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1. Overview

Among national metrological institutes, NIST operates the largest ensemble of time-serving computers
(timesevers) on the public Internet [1]. The approximately twenty [2] servers’ system clocks are 
synchronized to a time scale governed by atomic clocks and primary frequency standards [3], the 
laboratory’s realization of Coordinated Universal Time, UTC(NIST). The timeservers are geographically 
diverse, operate with independent synchronization links, and provide a source of time independent of 
Global Navigation Satellite Systems such as the Global Positioning System (GPS) [4]. Historically, traffic 
to the ITS has grown exponentially and now (at time of writing) exceeds 1.6 × 1010 requests daily (see Fig. 
1). Applications and demand for accurate network time transfer include securities trading [5], distributed 
databases [6], and realtime cyber-physical systems [7-9]. Generally, while information security applications 
do not yet require UTC at high resolution, they do rely on time accuracy and network integrity [10]. For 
these reasons, trusted, highly available primary sources of network time like the ITS are vital public 
resources. Industry forecasts predict even more classes of appliances will become networked (i.e., Internet 
of Things [11]), implying further significant growth potential in demand for network time. Therefore, it is 
important to understand ITS usage patterns in order to optimally use and provision ITS resources. 
      Since background information about network time transfer and the ITS [12] is available elsewhere, we 
cover only relevant details in Sec. 2. Thus far, the only published ITS usage statistics are daily request 
totals. In this work, we explore usage patterns in finer detail. In Sec. 3 we present new findings including 
temporal patterns in request rate, and estimates of the number, character, and behavior of unique clients. 
Given the large request rate (averaging over 28,000/s on one server), and the delay-sensitive nature of the 
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Fig. 1. a) Daily request rate (averaged weekly) to NIST’s Internet Time Service over nearly two decades of operation. The growth is 
not well described by a single exponential rate. A red-dashed line illustrates a doubling interval of 3.4 years, obtained by a least-
squares fit over the most recent 3000 days. b) On a logarithmic scale, we separately plot Network Time Protocol (blue) and other 
protocol (DAYTIME, TIME; red) request rates. 
 
 
application, the information capture process had to be fast, non-blocking, and stable; a description of 
methodology follows in Sec. 4. In Sec. 5 we make data-driven recommendations to consumers and 
providers of network time, and note how the same technology used in this study can be leveraged to help 
mitigate abusive traffic loads. 
 
 
2.  Introduction 
 
      Time transfer over the Internet is most often accomplished using the Network Time Protocol (NTP) 
[13, 14] in a client/server mode. NTP messages are terse; requests and replies consist of 48 byte payloads 
in connectionless User Datagram Protocol (UDP) packets [15] (normally 90 bytes in total). An interaction 
begins when client software sends a request to an ITS timeserver. The client uses the server’s reply, along 
with the measured interval between request transmission and reply reception (round trip delay) to infer 
offset- and rate-corrections to the local clock. The ITS supports two other legacy message formats, known 
as DAYTIME [16] and TIME [17], which account for fewer than 3 % of requests. Disadvantages of these 
include increased resource overhead due to use of the Transport Control Protocol (TCP) [15], no in-band 
estimation of round-trip delay [18], decreased timestamp resolution, no cryptographic authentication option 
[19], and no metadata for preventing synchronization ‘loops’ among peers. 
      Prior to this study we expected that the majority of ITS clients would generally adhere to the following 
important conventions in network time transfer: 

1. Clients should not use the ITS for on-demand network timestamps; rather they should optimally 
discipline their local clock’s offset and rate [14]. 

2. Transport asymmetry between request and reply on the public Internet is a dominant noise source 
[20]; in many algorithms this effect makes local clock synchronization worse if the client polls too 
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frequently. Therefore, clients should dynamically adjust their polling frequency according to 
observed noise levels. 

3. Clients on a local area network (LAN) should organize hierarchically, whereby a small fraction 
query the ITS and propagate their synchronized time to downstream peers. Downstream clients do 
not suffer in this arrangement because network delay over LANs is often orders-of-magnitude lower 
than public Internet routes. In the jargon of NTP, hosts physically connected to a time standard are 
assigned a stratum number s = 1, and all direct clients of a stratum s server are stratum s + 1, 
forming a hierarchy. 

      Software packages such as ntpd (part of the NTP reference implementation [21]), chrony [22], and 
openntpd [23] generally adhere to these guidelines by default (others in early development, like ntimed 
[24], may as well) 1. However, data presented here demonstrate that a significant fraction of ITS clients are 
not doing so. 
 
 
3.  New Results 
 
      For four weeks, we collected data on a single ITS timeserver thought to be typical, A. In a second 
month, we simultaneously studied two timeservers, A and B. For each inbound request, we recorded a 
timestamp, the requesting client’s IPv4 (Internet Protocol, version 4) address, and during the second month 
only, the request’s UDP or TCP port numbers. Certain other data (including full packet captures) were 
collected irregularly; further details are left to Sec. 4. 
 
3.1  Temporal Patterns in Traffic/Protocols 
 
      Figure 2a depicts intra-day variation in ITS requests. The dominant fluctuations are intense request 
bursts, almost an order-of-magnitude above average in size, synchronous with every UTC hour and half-
hour, an effect present but smaller in a study by the US Naval Observatory [25]. A detailed examination 
(Fig. 2b) shows qualitatively different behaviors between two classes of NTP client. Requests with a UDP 
source port number 123 (typical of ntpd software running in its default mode) are more likely to correlate 
(by factors of two to three above average) on a 00:05 minute (UTC) schedule. NTP requests bearing other 
source port numbers exhibit bursts, about 50 % above average, synchronized to each UTC minute. It is not 
straightforward to map client software to port numbers alone (see Sec. 4), but this observed behavior is 
inconsistent with the reference NTP client implementation. Table 1 summarizes the request and traffic 
loads in terms of data throughput, and relative share of each protocol. 
 
 

 
 
Fig. 2. a) ITS request rates as a function of time of day; the plot shows an average of 28 days. Dominating any diurnal variation are 
bursts of requests upon each UTC hour and half-hour. b) Typical time-series of request rates separated by protocol, with one point 
plotted per second on a logarithmic scale. MJD is the modified Julian date. Distinct behavior is observed between NTP requests using 
UDP source port 123 (higher request bursts on a 5-minute period) and other port numbers (regular bursts synchronous with every UTC 
minute). 

                                                 
1 Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does 
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials 
or equipment identified are necessarily the best available for the purpose. 
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Table 1. Request rate and ITS resource use. Though representing a small fraction of requests, the legacy protocols require roughly 
three times the network load per transaction. Due to abuse mitigation, not all requests receive replies. The 95th percentile throughput 
statistic represents traffic volume averaged over 5-minute intervals. Throughput estimates (Mbps is megabits-per-second) exclude 
transport overheads (e.g., Ethernet framing) which are significant for small packets, and auxiliary ITS network traffic such as leap-
second file dissemination. 
 

 Server 
        A                     B 
Average request rate (per second)  6368  28254  
Standard deviation of rate (per second)  1773  2847  
Maximum request rate (per second)  67340  96277  
Median data throughput (Mbps)  9.5  39.2  
95th percentile throughput (Mbps)  12.7  44.0  
   
Fraction of requests: NTP  95.2 %  99.4 %  
Fraction of requests: DAYTIME  3.1 %  0.2 %  
Fraction of requests: TIME  1.7 %  0.3 %  
Fraction of NTP from UDP port 123  17.0 %  11.5 %  
NTP as fraction of network load  87.8 %  98.5 %  

 
 
3.2  Client Census 
 
      Table 2 summarizes the count of unique IPv4 addresses observed during the study. The union of 
addresses observed during month 2 on servers A and B was approximately 316 million. There are 
232 ≈ 4.295 billion possible IPv4 addresses, about 3.702 billion of which are routable on the public Internet 
due to various assignments and definitions made by the Internet Engineering Task Force and the Internet 
Assigned Numbers Authority [28]. Therefore, over a single month, the two study servers together observed 
requests from at least 8.5 % of the Internet. Alternatively, these observed addresses correspond to 11.5 % of 
addresses present in a free commercial GeoIP database (see Sec. 3.3). We observed requests from 
approximately 30 % of routable /24 subnets, 62 % of routable /16 subnets, and all but two routable /8 
subnets (in this common notation, known as Classless Inter-domain Routing, a /k subnet is a contiguous 
block of 232−k IPv4 addresses, e.g. a /24 subnet contains 28 = 256 IPv4 addresses varying only in the least 
significant bits). Figure 3 illustrates the census of observed clients on a ‘map’ of the IPv4 Internet. Figure 4 
shows the ‘per-capita’ request rates summed over subnets of size /8 and /16. 
      Ideally, tallies of IPv4 addresses would correspond to unique users or at least unique client machines, 
but common network practices confound such identification [29]. Many internet service providers assign 
subscribers IPv4 addresses dynamically, such that a given client machine may change IPv4 addresses 
several times during the study month. An effect with the opposite bias is the practice of Network Address 
Translation (NAT), whereby several clients on a LAN share a single public IPv4 address. Translation of 
IPv6 traffic onto the IPv4 network is another NAT-like effect masking unique users. NAT also mutates 
UDP/TCP port numbers, confounding attempts to understand client software configurations. Finally, while 
some clients are configured to poll particular ITS timeservers, many use the globally load-balanced address 
time.nist.gov, which maps dynamically to the full server ensemble through a domain name system 
(DNS) weighted round-robin scheme [30]. Due to DNS caching, clients tend to ‘stick’ to server addresses 
after resolving time.nist.gov. 
 
 
Table 2. Count of unique client IPv4 addresses on the two study servers, A and B over study months 1 and 2. The intersection A∩B 
and union A∪B represent the count of IPv4 addresses observed on both/either server, respectively, during month 2. 
 

     Server A     Server B 
             Month 1                      2                          2  
Unique IPv4 addresses   220,049,239   232,922,423   202,430,796  
Fraction observed exactly once   25.5 %   25.6 %   26.2 %  
       
Month 2, A∩B        119,562,948 
Month 2, A∪B        315,790,271 
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Fig. 3. We observed a large fraction of the entire internet as ITS clients. Each pixel represents 1,024 IPv4 addresses (a /22 subnet), the 
color of which indicates the fraction observed as ITS clients of servers A or B during month 2. Blocks are bordered and labeled 
approximately by top-level allocation [26]; various reserved subnets are highlighted with gray shading. Addresses are arranged to keep 
consecutive subnets of all sizes in close proximity. Visualization tool: ipv4-heatmap [27]. 
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Fig. 4. To visualize the relative intensity distribution of request rates and user densities across different networks, we plot the number 
of requests observed vs. the number of unique requesting addresses grouped into the 221 observed /8 subnets (red open circles), and 
35,145 observed /16 subnets (blue points). The black solid line represents a minimum count of one request per IPv4 in a subnet. The 
black dashed line illustrates one request per IPv4 address per hour: an approximately representative trend. 
 
 
 
      We note that there is insufficient information in NTP request packets to unambiguously identify a 
requester’s operating system, hardware type, or exact NTP client software. Some useful information might 
be present in the case of clients using a source UDP port other than 123, since in many cases operating 
systems assign so-called ephemeral 16-bit port numbers from particular subsets of the full range. For 
example, many Linux kernels reportedly use the range 32768 through 61000. Figure 5 shows the 
distribution of UDP source port numbers in the NTP requests collected during study month 2. We do not 
attempt a quantitative analysis of this data to infer operating system, device-type, or client software 
distribution, because we lack detailed knowledge of diverse operating system behaviors, and because we 
fear a large portion of the data is likely mutated by NAT or similar network practices. 
      Acknowledging these caveats, we describe protocol use per unique IPv4 address in Table 3. We see 
some significant variation between the two servers: clients of B appear more likely use the DAYTIME 
protocol and to emit NTP requests from UDP port 123. Many clients using legacy protocols also use NTP. 
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Fig. 5. a) The distribution of observed UDP source port numbers in NTP requests during month 2; b) shows a detailed, re-scaled view 
of the lower port numbers. For port numbers other than the ntpd default of 123, some correlation with operating system or client 
software exists, but is not unambiguous or straightforward. Certain features are highlighted with decimal or hexadecimal tick labels. A 
red line depicts a uniformly random distribution. 
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Table 3. Breakdown of protocol use by unique IPv4 addresses during study month 2. 
 

       Server 
              A                    B 
Fraction of unique IPv4...      
    using NTP   98.4 %   96.2 % 
    using DAYTIME   1.1 %   5.9 %  
    using TIME   2.8 %   3.0 %  
    using NTP and one other   2.2 %   5.1 %  
    using all three protocols   0.1 %   0.1 %  
    using DAYTIME only   0.5 %   3.0 %  
    using TIME only   1.1 %   0.8 %  
     
Fraction of NTP-using IPv4...  
    from port ≠123 only   93.3 %   73.6 %  
    from port =123 only   3.0 %   12.8 %  
    from both port types   3.7 %   13.5 %  

 
 
      How often do clients poll the ITS? We propose two simple constructions for analyzing a client’s 
average polling interval. The first measure, suited to describing ‘persistent’ clients, is defined by 
 

            total
1

requests

( ) = ,
( )

T
T a

N a
     (1) 

 
where total 28T ≈  days is the duration of data collection and requests ( ) > 1N a  is the number of requests logged 
for IPv4 address a. The second method, better suited for describing ‘ephemeral’ clients seen only for brief 
intervals, is defined as 
 

        2
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T a
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where ( )ft a  and ( )it a  are the latest and earliest request timestamps (integers, in seconds) recorded for 
address a in month 2. Figure 6 shows a histogram of these polling periods. To match the long-standing 
tradition of ntpd querying at intervals equal to integer power-of-2 seconds, we bin observations by nearest 
integer ( )2= round ( /1s)logi ip T  for methods = 1,2i  (the +1 in the numerator of Eq. (2) ensures that the 
logarithm exists). A common default configuration in ntpd allows 16  1 10(64 s 1024 s).p T≤ ≤ ≤ ≤  A 
persistent period 1 < 2p  constitutes an abuse of ITS terms of service. Many popular client implementations 
employ ‘burst-on-startup’ features, whereby 4≈  initial requests occur rapidly. Such transitory bursts do 
not necessarily constitute abusive behavior, but may trigger reply-limiting logic in ITS systems. Observed 
artifacts of these startup-bursts are annotated in Fig. 6. The general trend in persistent polling periods is a 
roughly exponential distribution; perhaps surprisingly, no large surplus is observed in the range 

16 10p≤ ≤ . 
 
3.3  Correlations with GeoIP 
 
      GeoIP databases correlate IPv4 addresses with additional information about operators or service 
providers: registering country or region, geographic locale (e.g., city), or autonomous system (AS) 
identifying a routing entity in the border gateway protocol (BGP) [31]. Servers A and B observed requests 
corresponding to 244 of the 250 countries/regions, and from at least 71 % of the 49,826 ASs defined in a 
free commerical GeoIP database [32]. The database entries covered 2.74 billion IPv4 addresses; only 
0.01 % of observed IPv4 addresses had no entry in the database. 
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Fig. 6. Observed average client ITS polling intervals, defined heuristically assuming ‘persistent’ clients T1 (Eq. (1)) or ‘ephemeral’ 
clients T2 (Eq. (2)) during month 2. We follow a ntpd configuration convention, logarithmically binning Ti results into integers 
pi = round(log2 Ti), where Ti have units of seconds. We plot the cumulative distribution function (CDF) of addresses having a given pi 
or lower, and separately on the right, the fraction of IPv4 addresses observed with exactly one request during month 2. Characteristic 
intervals are labeled along the top axis for convenience. 
 
 
4.  Methodology 
 
      For data collection, we authored a relatively simple program called alpaca (‘a lightweight packet 
capturer’) [33], making use of the network packet capture library libpcap [34] and the BSD packet filter 
module bpf [35]. alpaca only performs data collection and compression; analysis occurs offline. 
Gathering network traffic information this way has several advantages. First, no modification or processing 
is added to the software responsible for the NTP and legacy protocol services. Second, the extra processing 
occurs on separate threads and packet queues, decoupling asynchronous delays. Third, bpf already 
specifies a precise and efficient packet filter description language and is compatible with high packet 
input/output rates. The extra CPU-load measured ≤ 0.01 % except during periods of logfile compression, 
which occurred hourly on a separate low-priority thread. By comparison, the average NTP service CPU 
load was approximately 15 %. From independent tests using bpf as a firewall filter, added latency per 
incoming packet was ≤ 1 µs. We performed other statistical tests using the packet capture software 
tcpdump [35], including validation of alpaca and inspection of NTP packet content (see Table 4 and 
Fig. 7). 
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Table 4. NTP packet internal variables [14], collected from a sample of ≈ 300 million requests to server A. Analysis reveals some 
information about client software among users, especially that use of Simple-NTP (SNTP) and obsolete NTP is common (see Sec. 5 
for details). 
 

leap field:    stratum field:    ref id field: 
    0 (no leap second)   73.37 %        0 (unspecifed)   88.78 %        all zeros   90.55 %  
    1 (pos. leap second)   0.01 %        1 (primary)   0.05 %        server A’s IPv4   5.81 %  
    2 (neg. leap second)  < 0.01 %        2   7.62 %        other non-zero value   3.64 %  
    3 (unsynchronized)   28.46 %        3   0.28 %  
         4   0.08 %  
ntp version field:          5   0.02 %  
    1   15.76 %        6  < 0.01 %  
    2   0.49 %        7  < 0.01 %  
    3   50.32 %        8   0.01 %  
    4   33.42 %        9  < 0.01 %  
    other values  < 0.01 %        10  < 0.01 %  
         11   0.11 %  
ntp mode field:          12   0.01 %  
    0 (reserved)   0.51 %        13  < 0.01 %  
    1 (symmetric)   1.25 %        14   0.01 %  
    3 (client)   98.24 %        15   3.01 %  
    other values   0.01 %        reserved (16–255)  < 0.01 %  

 
 
 
      By design, alpaca collects little information per packet: the originating IPv4 address (4 bytes), an 
arrival timestamp in seconds (4 bytes), and optionally, source and destination UDP or TCP port numbers (2 
bytes each). Since many thousand requests arrive per second, alpaca’s file format conserves storage by 
recording the timestamp just once per second along with checksum and terminator words (4 bytes each). 
For server B’s average request rate of about 28,000/s, these data accumulated at 0.214 MB/s or 
541 GB/month. We chose local servers A and B for ease of data retrieval. For completeness, Table 5 
contains additional details about the study, including a count uncertainty estimate. IPv6 use presently 
accounts for < 0.1 % of ITS traffic and was ignored for this initial study. Authenticated [19] NTP requests 
account for < 0.03 % of ITS requests, and are not available on servers A and B. 
 
 
5.  Analysis and Findings 
 
      We conclude with findings relevant to ITS users, software developers, and network time providers. In 
some cases, we speculate as to likely causes of the observations. We limit our comments to observed usage 
patterns and specifically exclude discussion about protocol security. 
      Synchronized polling is discouraged.  Perhaps the best news concerning the burst patterns in Fig. 2 is 
that the requesters are generally on-time. Bursts at the beginning of UTC hours, half-hours and minutes is 
inconsistent with current versions of software such as ntpd, which poll at intervals of 2n seconds (where n 
is a dynamically-chosen positive integer), with randomized offsets to prevent network bunching. Instead, 
the spikes are consistent with manually scheduled tasks (e.g., cron jobs) to poll the ITS (or start/restart 
ntpd) at defined times of day, perhaps local noon, midnight, or half-hour offsets. 
      We discourage this use pattern, because an arbitrarily fixed polling interval un-optimally corrects the 
local clock and tends to be synchronized with many thousands of other clients, even with mitigating factors 
such as picking a ‘random’ UTC minute offset. During request spikes, requests are more likely dropped by 
network elements, and delay magnitude and asymmetry increase. A second practice consistent with this 
pattern is a scheduled monitoring process which, rather than synchronizing the local clock, polls the ITS for 
verification only. Generally this is not necessary; nearly all clock synchronization software can generate 
logs of local clock offset without the need for additional ITS polling. If a distinct monitoring process is 
required, users should: a) not synchronize its polling with the start of a UTC minute, and b) strictly limit the 
number of systems per organization polling the ITS directly. Peers within a LAN should monitor/verify 
each other, with a select few polling ITS for external validation. 
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Fig. 7. Cumulative distribution functions (CDFs) of NTP packet internal variables [14], collected from a sample of ≈ 300 million 
requests to server A (with version 3 or 4). While the ITS ignores these values, they offer a perspective on client 
(mis-configurations. a) poll and precision fields are 8-bit signed integers n representing quantities 2n in seconds. In b), we 
highlight the majority of requests on a linear scale; un-plotted values were never observed in the sample. poll should declare a 
client’s persistent polling interval p1 = round(log2 T1) (T1 in units of seconds; see Eq. (1)), but many clients apparently fix poll to 0 
or 4. A small population exhibits varied but implausibly small poll < 0 or large poll > 32 values. The precision field should be 
a client’s estimated resolution or statistical noise in reading its system clock. We observe large precision values −6 or 0 for many 
clients. A small population exhibits implausibly small or large values precision ≤ −32, precision > 0. For context, a resolution 
of a few microseconds typical of modern systems should yield a precision of about −18. c) The root-delay field should 
represent the measured round-trip network delay between a client and its ultimate stratum-1 reference. root-dispersion should 
characterize reference clock noise as observed by a client. These quantities are transported as 16-bit unsigned whole integers and 16-
bit fixed-point fractions of seconds. As discussed in Sec. 5, the fact that large populations fix these parameters to either 0 s or 1 s 
implies Simple-NTP (SNTP) is favored over strict NTP. 
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Table 5. Details about the two servers studied. Here, ε is the approximate fraction of total ITS requests (at the time, ≈ 12.5 billion 
daily) each server received during the study intervals. Ttimestamps is the number of integer second timestamps for which any data was 
recorded; Tmissing is the number of ‘gaps’, or timestamps not recorded due to a buffer overflow or other error. Ncaptured is the total 
number of requests recorded; in month 1 we recorded NTP only. For TCP requests, only the initiating SYN packet is counted. Ndropped 
is a parameter reported by libpcap: the number of packets dropped by the kernel interface. The undercounting rate lies between the 
larger of ηT and ηN (defined below), and their sum, depending on how often these loss mechanisms coincided. We know of no over-
counting bias. 
 

                                 Server A                                                        Server B 
Hostname  time-a.timefreq.bldrdoc.gov utcnist2.colorado.edu 
IPv4 address  132.163.4.101   128.138.141.172 
ITS load fraction ε  5 %    19 % 
       
Collection interval   Month 1   Month 2   Month 2  
Earliest record (UTC)   12-Mar-2015 20:10:03   7-May-2015 20:58:46   7-May-2015 20:58:46  
Last record (UTC)   8-Apr-2015 20:21:14   4-Jun-2015 20:58:45   4-Jun-2015 20:58:46  
Nominal duration   28 days   28 days   28 days  
Ttimestamps (seconds)   2,419,748   2,419,094   2,417,584  
Tmissing (seconds)   119   106   1617  
ηT = Tmissing/Ttimestamps   0.49 %  0.44 %   6.69 %  
Ncaptured (requests)   15,200,578,867   15,405,012,792   68,305,545,881  
Ndropped (requests)   246,243   320,481   9,411,446  
Approx. average daily requests   543 million   550 million   2,440 million  
ηN = Ndropped/Ncaptured   0.16 %   0.21 %   1.38 %  
η = ηT + ηN   0.65 %   0.65 %   8.07 %  

 
 
 
      Use of obsolete NTP and SNTP is common.  Table 4 shows that a majority of sampled NTP requests 
exhibit a version below the current value, 4. While the message format is unchanged from version 3, the 
synchronization servo is much improved in later versions. Also, it is likely that security issues [10, 36] will 
be remedied only for current clients. Simple-NTP (SNTP) [14] shares NTP’s messaging format but 
implements fewer features, such as use of the stratum distribution model; popular implementations include 
sntp and ntpdate [21]. Inspection of request packet variables imply widespread use of SNTP: about 
90 % of requests have ref-id [14] or stratum fields set to 0 (see Table 4), and about half have poll, 
precision, root-delay, and root-dispersion fields set to 0 (see Fig. 7). Another large cohort 
fixes root-delay, and root-dispersion at 1 s. This is further evidence that many clients, likely 
SNTP-based, are not making use of the hierarchy model of NTP time distribution and are therefore sub-
optimally consuming ITS resources. 
      Generally, clients are non-abusive.  Figure 6 shows that even with common ‘burst-on-startup’ features, 
over 90 % of unique IPv4 addresses poll a server with an average period of T2 ≥ 512 s. On a persistent 
basis, over 99 % of client addresses exhibit T1 ≥ 512 s. Clearly abusive persistent traffic rates, with T1 ≤ 1 s, 
originate from 10−6 to 10−5 of observed addresses. These facts mean that address lookup tables for ITS 
abuse mitigation algorithms need not be very large. 
      Migration from legacy protocols is encouraged.  The present work confirms that legacy protocols 
represent a small and decreasing fraction of ITS requests. The DAYTIME protocol contains one useful 
datum not in NTP: a count of days before transitions to and from Daylight Saving Time (DST) in the 
United States. Clients who make use of this information should limit their DAYTIME polling to once per 
day. In cases where legacy systems require frequent DAYTIME responses, clients should implement local 
DAYTIME servers on their LAN. 
      Many ITS clients per organization is discouraged.  During analysis, we noticed thousands of instances 
of ≥ 250 addresses sharing the first three IPv4 octets (i.e., almost all hosts in a /24 subnet) polling an ITS 
server persistently. Such behavior is strongly discouraged; one or a few client machines should poll ITS 
timeservers and relay their results to downstream clients, as prescribed in NTP’s stratum model. 
Hypothetically, future ITS terms of service might limit access to logical blocks of IPv4 or IPv6 addresses 
which cumulatively exhibit high request rates. 
      Polite polling of more than one ITS server is encouraged.  About half of IPv4 addresses were observed 
to poll both servers A and B. This is due in part to recommended client use of the DNS load-balanced 
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hostname time.nist.gov. For critical applications, there is good reason to diversify the stratum-1 
timeservers to which one refers. Each stratum-1 server generally has a single connection to an atomic clock 
and no other time reference. Occasional hardware failures can temporarily steer a stratum-1 system clock 
erroneously. In contrast, a stratum-2 system using several independent stratum-1 references can detect and 
mitigate these errors when their magnitudes rise above network noise and system clock jitter. However, we 
strongly recommend that any client concurrently polling multiple ITS servers adhere to a hierarchy model 
within an organization. 
      Packet filtering recommended for abuse mitigation.  Often, the most efficient method of dealing with 
abusive request traffic (including denial-of-service attempts) is to simply not reply; malicious clients are 
unlikely to respect the in-band ‘cease’ signal [37]. The same kernel-level packet filter used to collect this 
study’s data can serve to rate-limit individual IP addresses, across all protocols, with lookup tables of 
configurable size, expiry criteria, and logging [38]. Filtering at the kernel-level relieves the NTP service of 
such ancillary processing. For TCP protocols, an additional benefit of kernel-level packet filtering is the 
suppression of abusive requests before the issuance of TCP handshaking [15], which consumes server 
memory and processing time. 
 
5.1  Conclusions 
 
      Inspection of a portion of ITS inbound traffic has revealed a client base spanning a significant fraction 
of the Internet. We were surprised to observe significant temporal bunching of requests, prevalent use of 
the SNTP protocol variant and obsolete NTP versions, all of which likely represents suboptimal use of ITS 
resources. Future studies could be improved by inclusion of IPv6 traffic, a larger selection of servers under 
study, and quantification of the technical delay as a function of inbound traffic volume. 
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