were considered, and what were the corresponding scores? 

• How do the scores from this particular case compare to the scores obtained among the reference 
collection used to evaluate method performance? 

More broadly, objective descriptions of procedures followed and outcomes obtained throughout 
investigation of the case and broader experience may present a promising path to ensuring transferability of 
information from a forensic expert to DMs. 

4. Summary 

The LR framework has been portrayed by some as having an exclusive, normative role in forensic expert 
communication on the basis of arguments centered around mathematical defnitions of rationality and 
coherence (e.g., Biedermann et al. [58]). These arguments are aimed at ensuring a form of self-consistency 
of a single, autonomous decision maker.8 Decision theory, however, does not consider the transfer of 
information among multiple parties, such as that occurring throughout the judicial process when one or 
more DMs rely on forensic experts to help inform their decisions. Thus, while decision theory may have a 
normative role in how a DM processes information presented during a case or trial in accordance with his or 
her own personal beliefs and preferences, it does not dictate that a forensic expert should communicate 
information to be considered in the form of an LR. 

Some may argue that because any given DM is likely unfamiliar with formal decision theory, a trained 
expert should act on their behalf to form an LR. As expounded throughout this paper, the interpretation of 
evidence in the form of an LR is personal and subjective. We have not encountered any basis for the 
presumption that the surrogate LR of an expert will refect a truer implementation of decision theory than 
will the unquantifed perception of the DM following effective presentation of the information upon which 
the expert’s LR is based. 

Bayesian decision theory neither mandates nor proves appropriate the acceptance of a subjective 
interpretation of another,9 regardless of training, expertise, or common practice. It does not recognize one 
person’s subjective inputs as superior to those of another, and therefore it does not support any one particular 
LR value. Validation efforts can demonstrate that the interpretation corresponding to a particular model is 
reasonable, but this should not be misunderstood to mean the model is accurate or authoritatively 
appropriate.10 

Validation efforts can also inspire an explicit plausibility criterion. By conducting multiple analyses 
attempting to span the space of assumptions meeting a specifed plausibility criterion, an analyst can 
purposefully explore the robustness of an interpretation. Presenting an uncertainty pyramid, along with an 
explanation of the corresponding plausibility criterion and a description of the data, may provide the 
audience the opportunity for greater understanding of the interactions among data, assumptions, and 

8More specifcally, the Dutch book arguments (Hájek [59]) 
9“I emphasize that the answers you give to the questions I ask you about your uncertainty are yours alone, and need not be the same as 
what someone else would say, even someone with the same information as you have, and facing the same decisions.” – Kadane [23] 

10As a result of this common misunderstanding, we prefer phrases that use “plausible” in place of “validated.” 
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interpretation. The audience may then, more reasonably, assess whether any particular result is ft for the 
intended purpose. 

If such uncertainty characterizations are considered untenable for a given application, one may be forced 
to conclude that the hybrid plan [see Eq. (2)], though appealing, is impractical to implement. It does not 
mean that, just because one is unable to calculate the required value, one should accept the value that can be 
calculated. 

We hope this paper will encourage the forensic science community to be mindful of the many subjective 
components involved in any interpretation. Correspondingly, we hope best-practice guidance will address 
how to avoid overstating the authority or rigor underlying any particular interpretation of evidence and 
require a presentation of uncertainty. Additionally, we hope the forensic science community comes to view 
the LR as one possible, not normative or necessarily optimum, tool for communicating to DMs. We hope 
such viewpoints will increase the priority given to developing tools for descriptive presentations that meet 
the strict standards of scientifc validity by focusing on empirical and reproducible results, assisting the DMs 
in directly establishing their own respective interpretations of the weight of evidence. 

5. Appendix A: Likelihood Ratio Introduction 

The concept of likelihood ratio (LR) arises naturally when one is faced with the problem of deciding 
whether an observation x came from one of two populations. Consider a simple situation involving two urns, 
urn 1 and urn 2. Urn 1 has 99 red balls and one green ball, and urn 2 has 99 green balls and one red ball. 
One of the urns is chosen (we do not know which one or the process used to make the choice), and, after 
thoroughly mixing the balls in it, one ball is selected, and its color is noted. Suppose the ball is red. We 
would like to know whether the ball is from urn 1 or urn 2. 

One may proceed as follows. Let us assume that every ball from the chosen urn had an equal chance of 
being chosen. Then, if urn 1 was chosen, the probability of drawing a red ball is 99 %. If urn 2 was chosen 
then the probability of drawing a red ball is 1 %. Thus, a red ball is 99 times more likely to be drawn if urn 1 
was chosen than if urn 2 was chosen. That is, the ratio 

Probability of drawing a red ball given urn 1 was chosen 
= 99. (A.1)

Probability of drawing a red ball given urn 2 was chosen 

Whatever the initial belief might have been of an individual regarding whether urn 1 or 2 was selected, the 
effect of observing a red ball is likely to encourage the individual to update their beliefs by increasing the 
probability they initially assigned to the scenario that urn 1 was selected. 

The above example provides the beginnings of the concept of weight of evidence. It also suggests that 
the ratio of probabilities of an observed occurrence under each of the two considered scenarios must play a 
role in adjusting one’s prior beliefs regarding which scenario is true. The ratio in Eq. (A.1) is called the 
likelihood ratio for urn 1 corresponding to the observation of a red ball. More generally, if x denotes data 
observed from one of two distributions, f1 or f2, then the ratio 

Probability of observing x when sampling from f1 

Probability of observing x when sampling from f2 

is called the likelihood ratio for f1 corresponding to the observation x. This simple example might help the 
reader understand why LR is a quantity of importance when one faces the problem of discriminating 
between two populations. 

More formal mathematical justifcations are available for the use of LR for assessing the added value 
provided by new information x when faced with discriminating between two situations. These justifcations 
are based on ideal applications where the needed probabilities are exactly known. We give a brief outline of 
two theoretical justifcations often given in the literature. 
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5.1 Discriminating between Two Simple Hypotheses 

Neyman and Pearson are perhaps the most recognized as the frst to give a formal explanation for the 
role of the likelihood ratio in discriminating between two hypotheses, populations, or propositions. Suppose, 
in each of many repeated trials Ti, resulting in observations xi (i = 1, . . . ,n), one is tasked with deciding from 
which of two known distributions ( f1 or f2) the observation xi is drawn. That is, in each trial one must 
decide between the hypotheses 

H1i : xi came from f1, 

or, H2i : xi came from f2. 

The Neyman-Pearson fundamental lemma [60] essentially states that these outcomes are optimally ordered 
according to the ratio 

f1(xi)LRi = ,
f2(xi) 

in the sense that xi should be considered as more strongly favoring H1i than xi0 favors H1i0 if and only if 
LRi > LRi0 . Given any rule R for discriminating between H1i and H2i that is based on an observation xi (i.e., 
conclude H1i if xi satisfes some given condition and conclude H2i otherwise), one can always fnd an LR 
rule RLR (i.e., for a given τ ≥ 0, conclude H1i if LRi ≥ τ and conclude H2i if LRi < τ) that will, in the long 
run, correctly decide H1i to be true, when it is in fact true, for at least as many trials as R will, and will 
wrongly decide H1i to be true, when it is in fact false, in no more trials than R will. 

Note that we have assumed f1 and f2 to be completely known. That is, no modeling was necessary and 
no distribution was ft to empirical data. The Neyman-Pearson fundamental lemma is applicable primarily in 
such ideal situations. Real situations are more complex, and optimality of any particular LR-based rule 
cannot be universally guaranteed. 

5.2 LR in a Bayesian framework. 

The Bayesian framework is based on the philosophical viewpoint that all probabilities are personal and 
quantify one’s state of uncertainty regarding the truth of propositions. Given the problem of discriminating 
between H1 and H2 as above, one frst quantifes one’s uncertainties associated with the truth of H1 and of 
H2 by (prior) probabilities π1 and π2 = 1− π1. These describe the levels of uncertainty experienced by an 
individual prior to seeing the data x. 

After seeing x, one’s uncertainties regarding the truth of H1 and of H2 may change. Uncertainty 
experienced after seeing the data x is called a posterior probability. Posterior probabilities are written as 
P(H|x), which is read as “the probability of H given x.” Symbols appearing to the right of the vertical line 
represent quantities known to the individual and used in evaluating the probability. In the considered 
scenario, interest lies in the posterior probabilities P(H1|x) and P(H2|x) (note that P(H1|x)+ P(H2|x) = 1) 
or, equivalently, the posterior odds 

P(H1|x) P(H1|x)Posterior Odds = = .
P(H2|x) 1− P(H1|x) 

An application of Bayes’ rule for updating one’s prior personal probabilities after having observed new 
information leads to the equation 

P(H1|x) P(x|H1) P(H1) f1(x)Posterior Odds for H1 = = × = × Prior Odds for H1.P(H2|x) P(x|H2) P(H2) f2(x) 

If we defne weight of evidence associated with x for a particular individual to be the ratio of posterior odds 
(given x) of that individual to his or her prior odds (before observing x), then the above equation implies that 
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f1(x)LR = is to be viewed as the weight of the evidence provided by x for H1 for the individual making the 
f2(x) 

probability assessments. 

5.3 Surrogate LRs as Discriminant Scores 

The Neyman-Pearson fundamental lemma tells us that the theoretical LR is the best summary of the 
information in x for discriminating between H1 and H2. In this sense, we can say that, when f1 and f2 are 
known, LR is the best discriminant score. When f1 and f2 are not known, it is customary to use empirical 
information to fnd surrogates for f1 and f2 (i.e., models) and use these to construct a surrogate LR 
corresponding to an observed value x. Different models based on different sets of assumptions will lead to 
different LRs. These can all be helpful, some more than others, in discriminating between H1 and H2. We 
continue to refer to these surrogate LR values as discriminant scores. The performance characteristics of 
competing discriminant scores may be evaluated empirically using suitable, ground-truth known data 
through the use of receiver operating characteristic (ROC) plots. For a detailed discussion of ROC plots, the 
reader is referred to Peterson and Birdsall [55] and Green and Swets [56 57]. 

5.4 Summary 

The study of LR in theoretical settings provides useful guidance when dealing with problems of 
discriminating between two or more populations in real-life applications. However, since we never really 
know f1 or f2, we have to rely on available data and statistical models to develop surrogates for the 
theoretical LRs, and no theoretical optimality properties may be claimed in the Neyman-Pearson setting. 
Even under the Bayesian framework, there is no unique LR. A main thrust of this paper is to bring to the 
attention of the community that these surrogate LRs can have substantial disagreements with one another, 
and no unique authoritative model from which to derive an LR for public consumption exists. The 
usefulness of any particular surrogate LR as a discriminant score (sometimes referred to as an LR system; 
see Leegwater et al. [61]) has to be demonstrated empirically using tools such as ROC plots. 

6. Appendix B: Additional Results from the Glass Example 

In this section of the appendix, we display results for additional choices of F and G0. Choices 
considered here for G0 are χ2 distribution with 3 degrees of freedom (Fig. 10); an example symmetric, 
unimodal distribution (Fig. 11), and an example asymmetric, unimodal distribution (Fig. 12). 

The top plot in each fgure shows the 95 % Kolmogorov-Smirnov confdence band for the CDF of RI 
values from 49 fragments from a single window (Bennett Data). The empirical CDF is shown in gray. The 
faded red and green smooth curves, respectively, correspond to members of the chosen scale family with the 
smallest and largest scaling factors such that the discrete distributions obtained by accounting for 
interval-censoring in the reported data (shown using solid red and solid green line segments, respectively) 
are entirely contained within the confdence band. 

The bottom plot in each fgure displays the LR values corresponding to various choices for F , refected 
by position along the x-axis, and the scale factor used with the shape chosen for G0. The left-most results 
correspond to the estimate of F labeled as Jump, which is displayed in Fig. 2. The remaining positions 
refect the bandwidth of the Gaussian kernel leading to the estimate of F used in computing the LR. Within 
each choice of F , the LR values are staggered in order of the scale parameter used with G0 to emphasize the 
potential non-monotonic relationship between LR and the scale parameter. The points are color-coded to 
indicate the associated scale parameter values in accordance with the legend titled σwithin. 
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Fig. 10. LR values when G0 is a χ2 distribution with 3 degrees of freedom. 
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Fig. 11. LR values when G0 has the shape of the symmetric unimodal distribution shown. 
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Fig. 12. LR values when G0 has the shape of the unimodal distribution shown. 
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