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SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch 
learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled 
conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic 
nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the 
efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the 
(re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter 
that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm, 
after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled 
conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together 
with results from running SAGRAD on two examples of training data. 
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1.  Introduction 
 
      Neural networks are computational models that work by simulating the way the brain processes 
information. They are often used to recognize patterns in a data set, say X , in Euclidean d − dimensional 
space, d  some positive integer. Once the neural network is appropriately trained on representative sample 
patterns of X , it can then be used for attempting to recognize other patterns in X  as they are fed through 
the network. Accordingly, it is assumed X  is partitioned into n  distinct types/classes of patterns, n  some 
positive integer. 
      Let A  be a set of training data for X , i.e., a subset of X  in which the n  distinct types/classes of 
patterns are well represented. The basic structure of a neural network associated with X  (to be trained on 
A ) consists of layers or columns of mostly computing nodes, or neurons, arranged from left to right (see 

Fig. 1) in such a way that the result of a computation at each neuron in a layer contributes to the input of 
neurons in the next layer. The layer at the extreme left of the network is called the input layer of the 
network (see Fig. 1) and consists of 1d +  neurons. A pattern vector in X , say = { }ka a , = 1, ,k d , is 
introduced into the network through the input layer as follows: a  is augmented to be of dimension 1d +  by 
setting 1da +  equal to 1; neurons in the input layer are labeled with integers from 1 to 1d + ; and for each 
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Fig. 1. A 4-layer neural network. 
 
 
k , = 1, , 1k d + , coordinate ka  is assigned to neuron k  (neuron with label k ) and as such interpreted to 
be the output of neuron k  (neuron 1d +  is called a bias neuron and its output is 1 for all patterns). The 
layer immediately to the right of the input layer, unlike the input layer, consists of computing neurons 
(except for the last neuron which is a bias neuron). From left to right in the network it is the first layer with 
computing neurons and as such is called the first layer of the network (the layer immediately to the right of 
this layer is called the second layer of the network, and so on). Like the input layer, the first layer has 1d +  
neurons which are then labeled with integers from 2d +  to 2 2d + . Given integer i , 2 2 1d i d+ ≤ ≤ + , a 
number ix  is designated the input to neuron i  (in the first layer) which is a weighted sum of the outputs of 
the input layer (the coordinates of the augmented pattern a ) expressed as 1

=1
= d

i ki kk
x w a+∑ . Here for each 

k , = 1, , 1k d + , kiw  is the weight modifying the pattern coordinate ka  before it is fed into neuron i  (as 
part of ix ). In order to make neuron i  into a computing neuron, the sigmoid activation function 

( ) = 1/(1 )xx eσ −+  is assigned to it. σ  is a function with derivatives of all orders and values between 0 and 
1. = ( )i iy xσ  is then designated the ouput of neuron i , 2 2 1d i d+ ≤ ≤ + , while 2 2 = 1dy +  is designated 
the output of neuron 2 2d +  (the bias neuron). Inductively, given layers M  and L , consecutive layers in 
the network from left to right; { }my , the set of outputs of neurons in layer M ; 1l , 2l , 1 2<l l , integers such 
that neurons in layer L  are labeled with integers from 1l  to 2l ; and neuron l , a neuron in layer L , 

1 2 1l l l≤ ≤ − ; then a number lx  is designated the input to neuron l  which is a weighted sum of the outputs 
of layer M  expressed as =l ml mm

x w y∑ . In addition the same sigmoid activation function σ  defined 

above is assigned to neuron l  and = ( )l ly xσ  is designated the output of neuron l , 1 2 1l l l≤ ≤ − , while 

2
= 1ly  is designated the ouput of neuron 2l  (the bias neuron of layer L ). 

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009


 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 115 http://dx.doi.org/10.6028/jres.120.009 

 

      The layer at the extreme right of the network is called the output layer of the network (see Fig. 1). 
Layers between the input layer and the output layer are called hidden layers (in Fig. 1 the first layer and 
second layer of the network are the only hidden layers), and hidden layers to the right of the first layer 
(there is only one, the second layer of the network, in the network of Fig. 1) are all assumed to be of the 
same length, i.e., to consist of the same number of neurons, a number greater than 1 and preferably greater 
than d  and n . For consistency with definitions above involving consecutive layers M  and L  we assume 
at first that the output layer contains a bias neuron besides n  computing neurons. As will become apparent 
below, there is a one-to-one correspondence between the n  computing neurons in this layer and the n  
classes of patterns (as defined for X ) into which the set A  of training data can be partitioned. After 
reducing the number of neurons in the output layer to n  by dropping the dummy bias neuron in the layer, 
so that for some positive integer nq , nq  is the total number of neurons in the network, neurons in the 
output layer are then labeled with integers from 1nq n− +  to nq . Additionally, letting nw  be the total 
number of weights in the network, a natural order can be established for weights so that any given set of 
nw  weights can be uniquely identified with a vector, called a weight vector, in weight space, the Euclidean 
space of dimension nw , and vice versa. 
      Given a pattern a  in A , then for some q , 1 q n≤ ≤ , a  is in class q , and an n − dimensional vector 

( ) = { ( ) }mr a r a , = 1, ,m n , called the desired response for a , is defined by setting ( )qr a  equal to 1 and 
( )mr a  equal to 0 for = 1, ,m n , =m q . Another n − dimensional vector ( ) = { ( ) }mo a o a , = 1, ,m n , 

called the actual output for a , is defined by setting ( )mo a  equal to the output for a  of the thm  neuron in 
the output layer (neuron with label nq n m− + ) for each m , = 1, ,m n . The (total) squared error between 
desired responses ( )r a  and actual outputs ( )o a , a  in A , is then 
 

2 2

=1
( ) = 1/2 | ( ) ( ) | = 1/2 ( ( ) ( ) ) ,

n

m m
a A a Am

E w r a o a r a o a
∈ ∈

− −∑ ∑∑
 

 
where w  is the unique vector in weight space corresponding to the current set of weights in the network. 
As E  is implicitly defined in terms of compositions of linear functions between layers in the network and 
activation functions assigned to neurons in the network, E  has partial derivatives of all orders at any w . 
Accordingly, any optimization method of the gradient kind can be applied for the purpose of hopefully 
minimizing E . If the result of training the neural network on A , i.e., minimizing E  (with gradients, 
metaheuristics, etc.), is a weight vector w  at which E  is zero then it must also be true that the neural 
network defined by w  classifies correctly all patterns in the set A  of training data, i.e., identifies correctly 
the class to which each pattern belongs. We say then that w  is a reasonable solution. Additionally, if a 
subset of \X A  is also available in which the n  distinct types/classes of patterns are also well represented, 
and each pattern in the subset is of known classification, then the neural network defined by w  should be 
applied on such a subset for classification results. If the results for a good percentage of the patterns in the 
subset, say over 90 %, are correct then we say that besides being a reasonable solution, w  is also a quality 
solution.  
      In this paper we discuss SAGRAD, a Fortran 77 program for computing neural networks for 
classification using batch learning. Classification is one of the most important applications of neural 
networks. An extensive survey on neural networks for classification can be found in [18]. On the other 
hand, batch learning is exactly the type of training described above where all patterns in training data are 
introduced into the network before the training of the network or minimization of the total error E  begins. 
This is in contrast with on-line learning where training of the network is done one pattern at a time: each 
time a pattern in the training data is introduced into the network, training of the network takes place 
immediately starting at the current solution obtained from introducing the previous pattern, and the training 
is done only on exactly those patterns, including the current one, that have been introduced into the network 
so far. 
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      Neural network training in SAGRAD is based on a mixture of simulated annealing [15] and Møller’s 
scaled conjugate gradient algorithm [7, 9], the latter a variation of the traditional conjugate gradient method 
[5], better suited for the nonquadratic nature of neural networks. In what follows an outline of Møller’s 
algorithm is presented that closely resembles the implementation of the algorithm in SAGRAD. In addition, 
other aspects of the implementation of the training process in SAGRAD are discussed such as the efficient 
computation of gradients and multiplication of vectors by Hessian matrices that take place in Møller’s 
algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm 
the first time and each time thereafter that it shows insufficient progress in reaching a possibly local 
minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable 
progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the simulated 
annealing procedure and the training process used in SAGRAD are also presented together with results 
from training with SAGRAD data for two examples. A copy of SAGRAD can be found at 
http://math.nist.gov/~JBernal. 
 
 
2.  Scaled Conjugate Gradient Algorithm 
 
      SAGRAD is based on a combination of simulated annealing [15] and Møller’s scaled conjugate 
gradient algorithm [7, 9] for minimizing the total squared error E  as a function of weights. Møller’s 
algorithm, an outline of which is presented below, is based on the well-known conjugate gradient method 
[5] which works well for quadratic or nearly-quadratic functions. Since the Hessian matrix ( )E w′′  of the 
squared error function E  at w  may not be positive definite for w  in certain areas of weight space, Møller 
modified the conjugate gradient method based on the approach of the Levenberg-Marquardt algorithm [2]. 
If at some point during the execution of the conjugate gradient method for some p  and w  in nw−
dimensional Euclidean space = ( )tp E w pδ ′′  is computed resulting in a nonpositive δ , one makes δ  
positive by adding tp pλ  to it for some > 0λ , i.e., by scaling the Hessian matrix ( )E w′′  with the 
appropriate > 0λ  so that δ  becomes ( ( ) )tp E w I pλ′′ + , I  the identity matrix. Once λ  is initialized it is 
used and adjusted appropriately throughout the execution of the algorithm so that each δ  computed as 
above remains positive. However, since the accuracy of the conjugate gradient method depends on 
approximating ( )E w  with a quadratic function that involves ( )E w′′ , care must be taken that the scaled 

( )E w′′  does not produce a bad approximation. This is again taken care of by appropriately raising and 
lowering λ . The outline of the scaled conjugate gradient algorithm below includes the manipulations for 
raising and lowering λ . Here the column vector ( )E w′  is the gradient of E  at weight vector w . The 
outline closely resembles the implementation of Møller’s algorithm in SAGRAD. 

1. Initialize weight vector 0w , 
= 0k , 6

1 = 10ε − , 4
2 = 10ε − , 0 2=λ ε , 0 = 0λ , 0 0 0= = ( )r p E w′− , 

=success true . 
2. Calculate second-order information: = ( )k k ks E w p′′ , = t

k k kp sδ . 
3. Scale Hessian matrix: 2= ( ) | |k k k k kpδ δ λ λ+ − . 
4. If 0kδ ≤  then scale Hessian matrix to make it positive definite: 

2= 2( / | | )k k k kpλ λ δ− , 2= | |k k k kpδ δ λ− + , =k kλ λ . 
5. Calculate the step size: = t

k k kp rµ , = /k k kα µ δ . 
6. Calculate the comparison parameter k∆ : 1 =k k k kw w pα+ + , 

2_ = ( ) ( ) 1/2( ( ) | | )t t
k k k k k k k k k k k kE q E w E w p p E w p pα α α λ α′ ′′+ + + , 

2
1 1= [ ( ) ( )]/[ ( ) _ ] = 2 [ ( ) ( )]/k k k k k k k kE w E w E w E q E w E wδ µ+ +∆ − − − . 

7. Test for error reduction: 
If 0k∆ ≥  then a successful error reduction can be made: 
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1 1=k kw w+ + , 1 1= ( )k kr E w+ +′− . 
If 1 1| |<kr ε+  then terminate and return 1kw +  as the desired minimum, perhaps not a global 
minimum. 
If =success false  or mod = 0k nw  then restart: 1 1=k kp r+ + , 1 2=kλ ε+ , 1 = 0kλ + , = 1k k + , 

=success true , and go to step 2. 
Else (if =success true  and mod = 0k nw ) then create new conjugate direction: 

2
1 1= (| | )/t

k k k k kr r rβ µ+ +− , 1 1=k k k kp r pβ+ + + . 
If 0.75k∆ ≥  then reduce the scale parameter: = 1/2k kλ λ . 
Else (if < 0k∆ ) error reduction is not possible: 

=k kλ λ , =success false . 
8. If < 0.25k∆  then increase the scale parameter: = 4k kλ λ . 
9. if =success false  then go to step 3. 

Else set 1 = 0kλ + , 1 =k kλ λ+ , = 1k k + , and go to step 2. 
 
 
3.  Computing the Gradient 
 
      In order to attempt to minimize the error E  as a function of w  using the scaled conjugate gradient 
algorithm as described above, the capability must exist for the efficient computation of the gradient ( )E w′  
of E  at w  and multiplication of a vector by the Hessian matrix ( )E w′′  of E  at w . In this section we 
develop formulas used in SAGRAD for the computation of the gradient ( )E w′  as presented in [4]. They 
originate from the so-called delta rule in [13], [17]. 
      Given a A∈ , w  in weight space, the error at w  due to a  is 2

=1
( ) = 1/2 ( ( ) ( ) )n

a m mm
E w r a o a−∑ . Thus, 

( ) = ( )aa A
E w E w

∈∑ . Writing w  as { }kw , = 1, ,k nw , it follows that / = /k a ka A
E w E w

∈
∂ ∂ ∂ ∂∑  for each 

k , = 1, ,k nw . Therefore, by fixing a  in A , in what follows it will suffice to develop only the formulas 
associated with aE . 
      As will become apparent from the formulas below, the calculations of the partial derivatives of aE  with 
these formulas must take place in a specific order, from right to left in the network. This is because each 
calculation corresponding to a given weight depends on calculations corresponding to other weights in the 
network to the right of the given weight. Computing in this manner is called backpropagation, originally 
described in [16]. However, it is an implementation issue that is taken care of in SAGRAD and not 
necessary for the development of the formulas. 
      Consider layers K , M , L , consecutive layers in the network from left to right, { }ky , the set of 
outputs of neurons in layer K , { }my , the set of outputs of neurons in layer M , and { }lx , the set of inputs 
of computing neurons in layer L . In particular consider jy , the output of some neuron in layer K , and ix , 

iy , the input and output, respectively, of some computing neuron in layer M . In addition, for each ky  as 
above let kiw  be the weight such that =i ki kk

x w y∑ ; and for each my  and lx  as above let mlw  be the 

weight such that =l ml mm
x w y∑ . 

      Case 1. Layer K  is not the input layer and layer M  is a hidden layer so that layer L  is either a hidden 
layer or the output layer. 
      Using the chain rule repeatedly we then get 
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( ) ( )
= = = = .

ki k
ji ja a i a k a a

j
ji i ji i ji i ji i

w y w yE E x E E E
y

w x w x w x w x

∂ ∂∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∑

 
 

= = ( ).a a i a
i

i i i i

E E y E
x

x y x y
σ

∂ ∂ ∂ ∂ ′
∂ ∂ ∂ ∂  

 
( )

( )
= = = = .

ml m
a a l a m a il i a

il
l l l li l i l i l i l

w y
E E x E E w y E

w
y x y x y x y x

∂
∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∑
∑ ∑ ∑ ∑  

 
      Thus, 
 

= = ( ) = ( ) ( ) .a a a a
j i j il i j

lji i i l

E E E E
y x y w x y

w x y x
σ σ

∂ ∂ ∂ ∂′ ′
∂ ∂ ∂ ∂∑

 
 
      Case 2. Layer K  is the input layer so that layer M  is the first layer in the network. Then { }ky  can be 
replaced by { }ka , the set of coordinates of input pattern a . 
      Thus, =i ki kk

x w a∑ , and 
 

= .a a
j

ji i

E E
a

w x
∂ ∂
∂ ∂  

 
      Once again 
 

= ( )a a
i

i i

E E
x

x y
σ

∂ ∂ ′
∂ ∂  

 
and 
 

= .a a
il

li l

E E
w

y x
∂ ∂
∂ ∂∑

 
 
      Thus, 
 

= = ( ) = ( ) ( ) .a a a a
j i j il i j

lji i i l

E E E E
a x a w x a

w x y x
σ σ

∂ ∂ ∂ ∂′ ′
∂ ∂ ∂ ∂∑

 
 
      Case 3. Layer M  is the output layer of the network so that there is no layer L . 
      Then once again 
 

=a a
j

ji i

E E
y

w x
∂ ∂
∂ ∂  

and 
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= ( ).a a
i

i i

E E
x

x y
σ

∂ ∂ ′
∂ ∂  

 
      With { }my  ordered so that for = 1, ,m n , = ( )m my o a  then 2

=1
( ) = 1/2 ( ( ) ( ) ) =n

a m mm
E w r a o a−∑  

2
=1

1/2 ( ( ) )n
m mm

r a y−∑ , so that 
 

= ( )a
i i

i

E
y r a

y
∂

−
∂  

 
and 
 

= = ( ) = ( ( ) ) ( ) .a a a
j i j i i i j

ji i i

E E E
y x y y r a x y

w x y
σ σ

∂ ∂ ∂ ′ ′−
∂ ∂ ∂  

 
      Note that in all cases ( ) = (1 )i i ix y yσ ′ − . 
 
 
4.  Fast Exact Multiplication by the Hessian 
 
      In this section we develop the formulas used in the implementation of the scaled conjugate gradient 
algorithm in SAGRAD for the fast exact computation of the product of the Hessian matrix ( )E w′′  with an 
nw− dimensional vector v  in the context of Møller’s algorithm. With these formulas the calculation of the 
complete Hessian matrix is avoided. These formulas were originally derived by Pearlmutter [12] and 
Møller [8, 9], and involve the so-called {}⋅  operator. As in the case of the gradient ( )E w′ , by fixing a  in 
A , in what follows it will suffice to develop only the formulas associated with aE . These formulas depend 

on the formulas developed above for the computation of the gradient ( )E w′ , thus simultaneously as ( )E w′  
is computed with backpropagation, the exact product of v  and ( )E w′′  is computed with these formulas in 
either a feed-forward fashion or in the manner of backpropagation. But again this is an implementation 
issue that is taken care of in SAGRAD and not necessary for the development of the formulas. 
      Let f  be a differentiable function from nw− dimensional Euclidean space into any other finite-
dimensional Euclidean space. The {}v ⋅  operator or simply the {}⋅  operator is defined by 
 

=0{ ( )} ( ) | = ( ) ,v r
df w f w rv f w v
dr

′≡ +
 

 
where ( )f w′  is the Jacobian matrix of f  at w . In particular { ( )} = ( )v E w E w v′ ′′ . Writing w  as { }kw , 

= 1, ,k nw , it also follows that for each k , = 1, ,k nw , { /v kE w∂ ∂ } is the thk  component of ( )E w v′′ . 
      Given g , a differentiable function with domain and range appropriately defined, c  a real number, then 
some equations involving {}⋅  are satisfied: 
 

   { ( )} = { ( )}cf w c f w   
   { ( ) ( )} = { ( )} { ( )}f w g w f w g w+ +    
   { ( ) ( )} = { ( )} ( ) ( ) { ( )}f w g w f w g w f w g w+    
   { ( ( ))} = ( ( )) { ( )}g f w g f w f w′   
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{ ( )} = { ( )}d df w f w

dt dt
 

 
   { } = .w v  
 
      With these equations and the formulas obtained in the previous section for the components of ( )aE w′ , 
the formulas for the components of ( )aE w v′′  can be derived. In what follows weights are doubly indexed. 
Since there is a one-to-one correspondence between the components of w  and v  then the components of v  
will be similarly indexed. 
      As in the previous section, consider layers K , M , L , consecutive layers in the network from left to 
right, { }ky , the set of outputs of neurons in layer K , { }my , the set of outputs of neurons in layer M , and 
{ }lx , the set of inputs of computing neurons in layer L . In particular consider jy , the output of some 
neuron in layer K , and ix , iy , the input and output, respectively, of some computing neuron in layer M . 
In addition, for each ky  as above let kiw  be the weight such that =i ki kk

x w y∑ ; and for each my  and lx  as 

above let mlw  be the weight such that =l ml mm
x w y∑ . 

      Case 1. Layer K  is not the input layer and layer M  is a hidden layer so that layer L  is either a hidden 
layer or the output layer. 
      Applying {}⋅  on ix  and iy , we get the feed-forward formulas: 
 

{ } = { } = { } = ( { } { }) = ( { }).i ki k ki k ki k ki k ki k ki k
k k k k

x w y w y w y w y v y w y+ +∑ ∑ ∑ ∑       

 
{ } = { ( )} = ( ) { }.i i i iy x x xσ σ ′    

 
      Applying {}⋅  on /a jiE w∂ ∂ , /a iE x∂ ∂ , /a iE y∂ ∂ , as computed in the previous section for case 1, we get 
the backpropagation formulas: 
 

{ } = { } = { } { }.a a a a
j j j

ji i i i

E E E E
y y y

w x x x
∂ ∂ ∂ ∂

+
∂ ∂ ∂ ∂

   
 

 

{ } = { ( )} = { } ( ) { ( )} = { } ( ) ( ) { }.a a a a a a
i i i i i i

i i i i i i

E E E E E E
x x x x x x

x y y y y y
σ σ σ σ σ

∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′′+ +
∂ ∂ ∂ ∂ ∂ ∂

       

 

{ } = { } = { } = ( { } { } = ( { } ).a a a a a a a
il il il il il il

l l l li l l l l l l

E E E E E E E
w w w w w v

y x x x x x x
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑       

 
      Case 2. Layer K  is the input layer so that layer M  is the first layer in the network. Then { }ky  can be 
replaced by { }ka , the set of coordinates of input pattern a . 
      Applying {}⋅  on ix  and /a jiE w∂ ∂ , as computed in the previous section for case 2, we get 
 

{ } = { } = { } = { } = ,i ki k ki k ki k ki k
k k k k

x w a w a w a v a∑ ∑ ∑ ∑   
 

 
and 
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{ } = { } = { } ,a a a
j j

ji i i

E E E
a a

w x x
∂ ∂ ∂
∂ ∂ ∂

  
 

 
with the other formulas derived for case 1 above remaining the same. 
      Case 3. Layer M  is the output layer of the network so that there is no layer L . 
      Applying {}⋅  on /a iE y∂ ∂ , as computed in the previous section for case 3, we get 
 

{ } = { ( ) } = { },a
i i i

i

E
y r a y

y
∂

−
∂

  
 

 
with the other formulas derived for case 1 above remaining the same. 
      Note that in all cases ( ) = (1 2 ) ( )i i ix y xσ σ′′ ′− , and ( ) = (1 )i i ix y yσ ′ − . 
 
 
5.  Simulated Annealing 
 
      An outline of the simulated annealing procedure used in SAGRAD follows. It is based on the simulated 
annealing procedure presented in [15]. 
      In the outline that follows ε  is a tolerance reasonably chosen (e.g., 3= 10ε − ). Accordingly if bw  is the 
current best solution found by the procedure and the squared error for bw , i.e., = ( )b bE E w , is less than ε  
then bw  is declared to be a reasonable solution and the procedure is terminated. 

1. Input: iw , nw ; iw  a weight vector of nw  coordinates, > 10nw . 
2. Initialize 1K , 2K , temprture , tfactor , coef , ε  (e.g., 1 = 100K , 2 = 20K ,  = 1.0temprture , 

= 0.99tfactor , = 0.2coef , 3= 10ε − ). 
Set = ( )i iE E w , =b iE E , =c iw w , =cE ∞ , 2 = 0k , 0 = 0k , = 0ck . 
Initialize nb  to a positive integer relatively small with respect to nw  (e.g., =nb  largest integer 

0.05 nw≤ ⋅  if 0.05 2nw⋅ ≥ , = 2nb  otherwise).  
3. If 0=ck k  then set =temprture tfactor temprture⋅ . 

Set 1 = 0k , 2 2= 1k k + , 0=ck k . 
4. Set 1 1= 1k k + , =f cw w . 

For = 1, ,n nw , let ( )fw n  be the thn  coordinate of fw . 
Generate random integer nv , 1 nv nb≤ ≤ . 
Generate distinct random integers mj , = 1, ,m nv , 1 mj nw≤ ≤ . 
For each m , = 1, ,m nv , generate random number ( )r m  in ( 1,1)− , and set 

( ) = ( ) ( )f m f mw j w j coef r m+ ⋅ . 
Set = ( )f fE E w . 
If <f bE E  then set =b fw w , =c fw w , =b fE E , =c fE E , 0 0= 1k k + . 
Else if <f cE E  then set =c fw w , =c fE E . 
Else if f cE E≥  then generate random number r  in (0,1) , 

and if ( )/< exp E E temprturec fr −  then set =c fw w , =c fE E . 
5. If 1 1<k K  then go to step 4. 
6. If 0 > 0k  and <bE ε  then go to step 8. 
7. If 2 2<k K  then go to step 3. 
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8. If 0 > 0k  then set =c bw w , =c bE E  (the input solution iw  was improved and cw  now equals the 
best solution found by the procedure). 

9. Output: cw , cE , 0k  (if 0 > 0k  then the input solution iw  was improved and cw  equals the best 
solution found by the procedure; if 0 = 0k  then the initial solution iw  was not improved and cw  
equals the last solution that was not an improvement but was still accepted by the procedure). 

 
      Two versions of the simulated annealing procedure outlined above are used in the training process 
in SAGRAD. One of low intensity with a relatively small number of iterations, high initial temperature 
and small neighborhood of exploration (currently with 1 = 100K , 2 = 20K , = 1.0temprture , 

= 0.99tfactor , = 0.2coef , 3= 10ε − ), and one of high intensity with a relatively large number of 
iterations, low initial temperature and large neighborhood of exploration (currently with 1 = 5000K , 

2 = 250K , = 0.1temprture , = 0.99tfactor , = 1.0coef , 3= 10ε − ). As pointed out in [6], neural network 
training is typically a two-step process. First, with a method such as the low-intensity version of the 
simulated annealing procedure mentioned above that tends to elude local minima, weights are initialized. 
Then an optimization algorithm such as the conjugate gradient method is applied in hopes of finding a 
global minimum. 
      In the training process in SAGRAD we follow a slight variation of this two-step strategy while adding 
an additional step. The additional step involves the high-intensity version of the simulated annealing 
procedure mentioned above that intensively exploits weight space for a possible global solution. It is used 
principally when the scaled conjugate gradient algorithm (in the second step), after possibly making 
considerable progress, becomes stuck at a local minimum or flat area of weight space. 
 
 
6.  Training Process 
 
      In SAGRAD, neural network training is essentially a three-step process that while still following the 
two-step strategy in [6], combines in a slightly different manner the two versions of the simulated annealing 
procedure mentioned above with Møller’s scaled conjugate gradient algorithm. An outline of the training 
process in SAGRAD in terms of the three steps follows below. There and in what follows a weight vector 
will be declared to be a reasonable solution if for some reasonably chosen ε  (e.g., 3= 10ε − ), the squared 
error for the weight vector is less than ε . It should also be noted that at different times during the execution 
of the process, in order to provide the user with the option of getting out of a possibly bad run of the 
training process, the user will be asked to decide on whether or not to terminate the current run of the 
training process. If the run is terminated then the user will be asked to decide on whether SAGRAD should 
stop or do a new cold start of the training process. 
      In the outline of the training process below note that before the third step is executed (at most once), the 
first two steps, one following the other, may be executed several times in hopes that the scaled conjugate 
gradient algorithm in the second step will eventually compute a reasonable solution. The scaled conjugate 
gradient algorithm in the second step uses as its initial solution the output weights from the last execution 
of the low-intensity simulated annealing in the first step. On the other hand, the low-intensity simulated 
annealing in the first step uses as input the best weights found so far among all executions of the scaled 
conjugate gradient algorithm in the second step except at the start of the execution of the process. At the 
start of the execution of the process the low-intensity simulated annealing in the first step uses input 
weights that are randomly generated in the interval ( 1,1)− . It should be noted that all executions of the 
low-intesity simulated annealing in the first step tend to produce good initial solutions for the scaled 
conjugate gradient algorithm in the second step. However it is the first execution of the low-intensity 
simulated annealing in the first step that usually reduces considerably the squared error while all others 
usually produce no reduction at all. Eventually, as the first two steps are repeatedly executed, either a 
reasonable solution is found and the process is terminated, or the third step, which involves an execution of 
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the high-intensity simulated annealing followed by an execution of the scaled conjugate gradient algorithm, 
is executed one time in hopes of finding a reasonable solution. Note that even if a reasonable solution has 
been found by executing only the first two steps, the user can still direct the training process to go to the 
third step for a perhaps better solution. Note as well that it may take several cold starts of the training 
process before a reasonable solution is obtained. 

1. (Using low-intensity simulated annealing procedure) 
If at start of execution of process then generate weight vector iw  with coordinates random 
numbers in the interval ( 1,1)− ; set 3 = 1k . 
Otherwise step 2 below and this step have been executed previously: 
set =i mw w , where mw  is the best solution found so far among all executions of the scaled 
conjugate gradient algorithm in step 2 below; set 3 3= 1k k + . 
With iw  as the input weight vector, execute simulated annealing procedure in previous section 
using its low-intensity version to produce output weight vector cw . 

2. (Using scaled conjugate gradient algorithm) 
Execute scaled conjugate gradient algorithm with weight vector 0w  in step 1 of the outline of the 
algorithm in Sec. 2 initialized at cw . 
At any time during the execution of the algorithm, let mw  be the best solution found so far among 
all executions in this step, including current one, of the scaled conjugate gradient algorithm. 
At any time if mw  is a reasonable solution then terminate the training process (unless the user 
directs the training process to go to step 3 below for a perhaps better solution). 
At any time if “ 1 1| |<kr ε+ ” in step 7 of the outline of the algorithm in Sec. 2 has not occurred 
(note 1kr +  is the negative of the gradient of the squared error function E  at the current solution 

1kw + ) and >k iter  (e.g, = 10iter nw⋅ , nw  the number of weights in the network) then if 

3 3<k K  (e.g., 3 = 20K ), then go to step 1 above. Otherwise ( 3 3k K≥ ) go to step 3 below. 
At any time if “ 1 1| |<kr ε+ ” in step 7 of the outline of the algorithm in Sec. 2 has occurred and 
since mw  is not a reasonable solution so that algorithm is possibly stuck at either a local 
minimum, i.e., current solution 1kw + , or flat area of weight space, then go to step 3 below. 

3. (Using high-intensity simulated annealing procedure and scaled conjugate gradient algorithm) 
Set =i mw w , where mw  is the best solution found so far among all executions of the scaled 
conjugate gradient algorithm in step 2 above. 
With iw  as the input weight vector, execute simulated annealing procedure in previous section 
using its high-intensity version to produce output weight vector cw . 
Execute scaled conjugate gradient algorithm with weight vector 0w  in step 1 of the outline of the 
algorithm in Sec. 2 initialized at cw . 
At any time during the execution of the algorithm, let mw  be the best solution found so far among 
this execution and all executions in step 2 above of the scaled conjugate gradient algorithm. 
At any time if mw  is a reasonable solution, or if “ 1 1| |<kr ε+ ” in step 7 of the outline of the 
algorithm in Sec. 2 has not occurred and >k iter , or if “ 1 1| |<kr ε+ ” in step 7 of the outline of the 
algorithm in Sec. 2 has occurred, then terminate executions of the scaled conjugate gradient 
algorithm and the training process. Return mw  as the best solution. 

 
      If mw  is not a reasonable solution then the user should direct SAGRAD to do at least one more cold 
start of the above training process. Even if mw  is a reasonable solution the user can always direct 
SAGRAD to do more cold starts of the training proces in hopes of getting a better solution. 
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7.  Numerical Results 
 
7.1  Cushing Syndrome Classification 
 
      Here we present results from running SAGRAD on a small example associated with the so-called 
Cushing syndrome. This is an example used in [3] as an application of neural networks for classification. 
      The Cushing syndrome is a disorder that occurs when the body is exposed to high levels of the hormone 
cortisol for a long time. Three types of the syndrome are recognized: adenoma, bilateral hyperplasia, and 
carcinoma. In the presence of the Cushing syndrome the following observations were made that represent 
urinary excretion rates (mg/24h) of the steroid metabolites tetrahydrocortisone (in the second column 
below) and pregnanetriol (in the third column). Each line of observations has a label that appears in the first 
column, and each of the lines corresponds to an individual identified with each of the observations in the 
line, an individual with a known type of the syndrome. Accordingly, lines labeled a1, ..., a6 correspond to 
individuals with the adenoma type; lines labeled b1, ..., b10 correspond to individuals with the bilateral 
hyperplasia type; and lines labeled c1, ..., c5 correspond to individuals with the carcinoma type. Lines 
labeled u1, ..., u6 correspond to individuals with the syndrome, each individual with an unknown type of 
the syndrome. Finally, the fourth and fifth columns of the data below have the same data as the second and 
third columns, respectively, but on a log  scale. 
 
a1 3.1 11.70 1.1314021 2.45958884 
a2 3.0 1.30 1.0986123 0.26236426 
a3 1.9 0.10 0.6418539 -2.30258509 
a4 3.8 0.04 1.3350011 -3.21887582 
a5 4.1 1.10 1.4109870 0.09531018 
a6 1.9 0.40 0.6418539 -0.91629073 
b1 8.3 1.00 2.1162555 0.00000000 
b2 3.8 0.20 1.3350011 -1.60943791 
b3 3.9 0.60 1.3609766 -0.51082562 
b4 7.8 1.20 2.0541237 0.18232156 
b5 9.1 0.60 2.2082744 -0.51082562 
b6 15.4 3.60 2.7343675 1.28093385 
b7 7.7 1.60 2.0412203 0.47000363 
b8 6.5 0.40 1.8718022 -0.91629073 
b9 5.7 0.40 1.7404662 -0.91629073 
b10 13.6 1.60 2.6100698 0.47000363 
c1 10.2 6.40 2.3223877 1.85629799 
c2 9.2 7.90 2.2192035 2.06686276 
c3 9.6 3.10 2.2617631 1.13140211 
c4 53.8 2.50 3.9852735 0.91629073 
c5 15.8 7.60 2.7600099 2.02814825 
u1 5.1 0.40 1.6292405     -0.9162907 
u2 12.9 5.00 2.5572273      1.6094379 
u3 13.0 0.80 2.5649494     -0.2231436 
u4 2.6 0.10 0.9555114     -2.3025851 
u5 30.0 0.10 3.4011974     -2.3025851 
u6 20.5 0.80 3.0204249     -0.2231436 
 
Log scale data above for observations in lines a1, ..., a6, b1, ..., b10, c1, ..., c5, was used as training data for 
SAGRAD, and after only one cold start of training process, training was completed on a 4-layer network 
associated with the data. The input layer of this network had 3 nodes, the first layer 3, the second layer 4, 
and the ouput layer 3. Then log scale data for observations in lines u1, ..., u6, together with the trained 
network was used to identify with SAGRAD the type (adenoma, bilateral hyperplasia, or carcinoma) 
corresponding to each of these lines. The classification results from the execution of SAGRAD follow for 
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each line of unknown type. Here the first columm of numbers contains outputs from the ouput node of the 
neural network corresponding to the ademona type; the second column contains outputs from the output 
node corresponding to the bilateral hyperplasia type; and finally the third column contains outputs from the 
output node corresponding to the carcinoma type. 
 
u1      1.57569381E-25      1.                              3.27244446E-61 
u2      1.71192768E-10      4.88008365E-06      0.999999999 
u3      1.07917885E-38      1.                              2.25400938E-41 
u4      0.99999641              1.47077866E-05      7.78196988E-08 
u5      1.04024021E-38      1.                              2.11941796E-41 
u6      1.21287938E-38      1.                              2.77865859E-41  
 
From these results it appears that adenoma is the type corresponding to line u4; bilateral hyperplasia is the 
type corresponding to lines u1, u3, u5, u6; and carcinoma is the type corresponding to line u2. This 
classification of these lines is consistent with the classification of the same lines in [3]. 
 
7.2  Wine Classification 
 
      Data in [1] is the result of a chemical analysis of wines produced in the same region in Italy from three 
different cultivars. Each line in the data corresponds to a wine and contains quantities of 13 constituents in 
the wine that were determined through the chemical analysis. 
      The 13 constituents were: 

1) Alcohol 
2) Malic acid 
3) Ash 
4) Alkalinity of ash 
5) Magnesium 
6) Total phenols 
7) Flavanoids 
8) Nonflavanoid phenols 
9) Proanthocyanins 
10) Color intensity 
11) Hue 
12) OD280/OD315 of diluted wines 
13) Proline 

 
      Training data for SAGRAD was obtained from [1] as follows. The first 50 lines of data for wine from 
the first cultivar were extracted from the data and identified as Class 1 training data; the first 60 lines of 
data for wine from the second cultivar were extracted from the data and identified as Class 2 training data; 
and the first 40 lines of data for wine from the third cultivar were extracted from the data and identified as 
Class 3 training data. In all cases each line of data consisted of 13 numbers corresponding in the same order 
to the quantities of constituents listed above. For example, the first line in the Class 1 training data 
appeared exactly as follows: 
 
4.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065 
 
      Using this data, SAGRAD was then executed, and after two cold starts of training process, training was 
completed on a 4-layer network associated with the data. The input layer of this network had 14 nodes, the 
first layer had 14, the second layer had 15, and the output layer had 3. For the purpose of testing the trained 
network the remaining 9 lines of data for wine from the first cultivar were extracted from the data and 
identified as Class 1 independent data; the remaining 11 lines of data for wine from the second cultivar 
were extracted from the data and identified as Class 2 independent data; and the remaining 8 lines of data 
for wine from the third cultivar were extracted from the data and identified as Class 3 independent data. 
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      The classification results from the execution of SAGRAD follow for each line of independent data. 
Here the first columm of numbers contains outputs from the ouput node of the neural network 
corresponding to wine from the first cultivar; the second column contains outputs from the output node 
corresponding to wine from the second cultivar; and finally the third column contains outputs from the 
output node corresponding to wine from the third cultivar. The first 9 lines correspond to the 9 lines in the 
Class 1 independent data in the same order; the next 11 lines correspond to the 11 lines in the Class 2 
independent data in the same order; and the final 8 lines correspond to the 8 lines in the Class 3 
independent data in the same order. 
 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.999999748 1.4638003E-10 3.87972262E-19 
0.00725871591 1. 2.44696739E-57 
0.999999746 1.47618842E-10 3.86290537E-19 
0.00725899153 1. 2.44597986E-57 
0.00725948808 1. 2.44420191E-57 
0.00725610139 1. 2.45635659E-57 
0.0072496458 1. 2.47970923E-57 
0.00725948807 1. 2.44420193E-57 
0.00725948808 1. 2.44420191E-57 
0.00725948808 1. 2.44420191E-57 
0.00725948808 1. 2.44420191E-57 
3.35969945E-05 1. 1.41314074E-32 
2.0606421E-10 5.70930171E-17 1. 
2.06064211E-10 5.7093017E-17 1. 
2.06064208E-10 5.70930172E-17 1. 
2.06064208E-10 5.70930172E-17 1. 
2.06065502E-10 5.70929678E-17 1. 
2.06064208E-10 5.70930172E-17 1. 
2.06064208E-10 5.70930172E-17 1. 
2.54410205E-19 1.07524957E-06 1. 
 
From these results it appears that only the wine corresponding to the 2nd line in the Class 2 independent 
data was classified incorrectly. Additional output from SAGRAD confirms this:  
 
Independent patterns classification results: 
Class = 1 Total = 9 Correct = 9 Percentage = 100. 
Class = 2 Total = 11 Correct = 10 Percentage = 90.9090909 
Class = 3 Total = 8 Correct = 8 Percentage = 100.0 
 
These results compare well with results found elsewhere for the same wine data, e.g., in [10], [11], [14]. 
 
 
8.  Summary 
 
      SAGRAD, a Fortran 77 program for computing neural networks for classification using batch learning, 
was discussed. Since neural network training in SAGRAD is based in part on Møller’s scaled conjugate 
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gradient algorithm which is a variation of the traditional conjugate gradient method, better suited for the 
nonquadratic nature of neural networks, an outline of Møller’s algorithm was presented that resembles its 
implementation in SAGRAD. Important aspects of the implementation of the training process in SAGRAD 
were discussed such as the efficient computation of gradients and multiplication of vectors by Hessian 
matrices that are required by Møller’s algorithm. Accordingly, formulas for the product of vectors by 
Hessian matrices depending on those for the gradients used in SAGRAD were developed. Because of this 
dependence it was pointed out that calculations with these formulas of the gradient at a vector and the 
product of the Hessian at the same vector with another vector in the context of Møller’s algorithm occur 
simultaneously and take place in either a feed-forward fashion or in the manner of backpropagation. 
      As neural network training in SAGRAD is also based on simulated annealing, an outline of the 
simulated annealing procedure implemented in SAGRAD was also presented. It was then pointed out that 
two versions of this procedure are used in the training process in SAGRAD, one a low-intensity version for 
the (re)initialization of weights required to (re)start the scaled conjugate gradient algorithm the first time 
and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the 
other a high-intensity version to be used once the scaled conjugate gradient algorithm has possibly reduced 
the squared error considerably but becomes stuck at a local minimum or flat area of weight space. An 
outline of the training process was then presented. 
      Finally, results from executions of SAGRAD were reported. SAGRAD was run on two essentially 
small examples of training data consisting of sample patterns of dimension 2 and 13, respectively. The 
trainings with SAGRAD of the training data for the two examples were declared to be good as reasonable 
solutions were obtained. Classification results were then presented from applying the corresponding neural 
networks on the trained data, and other independent data of known and unknown classification, and these 
results were also declared to be good as for over 90 % of the patterns in the data the results were correct. 
      It should be noted that in general it may take several cold starts of the training process in SAGRAD 
before a reasonable solution is obtained. Such a solution should then be tested for quality by applying the 
corresponding neural network on independent sample patterns of known classification. A copy of 
SAGRAD can be obtained at http://math.nist.gov/~JBernal. 
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