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We consider the equilibrium and stability of rotating axisymmetric fluid drops by appealing to a variational principle that characterizes 
the equilibria as stationary states of a functional containing surface energy and rotational energy contributions, augmented by a 
volume constraint. The linear stability of a drop is determined by solving the eigenvalue problem associated with the second variation 
of the energy functional. We compute equilibria corresponding to both oblate and prolate shapes, as well as toroidal shapes, and track 
their evolution with rotation rate. The stability results are obtained for two cases: (i) a prescribed rotational rate of the system (“driven 
drops”), or (ii) a prescribed angular momentum (“isolated drops”). For families of axisymmetric drops instabilities may occur for 
either axisymmetric or non-axisymmetric perturbations; the latter correspond to bifurcation points where non-axisymmetric shapes are 
possible. We employ an angle-arc length formulation of the problem which allows the computation of equilibrium shapes that are not 
single-valued in spherical coordinates. We are able to illustrate the transition from spheroidal drops with a strong indentation on the 
rotation axis to toroidal drops that do not extend to the rotation axis. Toroidal drops with a large aspect ratio (major radius to minor 
radius) are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical 
interface. Prolate spheroidal shapes occur if a drop of lower density rotates within a denser medium; these drops appear to be linearly 
stable. This work is motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-
assembly [Nurse et al., Journal of Applied Mechanics 79 (2012) 051013]. 
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1.  Introduction 
 
      Analyses of the dynamics of a rotating liquid drop held together by surface tension were initiated by 
Plateau [1]. In his work a liquid drop was immersed in an immiscible liquid which has about the same 
density but a much smaller viscosity than the drop. The drop was then spun at a controllable rate using a 
rotating rod that threaded the drop axis. Spinning of the drop produces significant deviations from the 
spherical equilibrium shape that is obtained for stationary drops. By matching the density of the drop and 
its surrounding medium, gravitational effects can be minimized in a terrestrial experiment. Assuming rigid 
body motion and taking into account solely axisymmetric drop configurations, the drops evolve from 
spherical configurations at zero rotation rate through a family of axisymmetric shapes that progressively 
flatten at the poles while developing an equatorial bulge. At large enough rotation rates, Plateau observed 
transient toroidal configurations that tended to break up into smaller drops (see also [2]). 
      Studies of rotating drops with significant density contrasts have also been performed in microgravity 
environments [3]. Due to the qualitative similarity between Plateau’s rotating liquid masses held together 
by surface tension and self-gravitating celestial bodies, there have been many theoretical studies of the 
resulting equilibrium configurations and their stability, including work by Rayleigh [4], Maclaurin [5], 
Lyttleton [6], Chandrasekhar [7], Ross [8] and Brown and Scriven [9], and Myshkis et al. [10]. 
      Recently there has been interest in the stability of toroidal shapes. Experimentally, macroscopic liquid 
toroidal droplets [11] and nanoscale toroids of varying sizes have been carefully generated and observed 
[12, 13]. Analysis indicates that the stability of these toroidal shapes is related to the aspect ratio of the 
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major and minor radii. Both groups report that toroids with a small aspect ratio tend to coalesce to form a 
single spherical droplet, while thinner toroids, i.e., those with large aspect ratio, mainly break up into 
smaller droplets. 
      Experiments on neonatal fibroblast cells that have self assembled into a toroidal cluster about the base 
of a conical pillar, have shown that the toroidal cluster will actively do work to climb the pillar to become a 
sphere or will remain at the base of the pillar and break up to form smaller clusters [14]. Subsequent 
theoretical work on this self assembled system points to the surface energy as the configurational driving 
force for the climbing motion of the cluster [15]. This suggests that the fate of the cluster is determined by 
its size. As such, thinner toroidal clusters do not climb the conical pillar and the development of localized 
deformations along its circumference is considered to be a result of the unstable growth of surface 
fluctuations. 
      These studies have revived interest in the stability of a rotating toroidal drop held together by surface 
tension. In this paper the stationary points of an energy functional are used to determine the equilibrium 
shapes of spheroidal and toroidal drops. The stability of the drops is then determined by examining the 
second variation of their energy functionals. The loss of stability of an equilibrium drop can indicate a 
transition to another equilibrium shape or signal the impending loss of the existence of the equilibrium drop 
itself. 
      The energy functional that we employ takes the form of a Lagrangian representing the difference 
between a drop’s potential energy, due to capillary forces, and the kinetic energy of rotation, subject to a 
volume constraint. This formulation is analogous in many ways to that for the classical problem for the 
equilibrium and stability of rotating, self-gravitating drops, where the potential energy is then due to a 
Newtonian gravitational potential [6, 16]. In that case there is a class of equilibria given by axisymmetric 
ellipsoids that take the form of oblate spheroids (shaped like “hamburger buns” with respect to the 
rotational axis). In our case there also are axisymmetric solutions that resemble oblate ellipsoids. These 
occur when the density of the drop exceeds that of the surrounding medium, so that due to centripetal 
acceleration the drop tends to bulge at the equator and flatten at the pole. On the other hand if the density of 
the surrounding medium exceeds that of the drop a family of solutions that instead resemble prolate 
ellipsoids (“cigar-shaped” with respect to the rotational axis) are possible. We will refer to these families of 
solutions as oblate spheroids and prolate spheroids, respectively, with the understanding that in our case 
these solutions are not literally axisymmetric ellipsoids of revolution. More generally we will refer to our 
solutions as spheroidal or toroidal depending on their topology. 
      For the drop undergoing rigid body rotation with a fluid of a different density, the application of an 
external torque may be necessary to maintain a given rotation rate as the moment of inertia of the drop 
changes due to variations in the shape of the drop. Here, such a drop is referred to as a driven drop. 
Alternatively, if there is no applied external torque, the angular momentum of the drop is conserved. If the 
drop rotates with constant angular momentum, it is termed an isolated drop. The energy functional for the 
driven drop is a function of the drop’s shape and the rate of rotation, while the energy functional of the 
isolated drop is a function of the drop’s shape and its angular momentum. This latter energy functional is 
formulated by a Legendre transform of the former functional to account for the constant angular 
momentum constraint, forming what is termed the Routhian in classical mechanics [17]. 
      We first describe the variational formulation of the problem, including the Euler equation governing the 
equilibrium drops that results from the first variation of the energy functional. In § 3 we discuss the second 
variation that governs the stability of the equilibrium drops. Our numerical techniques are described in § 4, 
followed by numerical results in § 5. Some conclusions are given in § 6. 
 
 
2.  Variational Formulation 
 
      We describe the variational formulation for the equilibrium and stability of rotating spheroidal and 
toroidal drops. The case of a rigidly rotating system consisting of a drop confined by a co-rotating 
surrounding medium is considered first, followed by the modifications necessary to treat the rotation of an 
isolated drop that conserves its angular momentum. An example of the former would be a two-fluid system 
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in a container that is attached to a platter revolving at a constant rate. An example of the latter would be a 
isolated drop rotating in vacuum in a microgravity environment. 
 
2.1  Forced Rotation at a Prescribed Rate 
 
      The equilibrium of a driven axisymmetric drop that undergoes rigid body rotation at a specified angular 
velocity in tandem with a surrounding co-rotating medium can be described in terms of the stationary 
points of an energy functional that includes contributions from the kinetic energy and surface energy of the 
system. For simplicity we begin by formulating the variational principle in a cylindrical coordinate system 
in which the drop surface has the form = ( )z f r  for 0 1< <r r r  and > 0z ; we will assume that the drops 
have a mid-plane of symmetry about = 0z . We later generalize to a body-fitted set of coordinates 
employing angle/arclength variables that avoids difficulties associated with infinite slopes and is more 
suitable for the stability determination of distorted drops. For a spheroidal drop 0 = 0r  corresponds to the 
axis of rotation and 1r  is the equatorial radius, with a vanishing slope = /rf df dr  at = 0r  and a tangent 
angle ψ , defined by tan = rfψ , of = /2ψ π−  at 1=r r  where 1( ) = 0f r . The polar radius of the drop is 

0 = (0)Z f . For a toroidal drop 0 > 0r  is the inner radius of the toroid and 1 0>r r  is the outer radius, with a 
tangent angle of = /2ψ π  at 0=r r  where 0( ) = 0f r , and = /2ψ π−  at 1=r r  where 1( ) = 0f r . Schematic 
diagrams are shown in Fig. 1. 
 

 
 
Fig. 1. Schematic diagrams showing cross-sections of a rotating spheroidal drop (left) and a rotating toroidal drop (right). Here the 
arclength s increases in the clockwise direction, and the tangent angle ψ  is measured with respect to the horizontal. 
 
 
      The effective energy functional is written as 
 

                21[ , ] = [ ] [ ] [ ],
2

f f f P fγΩ − Ω −       (1) 

 
where γ  is the surface energy of the drop, Ω  is the given rotation rate, and 
 

          1 2

0
[ ] = 4 1

r

rr
f r f drπ +∫     (2) 

 
is the total surface area of the drop. The effective kinetic energy of the system is 2 /2Ω  , where 
 

         1 3

0
[ ] = 4 ( )

r

r
f r f r drπ r∆ ∫     (3) 
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is the moment of inertia. The total volume of the drop is 
 

            1

0
[ ] = 4 ( ) ,

r

r
f rf r drπ ∫      (4) 

 
and P  is a Lagrange multiplier that is used to enforce a constraint 0[ ] =f   of constant volume 0 . Here 

inner outer=r r r∆ −  is the difference between the drop density innerr  and the density of the exterior medium 
outerr . Rotation in a vacuum or medium of negligible density then corresponds to inner= > 0r r∆ , whereas 

a drop in a heavier surrounding fluid medium with density outer inner>r r  would correspond to a negative 
density difference < 0r∆ . We are assuming there are no gravitational effects. 
      Equilibrium of the drop is then described by requiring the energy functional to be stationary to 
perturbations fδ  in the shape that conserve the volume and satisfy appropriate boundary conditions at 

0=r r  and 1=r r , 
 

    210 = = [ ] [ ] [ ],
2

f f P fδ γδ r δ δ− ∆ Ω −       (5) 

 
which leads to the Euler equation 
 

            
2

2

2
= ,  

21
r

r

fd r P r
r dr f
γ r  ∆ Ω − +

 + 
    (6) 

 
for the shape ( )f r  and the Lagrange multiplier P , which is chosen so that the volume constraint 
 

             1
0

0
4 ( ) =

r

r
rf r drπ ∫       (7) 

 
is satisfied. The Euler equation is equivalent to the Laplace-Young boundary condition inner outer=K p pγ −  
at a fluid-fluid interface, where K  is the mean curvature of the interface and innerp  and outerp  are the local 
pressures on the inside and outside of the drop, respectively. In a hydrodynamic description of the motion 
based on the Navier-Stokes equations [18], in each phase the pressure satisfies a radial momentum balance 

2 = /r dp drr Ω  for a rigid body motion rΩ  in the azimuthal direction, which integrates to 
2 2/2 = =p r pr− Ω  constant. The Lagrange multiplier is then given by the difference between the constants 

of integration, inner outerp p− . For a spheroidal drop this difference corresponds to the jump in pressure 
across the surface at the axis of rotation = 0r . 
      The Euler equation has an explicit first integral 
 

             
2 3

2
= ,

2 81
r

r

f Pr r C
rf

rγ ∆ Ω
− + +

+
    (8) 

 
where C  is a constant of integration. The first integral can be solved for rf  to reduce the solution to 
quadrature. For spheroidal solutions with (0) = 0rf  the integration constant C  vanishes. The oblate 
spheroidal solutions that result if > 0r∆  were obtained in terms of elliptic integrals by Chandrasekhar [7]. 
The prolate solutions that result if < 0r∆  can also be described in terms of elliptic integrals; these 
solutions are summarized in Appendix 7.1. In the toroidal case, rf  tends to positive infinity at the inner 
radius 0r  and the integration constant satisfies 
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2 3

0 0

0

= .
2 8

Pr r C
r

r
γ

∆ Ω
− + +     (9) 

 
There is an analogous expression relating C  and the outer radius 1r  where rf  tends to negative infinity. 
The existence of toroidal solutions was proved in 1984 by Gulliver [19]. The spheroidal and toroidal 
solutions will be described in more detail below when we discuss the stability results in § 5. 
 
2.2  Free Rotation of an Isolated Drop 
 
      If an isolated drop is freely rotating rather than being driven by an external torque that provides a 
constant rotation rate, it is appropriate to formulate the problem in terms of the drop’s angular momentum 
L , which is conserved by the motion. With the explicit form for the energy functional [ , ]f Ω  given in 
Eq. (1), the angular momentum functional [ , ]L f Ω  is given formally by 
 

    [ , ] = [ , ] = [ ]. L f f f∂
Ω − Ω Ω

∂Ω
      (10) 

 
We define the Routhian functional [ , ]f L  (see, e.g., [6, 9]) via a Legendre transformation [20] with 
respect to Ω , 
 

    [ , ] = [ , ] [ , ],  f L f f∂
Ω −Ω Ω

∂Ω
      (11) 

 
where in the right hand side the rotation rate is now regarded as a functional [ , ] = / [ ]f L L fΩ   that is 
obtained by inversion of the relation (10). This leads to the expression 
 

    
2

[ , ] = [ ] [ ],  
2 [ ]

Lf L f P f
f

γ + −  


   (12) 

 
whose first variation, taken at constant L , 
 

       
2

2= ,  
2
L Pδ γδ δ δ− −   


    (13) 

 
leads to the same Euler equation (6) as for the driven drop, since we have =L Ω  in each case. Thus the 
equilibrium states for the driven drops and the isolated drops are the same, although their stability differs, 
as we describe next. 
 
 
3.  Second Variation 
 
      We next describe the stability of the drops in terms of the second variation of their energy functionals. 
The equations for the second variation involve the equilibrium shape and its spatial derivatives, and it is 
convenient to first re-express the unperturbed shape in terms of angle/arclength variables to obtain a more 
tractable version of the stability equations. 
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3.1  Angle/Arclength Coordinates on the Drop 
 
      The axisymmetric equilibrium shapes can be parametrized in terms of their arclength s  as = ( )r R s  
and = ( )z Z s , where = 0s  is taken to correspond to the point 0=r r . Their derivatives are given by 

= cos ( )sR sψ  and = sin ( )sZ sψ  for 0 < < Ts S , where ψ  is the local tangent angle to the shape and TS  is 
the total arclength of the upper half ( > 0z ) of the shape. The Euler equation (6) is then 
 

    
2

2sin= ,  
2s P R

R
ψ rγψ γ ∆ Ω

− + +     (14) 

 
where the mean curvature is given by = sin( )/sK rψ ψ+ . We note that the first integral (8) can be written 
in the form 
 

    
2

3sin = . 
2 8

PR CR
R

rγ ψ ∆ Ω
− + +     (15) 

 
In the spheroidal case with = 0C  this expression can be used to eliminate the singular term sin( )/Rψ  in 
Eq. (14) to give the alternate expression 
 

          
2

23= ,  
2 8s
P Rrγψ ∆ Ω

− +     (16) 

 
which is regular at = 0s  where (0) = 0R . On the other hand, since for the toroidal drop 0(0) = > 0R r  this 
singularity does not arise in that case and Eq. (14) can be used as written. In either case the total volume is 
given by 
 

     
0

= 4 ( ) ( )cos ( ) .
ST R s Z s s dsπ ψ∫     (17) 

 
3.2  Body-Fitted Coordinate System 
 
      To compute the second variation we employ a body-fitted coordinate system ( , , )s wθ  where s  is 
arclength, θ  is the azimuthal angle about the rotation axis, and w  is distance measured along the local 
outward normal to the drop surface. The mapping from ( , , )s wθ  to cylindrical coordinates ( , , )r zθ  is then 
given by 
 
       = ( ) sin ( ), = ( ) cos ( ),  r R s w s z Z s w sψ ψ− +    (18) 
 
where the outward normal has components ( , ) = ( sin ,cos )r zn n ψ ψ−  in the r – z  plane. These coordinates 
are well-defined in a neighborhood of the drop’s surface for small enough values of | |w . These local 
coordinates are orthogonal with the line element 
 
      2 2 2 2 2 2 2= [1 ] [ sin ] ,  sd w ds R w d dwψ ψ θ− + − +    (19) 
 
and the volume element 2= [1 ][ sin ]sdV w R w dsd dwψ ψ θ− − . A perturbation to the drop can be written in 
terms of a normal displacement given by a function = ( , )w W s θ  along the normal direction, with the 
unperturbed drop corresponding to the surface = 0w . The perturbation satisfies Neumann boundary 
conditions (0, ) = ( , ) = 0s s TW W Sθ θ . 
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      To compute the first and second variations of the energy functional, we formally expand the interface 
displacement in terms of a small parameter ε , 
 

        (1) 2 (2)1( , , ) = ( , ) ( , ) ... 
2

W s W s W sθ ε ε θ ε θ+ +    (20) 

 
The various functionals can written in terms of ( , , )W s θ ε , e.g., [ ]W , and similarly expanded as 

(1) 2 (2)[ ] = ( /2) ...W ε ε+ +   , giving the results 
 

            
2(1) (1)

0 0
= 2 ,

ST RW d ds
π

θ∫ ∫      (21) 

 

       
2(2) (2) (1) 2

0 0
= 2 { ( sin )[ ] } ,

ST
sRW R W d ds

π
ψ ψ θ− +∫ ∫    (22) 

 

         
2(1) 3 (1)

0 0
= 2 ,

ST R W d ds
π

r θ∆ ∫ ∫      (23) 

 

              
2(2) 3 (2) 3 2 (1) 2

0 0
= 2 { ( 3 sin )[ ] } ,

ST
sR W R R W d ds

π
r ψ ψ θ∆ − +∫ ∫    (24) 

 

    
2(1) (1)

0 0
= 2 ( sin ) ,

ST
sW R d ds

π
ψ ψ θ− +∫ ∫     (25) 

 

             
2(2) (1) 2 (1) 2 (1) 2 (2)

0 0

1= 2 2 sin [ ] [ ] [ ] ( sin ) .
ST

s s sW R W W R W d ds
R

π

θψ ψ ψ ψ θ + + − + 
 ∫ ∫  (26) 

 
3.3  Driven Drop 
 
      The first variation of the energy functional for the driven drop is then (1) (1) 2 (1) (1)= /2 Pγ −Ω −    , or 
 

  
22(1) 3 (1)

0 0
= 2 ( sin ) ,

2
ST

sR R PR W d ds
π rγ ψ ψ θ

 ∆ Ω
− + − − 
 

∫ ∫    (27) 

 
and requiring (1) = 0  for arbitrary variations (1)W  recovers the Euler equation (14). Similarly, the second 
variation (2)  is given by 
 

 
22(2) 3 2 (1) 2

0 0
= 2 2 sin [ 3 sin ] ( sin ) [ ]

2
ST

s s sR R P R W
π rγψ ψ ψ ψ ψ ψ

 ∆ Ω + + + + 
 

∫ ∫  

 

      (1) 2 (1) 2[ ][ ] [ ][ ]  sR W W dsd
R θ
γγ θ+ + 


 

 

  
22 3 (2)

0 0
2 ( sin ) . 

2
ST

sR R PR W dsd
π rγ ψ ψ θ

  ∆ Ω − + + +  
   

∫ ∫    (28) 
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The latter integrand proportional to (2)W  vanishes because of the Euler equation, so that (2)  is a quadratic 
functional in the variation (1)W . The stability of the system is then determined by the sign of the second 
variation. This sign is most easily determined by diagonalizing the quadratic form, subject to the constraint 
 

    
2(1) (1)

0 0
0 = = 2 .

ST RW d ds
π

θ∫ ∫     (29) 

 
The diagonalization of the quadratic form is equivalent to an eigenvalue problem, which leads to the Sturm-
Liouville equation 
 

 
22

2 2 2 (1) (1) (1) (1)
2 2 2

sinsin [ ] = ,  s sR W RW W W
R R sR R

ψ ψ γ γγψ γ r λ µ
θ

∂ ∂ 
− − + ∆ Ω − − + 

∂ ∂ 
 (30) 

 
where λ  is the eigenvalue and µ  is a Lagrange multiplier for the volume constraint in Eq. (29), which 
must also be enforced. Here we have again used the Euler equation to simplify the final expression; note 
that P  is absent from this equation. Expanding a general perturbation in terms of the orthonormal 
eigenmodes ( ( , ), )j jW s θ λ  of the Sturm-Liouville equation, 
 
      (1) ( , ) = ( , ),  j j

j
W s a W sθ θ∑     (31) 

 
then produces the diagonalized expression 
 

                 
2(2) 2 2

0 0
= 2 | | [ ( , )] .

ST
j j j

j
a R W s d ds

π
λ θ θ∑ ∫ ∫     (32) 

 
Here ja  is the expansion coefficient of (1)W  with respect to the eigenmode jW , 
 

       
2 (1)

0 0
= ( , ) ( , ) . 

ST
j ja RW s W s d ds

π
θ θ θ∫ ∫  

 
Stability of the driven drop is obtained, viz. (2) > 0 , if jλ  is positive for all eigenmodes, and instability 
occurs if any eigenvalue jλ  is negative. 
 
3.4  Isolated Drop 
 
      For the isolated drop, the expansion of the Routhian proceeds in a similar fashion, leading to the second 
variation 
 

     
2 2

(2) (2) (2) (2) (1) 2
2 3= [ ] ,

2
L LPγ − − +    
 

   (33) 

 
which differs from the expression for (2)  by the latter positive term proportional to (1) 2[ ] ; here = /L Ω  
is the unperturbed moment of inertia. In this case diagonalizing (2)  leads to an integro-differential 
eigenvalue problem, 
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22

2 2 2 (1) (1) (1)
2 2 2

sinsin [ ]  s sR W RW W
R R sR R

ψ ψ γ γγψ γ r
θ

∂ ∂ 
− − + ∆ Ω − − 

∂ ∂ 
 

 

   
2 22 2 3 (1) (1)
3 0 0

2( ) [ ( )] [ ( )] ( , ) = .
STL R s R s W s d ds W

π
r θ θ λ µ

 
′ ′ ′+ ∆ + 

 
∫ ∫

   (34) 

 
The isolated drop is stable if the eigenvalues jλ  are positive for all eigenfunctions of Eq. (34). 
      Since the coefficients of both Eqs. (30) and (34) are independent of the azimuthal angle θ , normal 
modes of the form (1) (1)( , ) = ( )cosW s w s nθ θ  are solutions, which reduces Eq. (30) to an ordinary 
differential equation (ODE) for the corresponding eigenmodes (1) ( )w s . The non-axisymmetric modes with 

0n ≠  then automatically satisfy the volume constraint since the integrals over θ  vanish, and the associated 
Lagrange multiplier µ  can be taken to vanish. The volume constraint must still be applied for the 
axisymmetric modes with = 0n . Similarly Eq. (34) becomes an integro-ordinary-differential equation that 
must be solved along with a volume constraint for axisymmetric modes. The equation for non-
axisymmetric modes with 0n ≠  also reduces to an unconstrained ODE, and the stability problem for non-
axisymmetric modes are identical for driven and isolated drops. 
      The normal mode solutions can generally be divided into families that are even or odd about a mid-
plane of symmetry at = 0z . As discussed by Brown and Scriven [9], for the related cases of rotating drops 
that are held together by self-gravitation it is known that the drops have reflective symmetry about their 
equatorial plane [21]. Brown and Scriven therefore confined their finite element computations to solutions 
with even symmetry about = 0z . We have computed normal modes with either even or odd symmetry, and 
have found instabilities only for modes with reflective symmetry about = 0z . There are also neutrally-
stable modes with odd symmetry about the equatorial plane that correspond to simple energy-preserving 
translations along the z -axis. With the exception of these translation modes, the modes with odd symmetry 
about = 0z  are found to be stable, and so we will confine our discussion to the even modes. The numerical 
procedures used to solve these corresponding eigenvalue problems are summarized next. 
 
 
4.  Numerical Techniques 
 
      The eigenvalue problems for determining the stability of the rotating drops are intractable analytically 
except in special cases, and we have resorted to numerical techniques for their solution. We have used two 
complementary approaches. Firstly, a finite difference discretization of the Sturm-Liouville equations can 
be used to produce a matrix eigenvalue problem, which produces N  approximate eigenvalues for a system 
using N  mesh points. Secondly, we have used an ODE solver in tandem with a shooting procedure to 
compute individual eigenmodes. The latter procedure is quite accurate provided adequate starting values 
are available to estimate the eigenvalues; we have used the matrix approximation to furnish the necessary 
initial guesses. Since the coefficients of the ODE’s involve the shape of the unperturbed drop, the Euler 
equations are also solved numerically to provide the appropriate values at the mesh points of the matrix 
formulation or at the internal integration steps of the ODE solver. Some details are provided in Appendix 
7.2 and 7.3. 
 
 
5.  Numerical Results 
 
      We first consider the case of heavier drops rotating in a lighter medium, followed by the case of drops 
that are lighter than their surroundings. 
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5.1  Base States for > 0r∆  
 
      The evolution of the axisymmetric drop shapes with > 0r∆  as the rate of rotation Ω  is varied has 
been described by a number of authors [7, 9]; some examples are illustrated in Fig. 2. Here we have defined 
the dimensionless rotation rate *Ω , the moment of inertia * , and the angular momentum *L  via 
 

      
2 3

2 0
* * * * *3

0

= , = , =
8 4

R
L

R
r
γ r

∆ Ω
Ω Ω

∆


     (35) 

 
where 0R  is the radius of the sphere with equivalent volume, 3

0 0= 4 /3Rπ . For small rates of rotation the 
drops are nearly spherical, and as the rate of rotation increases the drops develop an equatorial bulge while 
flattening at the poles. The continual decrease in polar radius eventually produces dimpling of the surface at 
the pole and the drop becomes non-convex. The family of spheroidal drops terminates at a point in 
parameter space where the polar radius 0Z  of the drop vanishes and the drop pinches off at the poles. There 
is also a nearby family of toroidal drops which originate near this point in parameter space; in this case, the 
inner radius 0r  of the torus tends to zero as the “hole” of the toroid closes up. The pinching of the 
spheroidal drops and the “healing” of the toroidal hole are illustrated in the sequences shown in Fig. 2. 
 

 
 
Fig. 2. Top: Upper half of spheroidal drop shapes illustrating the development of equatorial bulge and flattening at the poles. Bottom: 
Upper half of toroidal drop shapes showing development of the inner hole. (a) * = 0.600Ω , * = 0.340L . (b) * = 0.707Ω , * = 0.494L . 
(c) * = 0.754Ω , * = 0.729L . (d) * = 0.727Ω , * = 0.899L . (e) * = 0.678Ω , * = 0.699L . (f) * = 0.484Ω , * = 0.745L . 
 
 
      The relation between angular rotation rate and angular momentum for the spheroidal and toroidal drop 
families is shown in Fig. 3. The angular momentum L  of the spheroidal drops initially increases with 
rotation rate, but the rotation rate eventually decreases as the angular momentum continues to increase (see 
Fig. 3). As the inner radius of the toroids increases, the angular momentum of the drops initially decreases, 
then reverses and increases steadily as the cross section of the toroids becomes more and more circular. We 
note that the spheroidal and toroidal families do not merge with one another, although their curves are very 
close at their respective terminal points in Fig. 3 near * = 1.1194L . The solution curve for the spheroidal 
family can actually be smoothly extended to include self-intersecting drops for * > 1.1194L  where the 
polar radius has become negative [ (0) < 0Z ]. In addition, the boundary conditions differ at = 0s , since the 
spheroidal drops have a horizontal tangent there, while the toroidal drops have a vertical tangent. As a 
result, as we will see below, the normal modes of the spheroidal and toroidal modes are not coincident at 

* = 1.1194L . 
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Fig. 3. Rotation rate *Ω  versus angular momentum *L  for the family of oblate spheroidal drops and toroidal drops. Shapes shown in 
Fig. 2 are indicated by symbols. 
 
 
5.2  Linear Stability of the Oblate Spheroids 
 
      The stability of rotating oblate spheroidal drops has been considered previously by a number of authors, 
including Chandrasekhar [7], Brown and Scriven [9], and Heine [22]; the latter two papers include the 
computation of non-axisymmetric solutions that bifurcate from the axisymmetric family at specific rotation 
rates. To validate our numerical procedure, we have reproduced these bifurcation points, which correspond 
to conditions of marginal stability ( = 0λ ) where the energy functional ceases to be a minimum relative to 
non-axisymmetric perturbations of a given mode number n . Results are shown in Fig. 4, where in the 
upper plot the bifurcation points for perturbations with mode numbers = 2,3,4n  and 5  are indicated on 
the curve of *Ω  versus *L . The numerical values agree with those given by Brown and Scriven for 

= 2,3,n  and 4  to three decimal places; they were unable to compute the = 5n  bifurcation because of 
their use of spherical coordinates, which preclude the computation of highly-dimpled shapes that are non-
convex relative to the origin. The results for = 2n  also agree with those given by Heine to five decimal 
places; Heine also describes a bifurcation to an = 6n  perturbation on the extension of the solution curves 
to self-intersecting drops for * > 1.1194L . In the middle plot of Fig. 4 the values of λ  are shown for the 
first five non-axisymmetric perturbations. Values of *L  for which λ  is positive correspond to stable 
modes, while negative values of λ  correspond to instabilities. The points where the curves cross the axis 

= 0λ  correspond to the bifurcation points indicated in the upper figure. For = 2n : * = 0.5599Ω , 
* = 0.3016L ; for = 3n : * = 0.7071Ω , * = 0.4944L ; for = 4n ; * = 0.7536Ω , * = 0.7099L ; and for = 5n , 
* = 0.7239Ω , * = 1.0235L . The rotating drops are also unstable to a “decentering” perturbation with = 1n . 

The non-rotating spherical drop *( = 0)Ω  is marginally stable ( = 0λ ) to an arbitrary translation of the 
drop’s position, which for small translations corresponds to an = 1n  perturbation of the drop shape. This 
mode is destabilized ( < 0λ ) with finite rotation, where the effects of centripetal acceleration cause a 
slightly off-axis drop to drift outwards. 
      As discussed by Brown and Scriven, the stability of the driven drops ( * =Ω  constant) and isolated 
drops ( * =L  constant) to non-axisymmetric perturbations ( > 0n ) are identical, since the perturbed moment 
of inertia vanishes for non-axisymmetric perturbations. For the case of axisymmetric perturbations ( = 0n ), 
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the stability results do differ, as shown in the lower plot in Fig. 4. The driven drop is unstable to an 
axisymmetric disturbance at the limit point [23] of the solution branch where *Ω  reaches its maximum 
value, with * = 0.7540Ω , * = 0.7291L . The isolated drop is stable with positive values of λ  that, for each 
value of *L , are larger than those for the driven drop, as expected from Eq. (33). No limit point with 
respect to *L  occurs on the solution branch, so there is no analogous axisymmetric instability for the 
isolated drop. 
 

 
 
Fig. 4. Linear stability of rotating spheroidal drops. In the upper plot the points of marginal stability to perturbations with mode 
number n are shown on the *Ω - *L  oblate spheroidal solution branch. In the middle plot the least stable values of λ  as a function of 

*L  are shown for = 1,2,3,4,n  and 5  (bottom to top). The drops are unstable to modes with < 0λ , and the crossing points where 
= 0λ  for each n correspond to the symbols shown in the upper plot. In the lower plot the least stable values of λ  for axisymmetric 

disturbances ( = 0n ) are shown for driven and isolated drops. The driven drop is unstable to an axisymmetric perturbation at the limit 
point where the spheroidal family of solutions reaches its largest rotation rate. 
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5.3  Linear Stability of the Toroids 
 
      The linear stability of the toroidal family of rotating drops is shown in Fig. 5. The upper plot gives the 
parametric relation between the rotation rate *Ω  (solid curve) and the angular momentum *L  (dashed 
curve) of the base state as functions of the dimensionless inner radius 0r . As the inner radius tends to zero, 
the rotation rate decreases (over a short interval), and the angular momentum increases. The opposite is true 
as the inner radius becomes large, and there is a maximum value of *Ω  and a minimum value of *L  as 0r  
varies from zero to infinity. The middle plot shows the lowest eigenvalues for = 1n  to = 5n  for 

00 < < 2.5r . For small values of 0r  toroidal drops are unstable for all five mode numbers, but as 0r  
 

 
Fig. 5. Linear stability of rotating toroidal drops. In the upper plot the rotation rate *Ω  (solid curve) and angular momentum *L  
(dashed curve) for the base state are shown as functions of the inner radius 0r . In the middle plot the least stable values of λ  as a 
function of 0r  are shown for = 1,2,3,4,n  and 5  (bottom to top). In the lower plot the two least stable values of λ  for axisymmetric 
disturbances ( = 0n ) are shown for driven (solid curve) and isolated (dashed curve) toroidal drops. 
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increases the stability of these modes increase and reach maxima near 0 = 0.5r , where only the first three 
modes are unstable. With further increases of inner radius, the modes are all destabilized and the toroidal 
drop is unstable to higher and higher mode numbers; the trends indicated for the lowest five modes are also 
observed for higher mode numbers n  and larger inner radii 0r . The lower plot in Fig. 5 shows the lowest 
two eigenvalues for axisymmetric modes ( = 0)n  for the case of driven toroidal drops (solid curves) and 
isolated drops (dashed curves). As expected from the previous discussion of Eq. (33), the isolated drops are 
more stable than the driven drops in each case, although for large values of 0r  the eigenvalues become 
nearly identical. For small values of 0r  the difference is more pronounced. The lowest eigenvalues both 
become very large and negative as 0r  tends to zero, but the lowest mode for the driven drop remains 
slightly unstable for large 0r , whereas the isolated drop becomes stable near 0 = 0.5r  and then deceases in 
magnitude for large 0r . The second lowest modes are both stabilized with increasing 0r , although the 
driven drop is initially unstable for small 0r . There are two axisymmetric, neutrally-stable modes ( = 0λ ). 
For the driven drop the neutral mode corresponds to a limit point on the solution branch in which *L  is 
regarded as a function of *Ω . For the isolated drop the neutral mode corresponds to a limit point on the 
solution branch in which *Ω  is regarded as a function of *L . In the top plot in Fig. 5 these points 
corresponds to extremal values of *Ω  and *L  regarded as functions of 0r . These results indicate that the 
family of rotating driven toroidal drops is entirely unstable, both to axisymmetric and non-axisymmetric 
disturbances, with an increasing number of non-axisymmetric instabilities with increasing 0r . The same is 
true for non-axisymmetric disturbances to the isolated drop, although in that case axisymmetric 
perturbations are stable for large enough values of 0r . 
      The geometry of the unstable axisymmetric modes is shown in Fig. 6 for a driven drop with 0 = 0.2r , 
where the perturbed shapes for the lowest two modes are shown superimposed upon the base state (solid 
dots). The lowest mode (solid curve) represents a distortion of the shape that occurs predominantly at small 
radii, leaving the outer portion of the drop unaffected. Loosely speaking, this mode represents an instability 
driven by a change in the major radius of the torus. The second lowest mode (dashed curve) represents a 
perturbation that changes the ellipticity of the cross-section, with distortions at the inner and outer radii that 
are accompanied by a distortion of opposite sign at intermediate radii that preserves the net volume. 
 
 

 
 
Fig. 6. Geometry of the axisymmetric perturbations to the base state (solid dots) for 0 = 0.2r . The lowest mode (solid curve) and the 
second lowest mode (dashed curve) are both normalized to give similar displacements at the inner radius, and the size of the 
perturbations has been exaggerated for visual purposes. 
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5.3.1  Rayleigh Instability Analogy 
 
      With increasing values of angular momentum *L  drops are subject to an increasing number of non-
axisymmetric instabilities; only the most dangerous modes in the first five families ( = 1,2,3,4,5n ) of 
instabilities are shown in the middle plot of Fig. 5. An example of a non-axisymmetric instability is shown 
in Fig. 7, corresponding to the neutral instability for = 5n  that occurs near 0 = 1.2r  in Fig. 5. 
 

 
 
Fig. 7. Example of a non-axisymmetric ( = 5n ) neutral ( = 0λ ) eigenmode. Here * = 0.37Ω  and * = 1.03L ; the eigenmode is shown 
superimposed on the axisymmetric base state with a large amplitude for visual purposes. The shape is reminiscent of the evolving 
toroidal shapes observed by McGraw et al. shown in Figs. 3 and 4 of Ref. [12]. 
 
 
      For toroidal drops with a large major radius, an interpretation of these high-wavenumber modes is 
possible in terms of a classical surface-tension-driven instability. For example for large values of *L  the 
cross-section of the drops become more and more circular, and the drops increasingly resemble a circular 
torus. For large values of the effective major radius of the drop, the non-axisymmetric instabilities are then 
analogous to the capillary-driven Rayleigh instabilities [24] of an equivalent cylinder of length 2 MRπ  and 
radius mr , where 1 0= ( )/2MR r r+  and 1 0= ( )/2m Mr r r R− 0  are the major and minor radii of the torus 
based on the inner and outer radii 0r  and 1r . The onset of the Rayleigh instability occurs for a perturbation 
whose wavelength Rλ  is equal to the circumference 2 mrπ  of the cylinder [24]. For an effective cylinder 
length = 2c ML Rπ  we therefore anticipate neutral modes with mode number Rn  such that =R R cn Lλ , or 

= /R M mn R r . We can readily compute values for MR  and mr  from the numerical solution in this regime and 
compare this estimate for Rn  with the numerically-computed values of n  that have crossings at = 0nλ . 
For example, in Fig. 5 the = 4n  mode with * = 0.814L  is neutrally stable ( 4 = 0λ ). For this drop, the 
computed radii are = 1.2706MR  and = 0.4206mr , which gives the estimate = 3.02Rn . The estimate 
becomes more accurate for drops with larger values of MR ; for a drop with * = 1.921L  we find 

= 2.7159MR  and = 0.2803mr , giving = 9.69Rn . The corresponding numerical results show that the 
perturbation with = 10n  is neutrally stable under these conditions. Some numerical results are summarized 
in Table 1. The analytical approximation may also be obtained directly from the Jacobi equation (30) in this 
regime: the dominant balance for = 0λ  is found to be 
 

          
2

2
2 , (0) = ( ) = 0,  s s s T

n W W W W S
R
γ γψ≈    (36) 

 
where for the toroidal base state we have ( ) MR s R≈ , T mS rπ≈  and 1/s mrψ ≈ . The resulting eigenmode 

( )W s  is approximately constant, with 2 2 2= /M mn R r  as in Rayleigh’s analysis. 
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Table 1. Large n neutral modes for the toroidal solutions. 
 

 *Ω    *L    0r    1r    Rn    ( = 0)nn λ   
0.44442   0.81402   0.85006   1.69117   4   3.02  
0.37100   1.02696   1.22376   1.96368   5   4.31  
0.30048   1.40510   1.77469   2.41500   7   6.54  
0.24672   1.92093   2.43561   2.99616   10   9.69  

 
 
5.4  Driven Drops for < 0r∆  
 
      For a rotating spheroidal drop inside a denser medium ( < 0r∆ ) the effective centrifugal force at the 
equator is inward, and the drops are elongated at the poles rather than the equator; we designate the 
resulting shapes as prolate spheroids. A dimensionless rotation rate PΩ  for the prolate solutions is then 
defined as 
 

     
2 3

2 0= . 
8P

Rr
γ

−∆ Ω
Ω     (37) 

 
We consider only the case of driven drops. An analytic solution in this case was derived by Rosenthal [33] 
and Princen [34] in terms of incomplete elliptic integrals and is summarized in § 7.1. We have also 
implemented the previously-described numerical procedure for the base state in this case as well in order to 
facilitate the stability calculations. 
      In Fig. 8 we show the evolution of the prolate spheroidal shapes as the rotation rate PΩ  is increased. 
For = 0PΩ  the equilibrium is a spherical drop, and with increasing PΩ  the equilibria tend to 
approximately cylindrical shapes that are terminated by roughly spherical caps. The equatorial radius Er  
decreases monotonically and the polar radius Pz  increases monotonically with increasing rotation rate, 
consistent with the imposed constraint of equal volumes for the family. Some numerical results are given in 
Table 2. For large rotation rates approximate expressions for the equatorial radius ( A

Er ) and the polar radius 
( tip

Az ) can be obtained from an asymptotic evaluation of the elliptic integrals (see § 7.1); the corresponding 
results are also given in Table 2. 
 
 
Table 2. Base state parameters for the prolate spheroidal solutions. 
 

 PΩ    *L    Er    tipz    A
Er    tip

Az   

0.00000   0.00000   1.00000   1.00000   –   –  
0.80000   0.236121   0.829926   1.38539   0.857845   1.39306  
1.28510   0.259531   0.665097   1.92606   0.665299   1.92607  
2.00000   0.246142   0.499979   3.00000   0.499979   3.00000  
2.40000   0.236130   0.442774   3.69569   0.442774   3.69569  

 
 
      Numerical calculations for the linear stability of the prolate drops are shown in Fig. 9. For both 
axisymmetric perturbations (lower plot) and non-axisymmetric perturbations (middle plot) the drops are 
found to be stable ( 0λ > ). The stationary drop with = 0PΩ  is again neutrally stable ( = 0λ ) to an = 1n  
mode that represents a lateral translation of the drop. For very large rotation rates the most dangerous 
axisymmetric mode is becoming decreasingly stable; the other modes are apparently increasingly stable for 
increasing rotation rates. 
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Fig. 8. Prolate equilibrium shapes ( < 0r∆ ) for various rotation rates PΩ . For increasing polar radii Pz , the curves correspond to 

= 1Pz  (the spherical case with equatorial radius = 1Er  and *= = 0P LΩ ), = 1.1029Pz  ( = 0.9502Er , = 0.4PΩ , * = 0.1516L ), 
= 1.3854Pz  ( = 0.8299Er , = 0.8PΩ , * = 0.2361L ), = 1.8176Pz  ( = 0.6920Er , = 1.2PΩ , * = 0.2591L ), = 2.4423Pz   

( = 0.5680Er , = 1.6PΩ , * = 0.2557L ), = 3Pz  ( = 0.5Er , = 2PΩ , * = 0.2461L ). 
 
 
      As the rotation rate increases the drops become quite elongated with cylindrical mid-sections; it is 
therefore interesting to consider the possibility of a Rayleigh instability to axisymmetric perturbations with 
suitable wavelengths. We note that rotation about the cylindrical axis is known to stabilize the Rayleigh 
instability of an infinite cylinder if < 0r∆ . For example, Gillis and Kaufman [25] show that the rotating 
cylinder is stable if 
 

    
2 3

2 2 2 1 ,  C
C

R
R k n

r
γ

∆ Ω
+ − ≥     (38) 

 
where CR  is the cylinder radius, and k  and n  are the axial and azimuthal wavenumbers. Axisymmetric 
modes ( = 0n ) are stable for disturbances with 2 2 2 31 /C CR k Rr γ≥ + ∆ Ω , so that for > 0r∆  the range of 
stable wavenumbers k  decreases with increasing rate of rotation, and for < 0r∆  this range increases with 
increasing rate of rotation. If 2 3 / < 1CRr γ∆ Ω −  all wavenumbers are stable to axisymmetric modes. Non-
axisymmetric modes with 1n ≥  are also stable for all wavenumbers if < 0r∆ . 
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Fig. 9. Linear stability of rotating prolate drops. In the upper plot the angular momentum *L  of the base state is given as a function of 
the rotation rate PΩ ; solid dots correspond to the shapes given in Fig. 8. In the middle plot the least stable values of λ  as a function 
of PΩ  are shown for non-axisymmetric perturbations with = 1,2,3,4,n  and 5  (bottom to top). In the lower plot the two least stable 
values of λ  for axisymmetric disturbances ( = 0n ) are shown. 
 
 
      The result (38) can also be obtained directly from the Sturm-Liouville equation (30) by setting 

= /2ψ π− , =s z , = CR R , and = 0µ , giving 
 

                
2 3

2 2 2
1 1 121 ( ) = ,  C

C
C

R
W k R n W W

R
r γλ
γ

   ∆ Ω
− + + +   
   

   (39) 

 
where we have expressed the eigenmode as (1)

1( , ) = exp( )W s W ikz inθ θ+ . The volume constraint (29) with 
= 2 /TS kπ  is identically satisfied for (1) ( , )W s θ  of this form. The stability condition in Eq. (38) is thus 

equivalent to our stability condition 0λ ≥ . 
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      An example is shown in Fig. 10, where a (quite stable) higher-order axisymmetric eigenmode is shown 
superimposed on the prolate solution with = 2pΩ . The equatorial radius is 00.5Er R≈ , and the prolate 
solution is elongated enough that near its midsection ( Er r≈ ) the eigenmode is approximately sinusoidal 
with a computed wavelength of 02 / = 0.6124k Rπ . If we take =C ER r  the cylindrical relation (39) then 
gives the result 2

0/ = 117.40Rγλ , which compares well with the computed result 2
0/ = 117.47Rγλ  that is 

obtained for the prolate spheroid with = 2pΩ . 
 
 

 
 
Fig. 10. Prolate spheroidal solution for = 2PΩ . The upper half of a cross-section of the base state is shown as the solid curve, and a 
high-order stable eigenmode is shown as the dashed curve. The amplitude of the eigenmode has been exaggerated for visual purposes. 
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6.  Discussion 
 
      We have computed solutions for axisymmetric equilibrium shapes of spheroidal and toroidal drops or 
bubbles that correspond to extrema of an energy functional containing surface energy and rotational energy 
contributions, subject to a volume constraint. Examination of the second variation of the energy functional 
then determines whether the drops are stable, representing energy minima, or instead represent unstable 
saddle points or energy maxima. An alternate approach is to determine the linear stability of equilibrium 
shapes by solving the hydrodynamic equations of motion as given by Newton’s law, which provides a 
dynamical growth rate for normal mode solutions. For example, Pairam and Fernández-Nieves ([11], see 
also [26]) are able to interpret their experimental observations of the breakup of toroidal drops by 
comparing with the theoretical results of Tomotika [27] for the fastest-growing instability of a cylindrical 
thread of viscous liquid surrounded by another viscous fluid. A number of other authors have discussed the 
dynamic instability of toroidal drops based on approximate base states that are assumed to have circular 
cross sections [28, 29], or have observed or simulated the temporal evolution of arbitrary (non-equilibrium) 
toroidal shapes [13, 26, 30, 31]. Our approach focuses on the accurate computation of bifurcation points for 
self-consistent equilibrium shapes. As discussed by Brown and Scriven [9], the role of viscosity in 
determining the linear stability of rotating drops by solving the hydrodynamic governing equations can lead 
to subtle distinctions between “ordinary stability” and “secular instability,” wherein an equilibrium that is 
stable according to the inviscid equations of motion is destabilized by the inclusion of viscous effects [6, 
32]. The stability results that we compute based on energy minimization correspond to the viscous case in 
this context. 
 
 
7.  Appendix 
 
7.1  Elliptic Integral Formulation for Prolate Spheroids 
 
      For spheroidal solutions, the explicit first integral of the Euler equation (8) has a vanishing constant of 
integration. The oblate spheroidal solution, for > 0r∆ , was obtained in terms of elliptic integrals by 
Chandrasekhar [7], and for the prolate spheroidal solution, for < 0r∆ , by Rosenthal [33] and Princen [34]. 
Here we summarize the solution for the prolate spheroid to obtain the asymptotic solution used in Table 2. 
      Evaluating Eq. (8) at 1=r r  where = /2ψ π−  so that rf → −∞  gives 
 

       
2 3

1 11 = , = ,  
2 8
Pr rr
γ γ

∆ Ω
+Σ Σ     (A1) 

 
where Σ  is a dimensionless rotation rate used by Chandrasekhar [7], who then goes on to obtain solutions 
for > 0Σ  which correspond to the oblate spheroid. Here we consider the range 1/2 < < 0− Σ , 
corresponding to solutions for the prolate spheroid. The dimensionless rotation rates Σ  and PΩ  are related 
by 3 2

1 0= ( / ) Pr RΣ − Ω . 
      Scaling by the equatorial radius, with 1= /r r r , the first integral can now be expressed as 
 

       3

2
= (1 ) ,  

1
r

r

f r r
f

−Σ + Σ
+

    (A2) 

 
which can be solved for rf  and integrated to give 
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21

2 2 2 1/2

(1 )( ) = . 
[1 (1 ) ]r

y yf r dy
y y

−Σ + Σ
− −Σ + Σ∫     (A3) 

 
Another change of variables to 2=x y , with = 2dx ydy , gives 
 

            
1

2 2

1 (1 )( ) = . 
2 [1 (1 ) ]r

x dxf r
x x
−Σ + Σ

− −Σ + Σ
∫     (A4) 

 
In the integral above, the argument of the radical can be simplified as 2 ( )( )( )c x b x a xΣ − − −  where 
 

  
1/2 1/2( 2) [ ( 4)] ( 2) [ ( 4)]= , = , = 1. 

2 2
a b cΣ − − Σ Σ − Σ − + Σ Σ −

Σ Σ
  (A5) 

 
For 1/2 < < 0− Σ , the roots are all real with 1 < <b a . 
      Therefore, Eq. (A4) can be rewritten as 
 

      
1

0 12 1/2

1 (1 ) (1 ) 1( ) = = . 
2 | | 2 | | 2[(1 )( )( )]r

x dxf r S S
x b x a x
−Σ + Σ −Σ

−
Σ Σ− − −∫    (A6) 

 
where 
 

         
1

0 2 1/2= ,  
[(1 )( )( )]r

dxS
x b x a x− − −∫     (A7) 

 

         
1

1 2 1/2= . 
[(1 )( )( )]r

xdxS
x b x a x− − −∫     (A8) 

 
The volume of the prolate spheroid also has an analytical expression given by 
 
    1 2= (1 ) ,  V J Jπ π−Σ + Σ      (A9) 
 
where 
 

            2 01 1
1 2 2 3 2

4(1 )2= , = (1 ) . 
3 3 3

SS SJ J −Σ
− + −Σ +
Σ Σ Σ Σ

   (A10) 

 
      From Gradshteyn and Ryzhik [35], with 2> > 1 >a b r , the integrals 0S  and 1S  can be expressed in 
terms of incomplete elliptic integrals, 
 

                     0
2= ( , ),  

1
S F k

a
φ

−
     (A11) 

 

  { }
1/22 2

1 2

2 ( )(1 )= ( , ) ( 1) ( , ) 2 . 
( )1

a r rS F k a E k
b ra

φ φ
 − −

+ − −  −−  
   (A12) 
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Here ( , )F kφ  and ( , )E kφ  are the incomplete elliptic integrals of the first and second kind respectively 
given by 
 

             2 2
0 02 2

( , ) = , ( , ) = 1  sin
1 sin

dF k E k k d
k

φ φθφ φ θ θ
θ

−
−

∫ ∫   (A13) 

 
where 
 

      
2

22
2

1= , = . sin
1

r a bk
ab r

φ − −
−−

    (A14) 

 
The parameter k  is the elliptic modulus or eccentricity that must satisfy 20 < < 1k  and φ  is called the 
argument of the normal elliptic integral and is usually taken to be 0 < < /2φ π . 
      Therefore by inverting Eq. (A14) and recalling that = ( )z f r , we have the parametric representation 
 

          
2

2

1 sin( ) = ,  
1 sin

br φφ
φ

−
−

     (A15) 

 
and 
 

                0 1
(1 ) 1( ) = ( ) ( ),  
2 | | 2

z S Sφ φ φ−Σ
−

Σ
    (A16) 

 
for 0 Mφ φ≤ ≤ , with 2 = 1/sin M bφ . A numerical solution of these parametric representations was used to 
validate the numerical base state calculations shown in Fig. 8. 
      Approximate results for the tip position ( = 0r , t= ipz z ) can be obtained in the high rotation limit, 

which corresponds to 1/2Σ → − . In this limit 1b → , 2 1k → , and = /2Mφ φ π→ , and asymptotic 
expansions of the incomplete elliptic integrals are possible [36]. For = 1/2 εΣ − +  we have used the 
approximations 
 

            1 18( ( ), ( )) log ln(2 3), ( , ) 1. 
2MF k E kφ ε ε φ

ε
 ≈ − + ≈ 
 

   (A17) 

 
Using these expressions in Eq. (A11) and Eq. (A12) to evaluate Eq. (A15) and Eq. (A16) gives the 
approxixmate results shown in Table 2. 
 
7.2  Matrix Solution 
 
      Discretization of the Sturm-Liouville equations for the driven drop using centered differences on a 
uniform grid with N  mesh points produces a standard matrix eigenproblem that can be solved with 
conventional techniques for the non-axisymmetric case with > 0n , since the volume constraint is 
automatically satisfied. The corresponding problem for the axisymmetric case with = 0n  is more 
complicated since the volume constraint needs to be satisfied explicitly, which couples the eigenvalue 
equations with a linear equation that results from applying a quadrature formula to Eq. (29). We sketch an 
approach to this problem based on work by Golub [37]. 
      We write the approximation to an eigenmode as 1= ( ,..., )T

Nw ww , where “ T ” denotes the matrix 
transpose. We define a discrete inner product 
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              1 1 1
2 2 2 1 1 1< , >= ...  

2 2
N N N

N N N
R u vR u v R u v R u v− − −+ + + +u v   (A18) 

 
based on the trapezoidal quadrature rule for an integrand ( ) ( ) ( )R s u s v s . The constraint in Eq. (29) is then 
approximated by < , >= 01 w , where 1  is the constant vector with = (1,...,1)T1 . The discrete 
approximation to the second variation can be written in the form (2) = < , >E w w2 , where 2  is the finite 
difference approximation to the Sturm-Liouville operator on the left hand side of Eq. (30); 2  is a 
tridiagonal matrix with < , > = < , >u v u v2 2 . If we let 1 2 1= ( /2, ,..., , /2)T

N NR R R R−h , then we may also 
write < , > = T1 w h w  as a conventional matrix inner product. The constraint equation is then treated by 
introducing an explicit projection onto the subspace < , > = 01 w , defined by the matrix 
 

     = ,  
T

T−
1h
h 1

       (A19) 

 
where   is the identity matrix and the outer product T1h  is a rank-one matrix.   satisfies = 01  and 

= 0w  if < , > = 01 w , and is symmetric with respect to the inner product: < , > = < , >u v u v  , with 
2 =  . 

      The diagonalization of (2)E  on the subspace < , > = 01 w  is achieved by computing the N  normal 
modes jw  that satisfy the conventional symmetric eigenvalue problem =T

j j jλw w 2 . We note that 
since = 01 , the vector 1  is an eigenmode corresponding to = 0λ . The remaining modes are orthogonal 
to 1  and so satisfy the constraint < , > = 0j1 w , with =j jw w . For these modes 

(2)[ ] = < , > = < , > =j j j j jE w w w w w2  2 < , > = < , >,T
j j j j jλw w w w 2  which diagonalizes 

the discrete second variation, (2) 2[ ] = | | < , >j j j j j jE a aλ∑ ∑w w w . We note that by using the explicit 

expression (A19) for  , the eigenvalue problem =T
j j jλw w 2  can be re-written as 

 

       = ,  
T

j
j j j Tλ

 
+  
  

h w
w w 1

h 1
2

2     (A20) 

 
if < , > = 01 w , which is a discrete version of Eq. (30) with ( )/( )T T

jh w h 12  providing a discrete 
approximation to the Lagrange multiplier jµ . 
      For the non-axisymmetric isolated drop, the discretization of Eq. (34) using centered differences for the 
differential operator and a quadrature formula for the integral operator produces a dense matrix rather than 
a tridiagonal matrix, but this problem is still amenable to solution with a conventional eigensolver. For the 
axisymmetric problem the volume constraint is treated by subspace projection in the same manner as for 
the driven drop, and the resulting diagonalization again allows the stability of the drop to be determined 
from the signs of the eigenvalues of the corresponding normal modes. 
 
7.3  ODE Solution 
 
      A shooting procedure can be used to compute numerical solutions for the unperturbed drop, and to 
solve the associated stability problem. For a given value of Ω , the base state can be computed by solving 
the system of ODE’s 
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    = cos ,  sR ψ       (A21) 
 
    = sin ,  sZ ψ       (A22) 
 

    
2

2sin= ,  
2s P R

R
γ ψ rγψ − ∆ Ω

− −     (A23) 

 
    = 4 ( ) ( ) cos ,  sV R s Z sπ ψ      (A24) 
 
    3= 4 [ ( )] ( ) cos . sY R s Z sπ r ψ∆     (A25) 
 
to determine the drop shape = ( )r R s  and = ( )z Z s  for 0 < < Ts S , and the Lagrange multiplier P  for the 
volume constraint. Here ( )V s  and ( )Y s  are introduced in order to facilitate computation of the drop’s 
volume ( )TV S  and moment of inertia = ( )TI Y S . 
      For the shooting procedure in the spheroidal case appropriate initial conditions at = 0s  are (0) = 0R , 

0(0) =Z Z , (0) = 0ψ , (0) = 0V , and (0) = 0Y , where 0Z  is the (unknown) polar radius at = 0r . At the 
equator 1( ) =TR S r , ( ) = 0TZ S , and ( ) = /2TSψ π− . The shooting procedure uses provisional values of 0Z  
and P , and integrates from = 0s  until a value = Ts S  where ( ) = 0TZ S . The desired conditions 

( ) = /2TSψ π−  and 0( ) =TV S V  will generally not be satisfied with this choice of 0Z  and P , so these 
values are updated by a root solver that drives ( )TSψ  and ( )TV S  to their required values. Upon 
convergence we also then have values for the equatorial radius 1( ) =TR S r , the moment of inertia 

= ( )TY S , and the angular momentum =L Ω . 
      For the toroidal case we have 0(0) =R r  and 1( ) =TR S r , with (0) = ( ) = 0TZ Z S , and 

(0) = /2 = ( )TSψ π ψ− . In this case we instead start with provisional values for (0)R  and  P, and iterate on 
these values until ( ) = /2TSψ π−  and 0( ) =TV S V . 
      To solve the stability problem for the non-axisymmetric driven drop we append the equation 
 

        
22

2 2 2
2 2

cos sinsin= ,  ss s s
nw w R w w w

R RR R
ψ ψ ψγ γ γψ γ r γ λ 

− + − − + ∆ Ω − − 
 

  (A26) 

 
with initial conditions (0) = 1w , (0) = 0sw . Provisional values of λ  are used to drive ( )s Tw S  to zero, so 
that the perturbation has the correct Neumann boundary conditions. Initial guesses for λ  are obtained from 
the matrix solution. 
      For the axisymmetric drop we append the equations 
 

   
22

2 2 2
2 2

cos sinsin= ,  ss s s
nw w R w w w

R RR R
ψ ψ ψγ γ γψ γ r γ λ µ 

− + − − + ∆ Ω − − − 
 

  (A27) 

 
   (1) = 4 ( ) ( ),  sV R s w sπ         (A28) 
 
with initial conditions (0) = 1w , (0) = 0sw , and (1) (0) = 0V . Provisional values of λ  and µ  are used to 
drive ( )s Tw S  and (1) ( )TV S  to zero, so that the perturbation has the correct Neumann boundary conditions 
and satisfies the volume constraint. Initial guesses for λ  and µ  are obtained from the matrix solution. For 
the spheroidal case, to avoid the singularity at = 0s  in Eq. (A27) we compute a series solution for small s  
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(see Appendix 7.4), and start the numerical integration at a small positive value of s  using values from the 
series solution. 
      For the isolated non-axisymmetric drop, the integro-differential equation (34) is converted to an ODE 
by replacing the integral term by an auxiliary variable during the shooting procedure. We set 
 

           
2

2 3
3 0

= 4 ( ) [ ( )] ( )  
STLB R s w s d dsπ r θ

 
∆  

 
∫

   (A29) 

 
and append ODE’s of the form 
 

          
22

2 2 2 2
2 2

cos sinsin= [ ( )] ,   ss s s
nw w R w B R s w w

R RR R
ψ ψ ψγ γ γψ γ r γ λ 

− + − − + ∆ Ω + − − 
 

 (A30) 

 

          
2

(1) 2 3
3= 4 ( ) . s

LY R w
I

π r
 

∆  
 

        (A31) 

 
With the initial conditions (0) = 1w , (0) = 0sw , and (1) (0) = 0Y , we solve the ODEs and then iterate on λ  
and B  to obtain ( ) = 0s Tw S  and (1) ( ) =TY S B . 
      Similarly, for the axisymmetric isolated drop we solve 
 

   
2

2 2 2 2
2

cos sinsin= [ ( )] ,  ss s sw w R w B R s w
R RR
ψ ψ ψγ γ γψ γ r λ µ 

− + − − + ∆ Ω + − − 
 

 (A32) 

 
   (1) = 4 ,  sV Rwπ          (A33) 
 

   
2

(1) 2 3
3= 4 ( ) . s

LY R wπ r
 

∆  
 

       (A34) 

 
With the initial conditions (0) = 1w , (0) = 0sw , (1) (0) = 0V , and (1) (0) = 0Y , we iterate on λ , µ , and B  
to obtain ( ) = 0s Tw S , (1) ( ) = 0TV S , and (1) ( ) =TY S B . 
 
7.4  Taylor Series Expansions 
 
      For the spheroidal solutions, there is a singularity in the appended Sturm-Liouville equation Eq. (A27) 
where the arclength = 0s  at 0 = 0r . The singular terms are avoided by employing a Taylor series 
expansions for the base state ( )R s , ( )Z s  and ( )sψ  about = 0s , given by 
 

   
2 4 2 6 3 2 4

3 5 7 911( ) = ( ),  
24 1920 10 322560 1680 14
P P P P PR s s s s s O s

   Ω Ω Ω
− + − + − + − +   

   
  (A35) 

 

   
3 2 2 2 5

2 4 6 8
0

7( ) = ( ),  
4 192 4 240 23040
P P P PZ s Z s s s O s

   Ω Ω
− + − + − +   

   
   (A36) 

 

http://dx.doi.org/10.6028/jres.120.007
http://dx.doi.org/10.6028/jres.120.007


 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.007 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 99 http://dx.doi.org/10.6028/jres.120.007 

 

   
2 2 4 2 4

2 3 5 7 93( ) = ( ),  
2 20 840 35
P P P Ps s s s s O sψ

 Ω Ω Ω
− −Ω + + − + + 

 
   (A37) 

 
which were found by solving the differential equations (A21)–(A23) with the appropriate initial conditions 
at = 0s . 
      The perturbation is expanded as 
 
                2 4

0 2 4( ) = (1 ...),  W s w s w s w sα + + +     (A38) 
 
where the coefficients of the odd powers of s  are found to be zero due to symmetry. The remaining 
coefficients are determined by the method of Frobenius as follows. 
      Firstly, the non-axisymmetric drop, 1n ≥  is considered. Here, the Sturm-Liouville equation Eq. (A26) 
at leading order in s  gives an indicial equation for α  with solution = nα ± . For regularity of solution, 

= nα  is chosen. Solving for additional terms in the perturbation series at ( )ns  gives 
 

           2
2

1= ( 3)( 2) 12 ,  
48( 1)

w P n n
n

λ + − − +
     (A39) 

 

           2 2 2
4

1= 720 120 ( 5)  
23040( 1)( 2)

w P n n
n n

λ λ − + −+ +
 

 
  4 4 3 2 2 2(5 22 29 46 120) 576 ( 1)( 2 40) . P n n n n P n n n + + − − + + Ω + + −    (A40) 
 
      For the axisymmetric drop, = 0n , there is the additional volume constraint. Therefore, the perturbed 
solution has a particular inhomogeneous solution proportional to the Lagrange multiplier µ  in addition to 
the homogeneous solution such that 
 
     2 4 2 4 6

0 2 4 2 4 6( ) = (1 ...) ( ...). W s w s w s w s d s d s d sα µ+ + + + + + +   (A41) 
 
The coefficients 2w  and 4w  are as in Eq. (A39) and Eq. (A40) with = 0n  and the terms proportional to µ  
are given by 
 
 2 2 4 2 2

2 4 6= 1/4, = (3 )/192, = (10944 45 90 )/207360. d d P d P P Pλ λ λ− + Ω − − −  (A42) 
 
For this case, the expansions for ( )R s  and ( )W s  are used to get the necessary series expansion for the 
volume of the drop 
 

  
0

( ) = ( ) ( )  
s

V s R s W s ds∫  

 
          4 2 6 2 2 4

0= [ /16 ( ) /384 ...] [ /2 ( /4 /6) /4 s P s w s P sµ λ λ− + + + + − +  
 
          2 2 4 2 6(30 45 16 1152 ) /11520 ...]. P P P sλ λ+ + + − Ω +    (A43) 
 
      For the axisymmetric isolated drop, the perturbed solution gets an additional inhomogeneous term due 
to the constant angular momentum constraint so that 
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         2 4 2 4 6 4
0 2 4 2 4 6 4( ) = (1 ...) ( ...) ( ...). W s w s w s w s d s d s d s b sα µ b+ + + + + + + +   (A44) 

 
Since the leading order of the additional term is found to be 4( )O s , retaining only one term is sufficient for 
this additional series, with 
 

     
2

4 = . 
2
Bb πb Ω


     (A45) 

 
Here B  is the integral term Eq. (A29) from the integro-differential Sturm-Liouville equation and the 
coefficients 2w  and 4w  remain as in Eq. (A39) and Eq. (A40) with = 0n . 
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