
 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 113

SAGRAD: A Program for Neural Network
Training with Simulated Annealing and

the Conjugate Gradient Method

Javier Bernal1 and Jose Torres-Jimenez1,2

1National Institute of Standards and Technology,
Gaithersburg, MD 20899 USA

2CINVESTAV-Tamaulipas, Information Technology Laboratory,
Km. 5.5 Carretera Cd., Victoria, Tamaulipas, Mexico

javier.bernal@nist.gov
jtj@cinvestav.mx

SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch
learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled
conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic
nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the
efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the
(re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter
that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm,
after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled
conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together
with results from running SAGRAD on two examples of training data.

Key words: batch learning; neural networks for classification; scaled conjugate gradient algorithm; simulated annealing.

Accepted: June 4, 2015

Published: June 17, 2015

http://dx.doi.org/10.6028/jres.120.009

1. Introduction

 Neural networks are computational models that work by simulating the way the brain processes
information. They are often used to recognize patterns in a data set, say X , in Euclidean d − dimensional
space, d some positive integer. Once the neural network is appropriately trained on representative sample
patterns of X , it can then be used for attempting to recognize other patterns in X as they are fed through
the network. Accordingly, it is assumed X is partitioned into n distinct types/classes of patterns, n some
positive integer.
 Let A be a set of training data for X , i.e., a subset of X in which the n distinct types/classes of
patterns are well represented. The basic structure of a neural network associated with X (to be trained on
A) consists of layers or columns of mostly computing nodes, or neurons, arranged from left to right (see

Fig. 1) in such a way that the result of a computation at each neuron in a layer contributes to the input of
neurons in the next layer. The layer at the extreme left of the network is called the input layer of the
network (see Fig. 1) and consists of 1d + neurons. A pattern vector in X , say = { }ka a , = 1, ,k d , is
introduced into the network through the input layer as follows: a is augmented to be of dimension 1d + by
setting 1da + equal to 1; neurons in the input layer are labeled with integers from 1 to 1d + ; and for each

http://dx.doi.org/10.6028/jres.120.009
mailto:javier.bernal@nist.gov
mailto:jtj@cinvestav.mx
http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 114 http://dx.doi.org/10.6028/jres.120.009

Fig. 1. A 4-layer neural network.

k , = 1, , 1k d + , coordinate ka is assigned to neuron k (neuron with label k) and as such interpreted to
be the output of neuron k (neuron 1d + is called a bias neuron and its output is 1 for all patterns). The
layer immediately to the right of the input layer, unlike the input layer, consists of computing neurons
(except for the last neuron which is a bias neuron). From left to right in the network it is the first layer with
computing neurons and as such is called the first layer of the network (the layer immediately to the right of
this layer is called the second layer of the network, and so on). Like the input layer, the first layer has 1d +
neurons which are then labeled with integers from 2d + to 2 2d + . Given integer i , 2 2 1d i d+ ≤ ≤ + , a
number ix is designated the input to neuron i (in the first layer) which is a weighted sum of the outputs of
the input layer (the coordinates of the augmented pattern a) expressed as 1

=1
= d

i ki kk
x w a+∑ . Here for each

k , = 1, , 1k d + , kiw is the weight modifying the pattern coordinate ka before it is fed into neuron i (as
part of ix). In order to make neuron i into a computing neuron, the sigmoid activation function

() = 1/(1)xx eσ −+ is assigned to it. σ is a function with derivatives of all orders and values between 0 and
1. = ()i iy xσ is then designated the ouput of neuron i , 2 2 1d i d+ ≤ ≤ + , while 2 2 = 1dy + is designated
the output of neuron 2 2d + (the bias neuron). Inductively, given layers M and L , consecutive layers in
the network from left to right; { }my , the set of outputs of neurons in layer M ; 1l , 2l , 1 2<l l , integers such
that neurons in layer L are labeled with integers from 1l to 2l ; and neuron l , a neuron in layer L ,

1 2 1l l l≤ ≤ − ; then a number lx is designated the input to neuron l which is a weighted sum of the outputs
of layer M expressed as =l ml mm

x w y∑ . In addition the same sigmoid activation function σ defined

above is assigned to neuron l and = ()l ly xσ is designated the output of neuron l , 1 2 1l l l≤ ≤ − , while

2
= 1ly is designated the ouput of neuron 2l (the bias neuron of layer L).

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 115 http://dx.doi.org/10.6028/jres.120.009

 The layer at the extreme right of the network is called the output layer of the network (see Fig. 1).
Layers between the input layer and the output layer are called hidden layers (in Fig. 1 the first layer and
second layer of the network are the only hidden layers), and hidden layers to the right of the first layer
(there is only one, the second layer of the network, in the network of Fig. 1) are all assumed to be of the
same length, i.e., to consist of the same number of neurons, a number greater than 1 and preferably greater
than d and n . For consistency with definitions above involving consecutive layers M and L we assume
at first that the output layer contains a bias neuron besides n computing neurons. As will become apparent
below, there is a one-to-one correspondence between the n computing neurons in this layer and the n
classes of patterns (as defined for X) into which the set A of training data can be partitioned. After
reducing the number of neurons in the output layer to n by dropping the dummy bias neuron in the layer,
so that for some positive integer nq , nq is the total number of neurons in the network, neurons in the
output layer are then labeled with integers from 1nq n− + to nq . Additionally, letting nw be the total
number of weights in the network, a natural order can be established for weights so that any given set of
nw weights can be uniquely identified with a vector, called a weight vector, in weight space, the Euclidean
space of dimension nw , and vice versa.
 Given a pattern a in A , then for some q , 1 q n≤ ≤ , a is in class q , and an n − dimensional vector

() = { () }mr a r a , = 1, ,m n , called the desired response for a , is defined by setting ()qr a equal to 1 and
()mr a equal to 0 for = 1, ,m n , =m q . Another n − dimensional vector () = { () }mo a o a , = 1, ,m n ,

called the actual output for a , is defined by setting ()mo a equal to the output for a of the thm neuron in
the output layer (neuron with label nq n m− +) for each m , = 1, ,m n . The (total) squared error between
desired responses ()r a and actual outputs ()o a , a in A , is then

2 2

=1
() = 1/2 | () () | = 1/2 (() ()) ,

n

m m
a A a Am

E w r a o a r a o a
∈ ∈

− −∑ ∑∑

where w is the unique vector in weight space corresponding to the current set of weights in the network.
As E is implicitly defined in terms of compositions of linear functions between layers in the network and
activation functions assigned to neurons in the network, E has partial derivatives of all orders at any w .
Accordingly, any optimization method of the gradient kind can be applied for the purpose of hopefully
minimizing E . If the result of training the neural network on A , i.e., minimizing E (with gradients,
metaheuristics, etc.), is a weight vector w at which E is zero then it must also be true that the neural
network defined by w classifies correctly all patterns in the set A of training data, i.e., identifies correctly
the class to which each pattern belongs. We say then that w is a reasonable solution. Additionally, if a
subset of \X A is also available in which the n distinct types/classes of patterns are also well represented,
and each pattern in the subset is of known classification, then the neural network defined by w should be
applied on such a subset for classification results. If the results for a good percentage of the patterns in the
subset, say over 90 %, are correct then we say that besides being a reasonable solution, w is also a quality
solution.
 In this paper we discuss SAGRAD, a Fortran 77 program for computing neural networks for
classification using batch learning. Classification is one of the most important applications of neural
networks. An extensive survey on neural networks for classification can be found in [18]. On the other
hand, batch learning is exactly the type of training described above where all patterns in training data are
introduced into the network before the training of the network or minimization of the total error E begins.
This is in contrast with on-line learning where training of the network is done one pattern at a time: each
time a pattern in the training data is introduced into the network, training of the network takes place
immediately starting at the current solution obtained from introducing the previous pattern, and the training
is done only on exactly those patterns, including the current one, that have been introduced into the network
so far.

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 116 http://dx.doi.org/10.6028/jres.120.009

 Neural network training in SAGRAD is based on a mixture of simulated annealing [15] and Møller’s
scaled conjugate gradient algorithm [7, 9], the latter a variation of the traditional conjugate gradient method
[5], better suited for the nonquadratic nature of neural networks. In what follows an outline of Møller’s
algorithm is presented that closely resembles the implementation of the algorithm in SAGRAD. In addition,
other aspects of the implementation of the training process in SAGRAD are discussed such as the efficient
computation of gradients and multiplication of vectors by Hessian matrices that take place in Møller’s
algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm
the first time and each time thereafter that it shows insufficient progress in reaching a possibly local
minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable
progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the simulated
annealing procedure and the training process used in SAGRAD are also presented together with results
from training with SAGRAD data for two examples. A copy of SAGRAD can be found at
http://math.nist.gov/~JBernal.

2. Scaled Conjugate Gradient Algorithm

 SAGRAD is based on a combination of simulated annealing [15] and Møller’s scaled conjugate
gradient algorithm [7, 9] for minimizing the total squared error E as a function of weights. Møller’s
algorithm, an outline of which is presented below, is based on the well-known conjugate gradient method
[5] which works well for quadratic or nearly-quadratic functions. Since the Hessian matrix ()E w′′ of the
squared error function E at w may not be positive definite for w in certain areas of weight space, Møller
modified the conjugate gradient method based on the approach of the Levenberg-Marquardt algorithm [2].
If at some point during the execution of the conjugate gradient method for some p and w in nw−
dimensional Euclidean space = ()tp E w pδ ′′ is computed resulting in a nonpositive δ , one makes δ
positive by adding tp pλ to it for some > 0λ , i.e., by scaling the Hessian matrix ()E w′′ with the
appropriate > 0λ so that δ becomes (())tp E w I pλ′′ + , I the identity matrix. Once λ is initialized it is
used and adjusted appropriately throughout the execution of the algorithm so that each δ computed as
above remains positive. However, since the accuracy of the conjugate gradient method depends on
approximating ()E w with a quadratic function that involves ()E w′′ , care must be taken that the scaled

()E w′′ does not produce a bad approximation. This is again taken care of by appropriately raising and
lowering λ . The outline of the scaled conjugate gradient algorithm below includes the manipulations for
raising and lowering λ . Here the column vector ()E w′ is the gradient of E at weight vector w . The
outline closely resembles the implementation of Møller’s algorithm in SAGRAD.

1. Initialize weight vector 0w ,
= 0k , 6

1 = 10ε − , 4
2 = 10ε − , 0 2=λ ε , 0 = 0λ , 0 0 0= = ()r p E w′− ,

=success true .
2. Calculate second-order information: = ()k k ks E w p′′ , = t

k k kp sδ .
3. Scale Hessian matrix: 2= () | |k k k k kpδ δ λ λ+ − .
4. If 0kδ ≤ then scale Hessian matrix to make it positive definite:

2= 2(/ | |)k k k kpλ λ δ− , 2= | |k k k kpδ δ λ− + , =k kλ λ .
5. Calculate the step size: = t

k k kp rµ , = /k k kα µ δ .
6. Calculate the comparison parameter k∆ : 1 =k k k kw w pα+ + ,

2_ = () () 1/2(() | |)t t
k k k k k k k k k k k kE q E w E w p p E w p pα α α λ α′ ′′+ + + ,

2
1 1= [() ()]/[() _] = 2 [() ()]/k k k k k k k kE w E w E w E q E w E wδ µ+ +∆ − − − .

7. Test for error reduction:
If 0k∆ ≥ then a successful error reduction can be made:

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 117 http://dx.doi.org/10.6028/jres.120.009

1 1=k kw w+ + , 1 1= ()k kr E w+ +′− .
If 1 1| |<kr ε+ then terminate and return 1kw + as the desired minimum, perhaps not a global
minimum.
If =success false or mod = 0k nw then restart: 1 1=k kp r+ + , 1 2=kλ ε+ , 1 = 0kλ + , = 1k k + ,

=success true , and go to step 2.
Else (if =success true and mod = 0k nw) then create new conjugate direction:

2
1 1= (| |)/t

k k k k kr r rβ µ+ +− , 1 1=k k k kp r pβ+ + + .
If 0.75k∆ ≥ then reduce the scale parameter: = 1/2k kλ λ .
Else (if < 0k∆) error reduction is not possible:

=k kλ λ , =success false .
8. If < 0.25k∆ then increase the scale parameter: = 4k kλ λ .
9. if =success false then go to step 3.

Else set 1 = 0kλ + , 1 =k kλ λ+ , = 1k k + , and go to step 2.

3. Computing the Gradient

 In order to attempt to minimize the error E as a function of w using the scaled conjugate gradient
algorithm as described above, the capability must exist for the efficient computation of the gradient ()E w′
of E at w and multiplication of a vector by the Hessian matrix ()E w′′ of E at w . In this section we
develop formulas used in SAGRAD for the computation of the gradient ()E w′ as presented in [4]. They
originate from the so-called delta rule in [13], [17].
 Given a A∈ , w in weight space, the error at w due to a is 2

=1
() = 1/2 (() ())n

a m mm
E w r a o a−∑ . Thus,

() = ()aa A
E w E w

∈∑ . Writing w as { }kw , = 1, ,k nw , it follows that / = /k a ka A
E w E w

∈
∂ ∂ ∂ ∂∑ for each

k , = 1, ,k nw . Therefore, by fixing a in A , in what follows it will suffice to develop only the formulas
associated with aE .
 As will become apparent from the formulas below, the calculations of the partial derivatives of aE with
these formulas must take place in a specific order, from right to left in the network. This is because each
calculation corresponding to a given weight depends on calculations corresponding to other weights in the
network to the right of the given weight. Computing in this manner is called backpropagation, originally
described in [16]. However, it is an implementation issue that is taken care of in SAGRAD and not
necessary for the development of the formulas.
 Consider layers K , M , L , consecutive layers in the network from left to right, { }ky , the set of
outputs of neurons in layer K , { }my , the set of outputs of neurons in layer M , and { }lx , the set of inputs
of computing neurons in layer L . In particular consider jy , the output of some neuron in layer K , and ix ,

iy , the input and output, respectively, of some computing neuron in layer M . In addition, for each ky as
above let kiw be the weight such that =i ki kk

x w y∑ ; and for each my and lx as above let mlw be the

weight such that =l ml mm
x w y∑ .

 Case 1. Layer K is not the input layer and layer M is a hidden layer so that layer L is either a hidden
layer or the output layer.
 Using the chain rule repeatedly we then get

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 118 http://dx.doi.org/10.6028/jres.120.009

() ()
= = = = .

ki k
ji ja a i a k a a

j
ji i ji i ji i ji i

w y w yE E x E E E
y

w x w x w x w x

∂ ∂∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∑

= = ().a a i a
i

i i i i

E E y E
x

x y x y
σ

∂ ∂ ∂ ∂ ′
∂ ∂ ∂ ∂

()

()
= = = = .

ml m
a a l a m a il i a

il
l l l li l i l i l i l

w y
E E x E E w y E

w
y x y x y x y x

∂
∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∑
∑ ∑ ∑ ∑

 Thus,

= = () = () () .a a a a
j i j il i j

lji i i l

E E E E
y x y w x y

w x y x
σ σ

∂ ∂ ∂ ∂′ ′
∂ ∂ ∂ ∂∑

 Case 2. Layer K is the input layer so that layer M is the first layer in the network. Then { }ky can be
replaced by { }ka , the set of coordinates of input pattern a .
 Thus, =i ki kk

x w a∑ , and

= .a a
j

ji i

E E
a

w x
∂ ∂
∂ ∂

 Once again

= ()a a
i

i i

E E
x

x y
σ

∂ ∂ ′
∂ ∂

and

= .a a
il

li l

E E
w

y x
∂ ∂
∂ ∂∑

 Thus,

= = () = () () .a a a a
j i j il i j

lji i i l

E E E E
a x a w x a

w x y x
σ σ

∂ ∂ ∂ ∂′ ′
∂ ∂ ∂ ∂∑

 Case 3. Layer M is the output layer of the network so that there is no layer L .
 Then once again

=a a
j

ji i

E E
y

w x
∂ ∂
∂ ∂

and

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 119 http://dx.doi.org/10.6028/jres.120.009

= ().a a
i

i i

E E
x

x y
σ

∂ ∂ ′
∂ ∂

 With { }my ordered so that for = 1, ,m n , = ()m my o a then 2

=1
() = 1/2 (() ()) =n

a m mm
E w r a o a−∑

2
=1

1/2 (())n
m mm

r a y−∑ , so that

= ()a
i i

i

E
y r a

y
∂

−
∂

and

= = () = (()) () .a a a
j i j i i i j

ji i i

E E E
y x y y r a x y

w x y
σ σ

∂ ∂ ∂ ′ ′−
∂ ∂ ∂

 Note that in all cases () = (1)i i ix y yσ ′ − .

4. Fast Exact Multiplication by the Hessian

 In this section we develop the formulas used in the implementation of the scaled conjugate gradient
algorithm in SAGRAD for the fast exact computation of the product of the Hessian matrix ()E w′′ with an
nw− dimensional vector v in the context of Møller’s algorithm. With these formulas the calculation of the
complete Hessian matrix is avoided. These formulas were originally derived by Pearlmutter [12] and
Møller [8, 9], and involve the so-called {}⋅ operator. As in the case of the gradient ()E w′ , by fixing a in
A , in what follows it will suffice to develop only the formulas associated with aE . These formulas depend

on the formulas developed above for the computation of the gradient ()E w′ , thus simultaneously as ()E w′
is computed with backpropagation, the exact product of v and ()E w′′ is computed with these formulas in
either a feed-forward fashion or in the manner of backpropagation. But again this is an implementation
issue that is taken care of in SAGRAD and not necessary for the development of the formulas.
 Let f be a differentiable function from nw− dimensional Euclidean space into any other finite-
dimensional Euclidean space. The {}v ⋅ operator or simply the {}⋅ operator is defined by

=0{ ()} () | = () ,v r
df w f w rv f w v
dr

′≡ +

where ()f w′ is the Jacobian matrix of f at w . In particular { ()} = ()v E w E w v′ ′′ . Writing w as { }kw ,

= 1, ,k nw , it also follows that for each k , = 1, ,k nw , { /v kE w∂ ∂ } is the thk component of ()E w v′′ .
 Given g , a differentiable function with domain and range appropriately defined, c a real number, then
some equations involving {}⋅ are satisfied:

 { ()} = { ()}cf w c f w 
 { () ()} = { ()} { ()}f w g w f w g w+ +  
 { () ()} = { ()} () () { ()}f w g w f w g w f w g w+  
 { (())} = (()) { ()}g f w g f w f w′ 

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 120 http://dx.doi.org/10.6028/jres.120.009

{ ()} = { ()}d df w f w

dt dt
 

 { } = .w v

 With these equations and the formulas obtained in the previous section for the components of ()aE w′ ,
the formulas for the components of ()aE w v′′ can be derived. In what follows weights are doubly indexed.
Since there is a one-to-one correspondence between the components of w and v then the components of v
will be similarly indexed.
 As in the previous section, consider layers K , M , L , consecutive layers in the network from left to
right, { }ky , the set of outputs of neurons in layer K , { }my , the set of outputs of neurons in layer M , and
{ }lx , the set of inputs of computing neurons in layer L . In particular consider jy , the output of some
neuron in layer K , and ix , iy , the input and output, respectively, of some computing neuron in layer M .
In addition, for each ky as above let kiw be the weight such that =i ki kk

x w y∑ ; and for each my and lx as

above let mlw be the weight such that =l ml mm
x w y∑ .

 Case 1. Layer K is not the input layer and layer M is a hidden layer so that layer L is either a hidden
layer or the output layer.
 Applying {}⋅ on ix and iy , we get the feed-forward formulas:

{ } = { } = { } = ({ } { }) = ({ }).i ki k ki k ki k ki k ki k ki k
k k k k

x w y w y w y w y v y w y+ +∑ ∑ ∑ ∑     

{ } = { ()} = () { }.i i i iy x x xσ σ ′  

 Applying {}⋅ on /a jiE w∂ ∂ , /a iE x∂ ∂ , /a iE y∂ ∂ , as computed in the previous section for case 1, we get
the backpropagation formulas:

{ } = { } = { } { }.a a a a
j j j

ji i i i

E E E E
y y y

w x x x
∂ ∂ ∂ ∂

+
∂ ∂ ∂ ∂

   

{ } = { ()} = { } () { ()} = { } () () { }.a a a a a a
i i i i i i

i i i i i i

E E E E E E
x x x x x x

x y y y y y
σ σ σ σ σ

∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′′+ +
∂ ∂ ∂ ∂ ∂ ∂

     

{ } = { } = { } = ({ } { } = ({ }).a a a a a a a
il il il il il il

l l l li l l l l l l

E E E E E E E
w w w w w v

y x x x x x x
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑     

 Case 2. Layer K is the input layer so that layer M is the first layer in the network. Then { }ky can be
replaced by { }ka , the set of coordinates of input pattern a .
 Applying {}⋅ on ix and /a jiE w∂ ∂ , as computed in the previous section for case 2, we get

{ } = { } = { } = { } = ,i ki k ki k ki k ki k
k k k k

x w a w a w a v a∑ ∑ ∑ ∑   

and

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 121 http://dx.doi.org/10.6028/jres.120.009

{ } = { } = { } ,a a a
j j

ji i i

E E E
a a

w x x
∂ ∂ ∂
∂ ∂ ∂

  

with the other formulas derived for case 1 above remaining the same.
 Case 3. Layer M is the output layer of the network so that there is no layer L .
 Applying {}⋅ on /a iE y∂ ∂ , as computed in the previous section for case 3, we get

{ } = { () } = { },a
i i i

i

E
y r a y

y
∂

−
∂

  

with the other formulas derived for case 1 above remaining the same.
 Note that in all cases () = (1 2) ()i i ix y xσ σ′′ ′− , and () = (1)i i ix y yσ ′ − .

5. Simulated Annealing

 An outline of the simulated annealing procedure used in SAGRAD follows. It is based on the simulated
annealing procedure presented in [15].
 In the outline that follows ε is a tolerance reasonably chosen (e.g., 3= 10ε −). Accordingly if bw is the
current best solution found by the procedure and the squared error for bw , i.e., = ()b bE E w , is less than ε
then bw is declared to be a reasonable solution and the procedure is terminated.

1. Input: iw , nw ; iw a weight vector of nw coordinates, > 10nw .
2. Initialize 1K , 2K , temprture , tfactor , coef , ε (e.g., 1 = 100K , 2 = 20K , = 1.0temprture ,

= 0.99tfactor , = 0.2coef , 3= 10ε −).
Set = ()i iE E w , =b iE E , =c iw w , =cE ∞ , 2 = 0k , 0 = 0k , = 0ck .
Initialize nb to a positive integer relatively small with respect to nw (e.g., =nb largest integer

0.05 nw≤ ⋅ if 0.05 2nw⋅ ≥ , = 2nb otherwise).
3. If 0=ck k then set =temprture tfactor temprture⋅ .

Set 1 = 0k , 2 2= 1k k + , 0=ck k .
4. Set 1 1= 1k k + , =f cw w .

For = 1, ,n nw , let ()fw n be the thn coordinate of fw .
Generate random integer nv , 1 nv nb≤ ≤ .
Generate distinct random integers mj , = 1, ,m nv , 1 mj nw≤ ≤ .
For each m , = 1, ,m nv , generate random number ()r m in (1,1)− , and set

() = () ()f m f mw j w j coef r m+ ⋅ .
Set = ()f fE E w .
If <f bE E then set =b fw w , =c fw w , =b fE E , =c fE E , 0 0= 1k k + .
Else if <f cE E then set =c fw w , =c fE E .
Else if f cE E≥ then generate random number r in (0,1) ,

and if ()/< exp E E temprturec fr − then set =c fw w , =c fE E .
5. If 1 1<k K then go to step 4.
6. If 0 > 0k and <bE ε then go to step 8.
7. If 2 2<k K then go to step 3.

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 122 http://dx.doi.org/10.6028/jres.120.009

8. If 0 > 0k then set =c bw w , =c bE E (the input solution iw was improved and cw now equals the
best solution found by the procedure).

9. Output: cw , cE , 0k (if 0 > 0k then the input solution iw was improved and cw equals the best
solution found by the procedure; if 0 = 0k then the initial solution iw was not improved and cw
equals the last solution that was not an improvement but was still accepted by the procedure).

 Two versions of the simulated annealing procedure outlined above are used in the training process
in SAGRAD. One of low intensity with a relatively small number of iterations, high initial temperature
and small neighborhood of exploration (currently with 1 = 100K , 2 = 20K , = 1.0temprture ,

= 0.99tfactor , = 0.2coef , 3= 10ε −), and one of high intensity with a relatively large number of
iterations, low initial temperature and large neighborhood of exploration (currently with 1 = 5000K ,

2 = 250K , = 0.1temprture , = 0.99tfactor , = 1.0coef , 3= 10ε −). As pointed out in [6], neural network
training is typically a two-step process. First, with a method such as the low-intensity version of the
simulated annealing procedure mentioned above that tends to elude local minima, weights are initialized.
Then an optimization algorithm such as the conjugate gradient method is applied in hopes of finding a
global minimum.
 In the training process in SAGRAD we follow a slight variation of this two-step strategy while adding
an additional step. The additional step involves the high-intensity version of the simulated annealing
procedure mentioned above that intensively exploits weight space for a possible global solution. It is used
principally when the scaled conjugate gradient algorithm (in the second step), after possibly making
considerable progress, becomes stuck at a local minimum or flat area of weight space.

6. Training Process

 In SAGRAD, neural network training is essentially a three-step process that while still following the
two-step strategy in [6], combines in a slightly different manner the two versions of the simulated annealing
procedure mentioned above with Møller’s scaled conjugate gradient algorithm. An outline of the training
process in SAGRAD in terms of the three steps follows below. There and in what follows a weight vector
will be declared to be a reasonable solution if for some reasonably chosen ε (e.g., 3= 10ε −), the squared
error for the weight vector is less than ε . It should also be noted that at different times during the execution
of the process, in order to provide the user with the option of getting out of a possibly bad run of the
training process, the user will be asked to decide on whether or not to terminate the current run of the
training process. If the run is terminated then the user will be asked to decide on whether SAGRAD should
stop or do a new cold start of the training process.
 In the outline of the training process below note that before the third step is executed (at most once), the
first two steps, one following the other, may be executed several times in hopes that the scaled conjugate
gradient algorithm in the second step will eventually compute a reasonable solution. The scaled conjugate
gradient algorithm in the second step uses as its initial solution the output weights from the last execution
of the low-intensity simulated annealing in the first step. On the other hand, the low-intensity simulated
annealing in the first step uses as input the best weights found so far among all executions of the scaled
conjugate gradient algorithm in the second step except at the start of the execution of the process. At the
start of the execution of the process the low-intensity simulated annealing in the first step uses input
weights that are randomly generated in the interval (1,1)− . It should be noted that all executions of the
low-intesity simulated annealing in the first step tend to produce good initial solutions for the scaled
conjugate gradient algorithm in the second step. However it is the first execution of the low-intensity
simulated annealing in the first step that usually reduces considerably the squared error while all others
usually produce no reduction at all. Eventually, as the first two steps are repeatedly executed, either a
reasonable solution is found and the process is terminated, or the third step, which involves an execution of

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 123 http://dx.doi.org/10.6028/jres.120.009

the high-intensity simulated annealing followed by an execution of the scaled conjugate gradient algorithm,
is executed one time in hopes of finding a reasonable solution. Note that even if a reasonable solution has
been found by executing only the first two steps, the user can still direct the training process to go to the
third step for a perhaps better solution. Note as well that it may take several cold starts of the training
process before a reasonable solution is obtained.

1. (Using low-intensity simulated annealing procedure)
If at start of execution of process then generate weight vector iw with coordinates random
numbers in the interval (1,1)− ; set 3 = 1k .
Otherwise step 2 below and this step have been executed previously:
set =i mw w , where mw is the best solution found so far among all executions of the scaled
conjugate gradient algorithm in step 2 below; set 3 3= 1k k + .
With iw as the input weight vector, execute simulated annealing procedure in previous section
using its low-intensity version to produce output weight vector cw .

2. (Using scaled conjugate gradient algorithm)
Execute scaled conjugate gradient algorithm with weight vector 0w in step 1 of the outline of the
algorithm in Sec. 2 initialized at cw .
At any time during the execution of the algorithm, let mw be the best solution found so far among
all executions in this step, including current one, of the scaled conjugate gradient algorithm.
At any time if mw is a reasonable solution then terminate the training process (unless the user
directs the training process to go to step 3 below for a perhaps better solution).
At any time if “ 1 1| |<kr ε+ ” in step 7 of the outline of the algorithm in Sec. 2 has not occurred
(note 1kr + is the negative of the gradient of the squared error function E at the current solution

1kw +) and >k iter (e.g, = 10iter nw⋅ , nw the number of weights in the network) then if

3 3<k K (e.g., 3 = 20K), then go to step 1 above. Otherwise (3 3k K≥) go to step 3 below.
At any time if “ 1 1| |<kr ε+ ” in step 7 of the outline of the algorithm in Sec. 2 has occurred and
since mw is not a reasonable solution so that algorithm is possibly stuck at either a local
minimum, i.e., current solution 1kw + , or flat area of weight space, then go to step 3 below.

3. (Using high-intensity simulated annealing procedure and scaled conjugate gradient algorithm)
Set =i mw w , where mw is the best solution found so far among all executions of the scaled
conjugate gradient algorithm in step 2 above.
With iw as the input weight vector, execute simulated annealing procedure in previous section
using its high-intensity version to produce output weight vector cw .
Execute scaled conjugate gradient algorithm with weight vector 0w in step 1 of the outline of the
algorithm in Sec. 2 initialized at cw .
At any time during the execution of the algorithm, let mw be the best solution found so far among
this execution and all executions in step 2 above of the scaled conjugate gradient algorithm.
At any time if mw is a reasonable solution, or if “ 1 1| |<kr ε+ ” in step 7 of the outline of the
algorithm in Sec. 2 has not occurred and >k iter , or if “ 1 1| |<kr ε+ ” in step 7 of the outline of the
algorithm in Sec. 2 has occurred, then terminate executions of the scaled conjugate gradient
algorithm and the training process. Return mw as the best solution.

 If mw is not a reasonable solution then the user should direct SAGRAD to do at least one more cold
start of the above training process. Even if mw is a reasonable solution the user can always direct
SAGRAD to do more cold starts of the training proces in hopes of getting a better solution.

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 124 http://dx.doi.org/10.6028/jres.120.009

7. Numerical Results

7.1 Cushing Syndrome Classification

 Here we present results from running SAGRAD on a small example associated with the so-called
Cushing syndrome. This is an example used in [3] as an application of neural networks for classification.
 The Cushing syndrome is a disorder that occurs when the body is exposed to high levels of the hormone
cortisol for a long time. Three types of the syndrome are recognized: adenoma, bilateral hyperplasia, and
carcinoma. In the presence of the Cushing syndrome the following observations were made that represent
urinary excretion rates (mg/24h) of the steroid metabolites tetrahydrocortisone (in the second column
below) and pregnanetriol (in the third column). Each line of observations has a label that appears in the first
column, and each of the lines corresponds to an individual identified with each of the observations in the
line, an individual with a known type of the syndrome. Accordingly, lines labeled a1, ..., a6 correspond to
individuals with the adenoma type; lines labeled b1, ..., b10 correspond to individuals with the bilateral
hyperplasia type; and lines labeled c1, ..., c5 correspond to individuals with the carcinoma type. Lines
labeled u1, ..., u6 correspond to individuals with the syndrome, each individual with an unknown type of
the syndrome. Finally, the fourth and fifth columns of the data below have the same data as the second and
third columns, respectively, but on a log scale.

a1 3.1 11.70 1.1314021 2.45958884
a2 3.0 1.30 1.0986123 0.26236426
a3 1.9 0.10 0.6418539 -2.30258509
a4 3.8 0.04 1.3350011 -3.21887582
a5 4.1 1.10 1.4109870 0.09531018
a6 1.9 0.40 0.6418539 -0.91629073
b1 8.3 1.00 2.1162555 0.00000000
b2 3.8 0.20 1.3350011 -1.60943791
b3 3.9 0.60 1.3609766 -0.51082562
b4 7.8 1.20 2.0541237 0.18232156
b5 9.1 0.60 2.2082744 -0.51082562
b6 15.4 3.60 2.7343675 1.28093385
b7 7.7 1.60 2.0412203 0.47000363
b8 6.5 0.40 1.8718022 -0.91629073
b9 5.7 0.40 1.7404662 -0.91629073
b10 13.6 1.60 2.6100698 0.47000363
c1 10.2 6.40 2.3223877 1.85629799
c2 9.2 7.90 2.2192035 2.06686276
c3 9.6 3.10 2.2617631 1.13140211
c4 53.8 2.50 3.9852735 0.91629073
c5 15.8 7.60 2.7600099 2.02814825
u1 5.1 0.40 1.6292405 -0.9162907
u2 12.9 5.00 2.5572273 1.6094379
u3 13.0 0.80 2.5649494 -0.2231436
u4 2.6 0.10 0.9555114 -2.3025851
u5 30.0 0.10 3.4011974 -2.3025851
u6 20.5 0.80 3.0204249 -0.2231436

Log scale data above for observations in lines a1, ..., a6, b1, ..., b10, c1, ..., c5, was used as training data for
SAGRAD, and after only one cold start of training process, training was completed on a 4-layer network
associated with the data. The input layer of this network had 3 nodes, the first layer 3, the second layer 4,
and the ouput layer 3. Then log scale data for observations in lines u1, ..., u6, together with the trained
network was used to identify with SAGRAD the type (adenoma, bilateral hyperplasia, or carcinoma)
corresponding to each of these lines. The classification results from the execution of SAGRAD follow for

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 125 http://dx.doi.org/10.6028/jres.120.009

each line of unknown type. Here the first columm of numbers contains outputs from the ouput node of the
neural network corresponding to the ademona type; the second column contains outputs from the output
node corresponding to the bilateral hyperplasia type; and finally the third column contains outputs from the
output node corresponding to the carcinoma type.

u1 1.57569381E-25 1. 3.27244446E-61
u2 1.71192768E-10 4.88008365E-06 0.999999999
u3 1.07917885E-38 1. 2.25400938E-41
u4 0.99999641 1.47077866E-05 7.78196988E-08
u5 1.04024021E-38 1. 2.11941796E-41
u6 1.21287938E-38 1. 2.77865859E-41

From these results it appears that adenoma is the type corresponding to line u4; bilateral hyperplasia is the
type corresponding to lines u1, u3, u5, u6; and carcinoma is the type corresponding to line u2. This
classification of these lines is consistent with the classification of the same lines in [3].

7.2 Wine Classification

 Data in [1] is the result of a chemical analysis of wines produced in the same region in Italy from three
different cultivars. Each line in the data corresponds to a wine and contains quantities of 13 constituents in
the wine that were determined through the chemical analysis.
 The 13 constituents were:

1) Alcohol
2) Malic acid
3) Ash
4) Alkalinity of ash
5) Magnesium
6) Total phenols
7) Flavanoids
8) Nonflavanoid phenols
9) Proanthocyanins
10) Color intensity
11) Hue
12) OD280/OD315 of diluted wines
13) Proline

 Training data for SAGRAD was obtained from [1] as follows. The first 50 lines of data for wine from
the first cultivar were extracted from the data and identified as Class 1 training data; the first 60 lines of
data for wine from the second cultivar were extracted from the data and identified as Class 2 training data;
and the first 40 lines of data for wine from the third cultivar were extracted from the data and identified as
Class 3 training data. In all cases each line of data consisted of 13 numbers corresponding in the same order
to the quantities of constituents listed above. For example, the first line in the Class 1 training data
appeared exactly as follows:

4.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065

 Using this data, SAGRAD was then executed, and after two cold starts of training process, training was
completed on a 4-layer network associated with the data. The input layer of this network had 14 nodes, the
first layer had 14, the second layer had 15, and the output layer had 3. For the purpose of testing the trained
network the remaining 9 lines of data for wine from the first cultivar were extracted from the data and
identified as Class 1 independent data; the remaining 11 lines of data for wine from the second cultivar
were extracted from the data and identified as Class 2 independent data; and the remaining 8 lines of data
for wine from the third cultivar were extracted from the data and identified as Class 3 independent data.

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 126 http://dx.doi.org/10.6028/jres.120.009

 The classification results from the execution of SAGRAD follow for each line of independent data.
Here the first columm of numbers contains outputs from the ouput node of the neural network
corresponding to wine from the first cultivar; the second column contains outputs from the output node
corresponding to wine from the second cultivar; and finally the third column contains outputs from the
output node corresponding to wine from the third cultivar. The first 9 lines correspond to the 9 lines in the
Class 1 independent data in the same order; the next 11 lines correspond to the 11 lines in the Class 2
independent data in the same order; and the final 8 lines correspond to the 8 lines in the Class 3
independent data in the same order.

0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.999999748 1.4638003E-10 3.87972262E-19
0.00725871591 1. 2.44696739E-57
0.999999746 1.47618842E-10 3.86290537E-19
0.00725899153 1. 2.44597986E-57
0.00725948808 1. 2.44420191E-57
0.00725610139 1. 2.45635659E-57
0.0072496458 1. 2.47970923E-57
0.00725948807 1. 2.44420193E-57
0.00725948808 1. 2.44420191E-57
0.00725948808 1. 2.44420191E-57
0.00725948808 1. 2.44420191E-57
3.35969945E-05 1. 1.41314074E-32
2.0606421E-10 5.70930171E-17 1.
2.06064211E-10 5.7093017E-17 1.
2.06064208E-10 5.70930172E-17 1.
2.06064208E-10 5.70930172E-17 1.
2.06065502E-10 5.70929678E-17 1.
2.06064208E-10 5.70930172E-17 1.
2.06064208E-10 5.70930172E-17 1.
2.54410205E-19 1.07524957E-06 1.

From these results it appears that only the wine corresponding to the 2nd line in the Class 2 independent
data was classified incorrectly. Additional output from SAGRAD confirms this:

Independent patterns classification results:
Class = 1 Total = 9 Correct = 9 Percentage = 100.
Class = 2 Total = 11 Correct = 10 Percentage = 90.9090909
Class = 3 Total = 8 Correct = 8 Percentage = 100.0

These results compare well with results found elsewhere for the same wine data, e.g., in [10], [11], [14].

8. Summary

 SAGRAD, a Fortran 77 program for computing neural networks for classification using batch learning,
was discussed. Since neural network training in SAGRAD is based in part on Møller’s scaled conjugate

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 127 http://dx.doi.org/10.6028/jres.120.009

gradient algorithm which is a variation of the traditional conjugate gradient method, better suited for the
nonquadratic nature of neural networks, an outline of Møller’s algorithm was presented that resembles its
implementation in SAGRAD. Important aspects of the implementation of the training process in SAGRAD
were discussed such as the efficient computation of gradients and multiplication of vectors by Hessian
matrices that are required by Møller’s algorithm. Accordingly, formulas for the product of vectors by
Hessian matrices depending on those for the gradients used in SAGRAD were developed. Because of this
dependence it was pointed out that calculations with these formulas of the gradient at a vector and the
product of the Hessian at the same vector with another vector in the context of Møller’s algorithm occur
simultaneously and take place in either a feed-forward fashion or in the manner of backpropagation.
 As neural network training in SAGRAD is also based on simulated annealing, an outline of the
simulated annealing procedure implemented in SAGRAD was also presented. It was then pointed out that
two versions of this procedure are used in the training process in SAGRAD, one a low-intensity version for
the (re)initialization of weights required to (re)start the scaled conjugate gradient algorithm the first time
and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the
other a high-intensity version to be used once the scaled conjugate gradient algorithm has possibly reduced
the squared error considerably but becomes stuck at a local minimum or flat area of weight space. An
outline of the training process was then presented.
 Finally, results from executions of SAGRAD were reported. SAGRAD was run on two essentially
small examples of training data consisting of sample patterns of dimension 2 and 13, respectively. The
trainings with SAGRAD of the training data for the two examples were declared to be good as reasonable
solutions were obtained. Classification results were then presented from applying the corresponding neural
networks on the trained data, and other independent data of known and unknown classification, and these
results were also declared to be good as for over 90 % of the patterns in the data the results were correct.
 It should be noted that in general it may take several cold starts of the training process in SAGRAD
before a reasonable solution is obtained. Such a solution should then be tested for quality by applying the
corresponding neural network on independent sample patterns of known classification. A copy of
SAGRAD can be obtained at http://math.nist.gov/~JBernal.

9. References

[1] K. Bache and M. Lichman, UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and

Computer Science. http://archive.ics.uci.edu/ml (2013).
[2] R. Fletcher, Practical Methods of Optimization. John Wiley & Sons (1975).
[3] G. Gongwer, M. Iyer, and M. Kong, Stat 6601 Classification: Neural Networks V&R 12.2.

www.sci.csueastbay.edu/~jkwon/classes/stat_6601 /PROJECT/6601_presentation_Classification_NeuralNetwork.ppt (2010).
[4] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Prentice Hall (2008).
[5] M. R. Hestenes and E. L. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the

National Bureau of Standards 49(6) (1952) 409-436. http://dx.doi.org/10.6028/jres.049.044
[6] S. Ledesma, M. Torres, D. Hernandez, G. Aviña, and G. Garcia, Temperature Cycling on Simulated Annealing for Neural

Network Learning. MICAI 2007: Advances in Artificial Intelligence, Lecture Notes in Computer Science 4827 (2007) 161-171.
[7] M. F. Møller, A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks 6(4) (1993) 525-533.

http://dx.doi.org/10.1016/S0893-6080(05)80056-5
[8] M. F. Møller, Exact calculation of the product of the Hessian matrix of feed-forward network error functions and a vector in

O(n) time. Daimi PB-432, Computer Science Department, Aarhus University, Åhus, Denmark (1993).
[9] M. F. Møller, Efficient Training of Feed-Forward Neural Networks. Ph.D. Thesis, Computer Science Department, Aarhus

University, DK-8000 Åhus, Denmark. http://ojs.statsbiblioteket.dk/index.php/daimipb/article/view/6937/5900 (1997).
[10] A. Nikolic, Predicting the Class of Wine with Neural Networks. http://neuroph.sourceforge.net/tutorials/wines2/Predicting the

class of wine with neural networks.htm.
[11] C. Ozgur, Classification of Wine with Artificial Neural Network.

https://eembdersler.files.wordpress.com/2010/09/2013911116-c3b6zgc3bcrc3a7elik-report.pdf.
[12] B. A. Pearlmutter, Fast Exact Multiplication by the Hessian. Neural Computation 6(1) (1994) 147-160.

http://dx.doi.org/10.1162/neco.1994.6.1.147
[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Representations by Back-propagating Errors. Nature 323 (1986)

533-536. http://dx.doi.org/10.1038/323533a0
[14] M. Stojkovic, Wine Classification using Neural Networks.

http://neuroph.sourceforge.net/tutorials/wines1/WineClassificationUsingNeuralNetworks.html.

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1016/S0893-6080%2805%2980056-5
http://dx.doi.org/10.1162/neco.1994.6.1.147
http://dx.doi.org/10.1038/323533a0

 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.009
 Journal of Research of the National Institute of Standards and Technology

 128 http://dx.doi.org/10.6028/jres.120.009

[15] J. Torres-Jimenez, I. Izquierdo-Marquez, A. Garcia-Robledo, A. Gonzalez-Gomez, J. Bernal, and R. N. Kacker, A Dual
Representation Simulated Annealing Algorithm for the Bandwidth Minimization Problem on Graphs. Information Sciences 303
(2015) 33-49. http://dx.doi.org/10.1016/j.ins.2014.12.041

[16] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard
University (1974).

[17] B. Widrow and M. E. Hoff, Adaptive switching circuits. IRE WESCON Convention Record 4 (1960) 96-104.
[18] G. P. Zhang, Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man, and Cybernetics - Part C:

Applications and Reviews 30 (4) (2000) 451-462. http://dx.doi.org/10.1109/5326.897072

About the authors: Javier Bernal is a mathematician in the Applied and Computational Mathematics
Division of the NIST Information Technology Laboratory in Gaithersburg, MD. He received his Ph.D. in
Mathematics in 1980 from Catholic University in Washington, DC, the same year he joined NIST. His
research interests include the development, analysis and implementation of algorithms in computational
geometry, Riemannian geometry, and optimization.
 Jose Torres-Jimenez is a teacher and researcher at CINVESTAV-Tamaulipas, México. Currently he is a
guest researcher in the Applied and Computational Mathematics Division of the NIST Information
Technology Laboratory in Gaithersburg, MD. He is an expert in combinatorial optimization and optimal
experimental design. Specifically he is recognized for his contributions in the field of Covering Arrays. The
National Institute of Standards and Technology is an agency of the U.S. Department of Commerce.

http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.6028/jres.120.009
http://dx.doi.org/10.1016/j.ins.2014.12.041
http://dx.doi.org/10.1109/5326.897072

