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This paper deals with the application of the spline filter as an areal filter for surface metrology. A profile (2D) filter is often applied in 
orthogonal directions to yield an areal filter for a three-dimensional (3D) measurement. Unlike the Gaussian filter, the spline filter 
presents an anisotropic characteristic when used as an areal filter. This disadvantage hampers the wide application of spline filters for 
evaluation and analysis of areal surface topography. An approximation method is proposed in this paper to overcome the problem. In 
this method, a profile high-order spline filter serial is constructed to approximate the filtering characteristic of the Gaussian filter. 
Then an areal filter with isotropic characteristic is composed by implementing the profile spline filter in the orthogonal directions. It is 
demonstrated that the constructed areal filter has two important features for surface metrology: an isotropic amplitude characteristic 
and no end effects. Some examples of applying this method on simulated and practical surfaces are analyzed. 
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1.  Introduction 
 
      For a long time, measurement and evaluation of surface topography was mainly studied in two-
dimensions (2D) due to the limits of measurement systems and instruments, signal processing techniques, 
and calculation capabilities of microprocessors. In 2D surface measurement, data are acquired and analyzed 
along a profile. Profiles contain less information than areal images and indicate in only a limited way the 
comprehensive characteristics and functional performance of surfaces. As described in Refs. [1,2], surface 
metrology is currently undergoing a major paradigm shift. The applications for 3D measurement of 
surfaces are becoming more and more common [3]. Certainly, the measurement and evaluation carried out 
from a 3D perspective can enhance both the analysis of surface topography and the control of surface 
manufacturing. 
      Filtration is a critical process used to separate surface roughness from finer fluctuations and from the 
waviness or to separate waviness from roughness [4]. As an important part of surface metrology, the 
research of filtration and its focus are undergoing a shift from 2D methods to 3D methods due to the 
increasing demand for areal characterization in both academia and industry. Several research groups have 
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been working in this direction to promote the development of areal filtering technology [2,3,5,6]. 
Furthermore, the International Organization for Standardization (ISO) Technical Committee TC 213 is 
working on areal filtering standards as parts 60, 61, 62, and 69 in ISO/TS 16610. 
      Currently, the most commonly used filtering technique for 3D data is still the classical Gaussian filter 
because of its isotropic and phase correct transmission characteristic [2,5,7,8]. It is well known that the 
Gaussian filter always causes serious end effects [9], to the extent that the profile ends must be excluded 
subsequent to the filtering process. In order to overcome this problem, the ISO/TS 16610-22 standard 
recommended the spline filter as one substitute for the Gaussian filter [10,11]. Although the spline filter 
possesses such advantages as end preserving, fast calculation speed and good form following, it has not 
been accepted widely in the measurement of 3D surface because the application of the standard spline filter 
[10] to 3D data in orthogonal directions is demonstrated to be severely anisotropic [3]. 
      This paper proposes a simple areal filtering algorithm based on the high-order spline filter. The 
algorithm can be implemented through successive application of a profile Gaussian filter in orthogonal 
directions. It possesses both desired features of isotropic amplitude characteristic and no end effects, and 
therefore is a feasible solution for areal filtering. Some application examples are given to verify the 
practicability of the new filter. 
 
 
2.  High-Order Spline Filter 
 
      According to Refs. [12,13], the classical variational method provides a penalty function to be 
minimized that is made up of two parts. One part is the L2 norm of the residual error guaranteeing the 
result’s closeness to the profile z [14]. The other part, called the bending energy, helps to ensure 
appropriate smoothness of the filtered result. A regularization parameter is used to control the compromise 
between closeness to the data and amount of smoothness. In Ref. [11], a spline filtering algorithm based on 
the variational principle is developed as an approach for the Gaussian filter. A first-order derivative term is 
added into the bending energy part to improve the transmission characteristic of the filter as a function of 
spatial frequency. With adjustment of the regularization parameters, this approach provides a good solution 
close to the filtering characteristic of the Gaussian filter. For this reason, the solution is called an 
approximating filter. Inspired by this idea, if more derivative items are added into the variational function, 
a high-order spline filter can be constructed to a better approximation [15]. 
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where 𝑧𝑖 are the measured profile data with a constant sampling interval ∆𝑥, 𝑤(𝑥) is the output profile, 𝑖 is 
the index of a point in the dataset, 𝑁 is the total number of measured data points, and 𝜇𝑙 (𝑙 = 1,⋯ , 𝑛) are 
the regularization parameters, 𝑛 + 1 is defined as the order of the filter. From the above equation, it can be 
visualized that the standard spline filter [10] is a simplified version of Eq. (1) by removing the high-order 
derivative terms in the bending energy part. 
      Generally, the solution to the variational function of Eq. (1) can be solved by the matrix factorization 
algorithm [16], and the essential matrix equation is written as 
 

                                                             (𝑰 + 𝑸)𝑾 = Z                                                                  (2) 
 
where 𝑰 is the identity matrix, 𝒁 is the vector of sampled data values, and 𝑾 is the vector of output data 
values. Actually, the matrix equation is derived by performing the partial derivative operation of Eq. (1) 
with respect to 𝑤(𝑥𝑖). The coefficient matrix 𝑸 varies with different boundary conditions, which may be 
classified as periodic or non-periodic [10]. 
      For the case of a periodic boundary condition, each row of Eq. (2) represents a solution equation with 
respect to 𝑤𝑖 , 
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𝜕𝜕
𝜕𝑤𝑖

= −2(𝑧𝑖 − 𝑤𝑖) + [−2𝜇1(∇2𝑤𝑖) + 2𝜇2(∇4𝑤𝑖) + ⋯+ (−1)𝑛2𝜇𝑛(∇2𝑛𝑤𝑖)] = 0            (3) 
 

where 𝑤𝑖  is the abbreviation of 𝑤(𝑥𝑖), and ∇  is the differential operator used to obtain finite differential 
approximations to each order derivative of 𝑤𝑖  and to simplify the whole differential equation. 
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where �𝑚𝑘 � are binomial coefficients. 
      The detailed analysis of the spline filter is provided by Goto et al. [14] and Johannes et al. [17]. Here, 
Eq. (3) is used to deduce the transfer function of the spline filter by the aid of a z transform, which includes 
a series of the second-order differential operator ∇2𝑙, 𝑙 = 1,⋯ , 𝑛. The 𝑧 transform of ∇2𝑙 can be expressed 
as (𝑧 − 2 + 𝑧−1)𝑙. Hence, the transfer function of the spline filter can be written as 
 

            𝐺(𝑧) =
1

1 − 𝜇1(𝑧 − 2 + 𝑧−1) + 𝜇2(𝑧 − 2 + 𝑧−1)2 + ⋯+ (−1)𝑛𝜇𝑛(𝑧 − 2 + 𝑧−1)𝑛 .            (5) 

 
Furthermore, replacing the factor 𝑧 by exp (−𝑗𝑗) and utilizing Euler’s formula, we arrive at 
 

                𝐺(𝜔) =
1

1 + 2𝜇1(1 − cos𝜔) + 4𝜇2(1 − cos𝜔)2 + ⋯+ 2𝑛𝜇𝑛(1 − cos𝜔)𝑛 .                       (6) 

 
Obviously, Eq. (6) formulates the transmission characteristics of the high-order spline filters with arbitrary 
order. Here, 𝜇𝑙 can be determined through a standard Taylor series expansion [15], which ensures that the 
transmission characteristic of a high-order spline filter can approximate that of the Gaussian filter with high 
accuracy. Figure 1 shows the transmission characteristics of several spline filters [15]. It illustrates that the 
greater the order numbers of the spline filter, the closer the approximation to the Gaussian filter. 
 

 
 

Fig. 1. Transmission characteristics of the Gaussian filter, standard spline, and three high-order spline filters. (In the graph, the curves 
for n = 3, 4, and 10 and the Gaussian filter are indistinguishable in most parts.) 

http://dx.doi.org/10.6028/jres.120.006
http://dx.doi.org/10.6028/jres.120.006


 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.006 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 67 http://dx.doi.org/10.6028/jres.120.006 

 

3.  The Areal Spline Filters 
 
      As mentioned in Refs. [1,3,18,19], the classical Gaussian filter has many excellent properties, such as 
zero-phase characteristic, minimum product of time width and frequency width, isotropic characteristic, 
and perfect separability of the 3D Gaussian function into filters operating in the x- and y-directions. The 
separability may contribute to simplifying the theoretical derivation of the each filtering algorithm and to 
speeding up the calculation. Moreover, the separability feature also gives us the inspiration for an indirect 
approach to design and implement a 3D spline filter. Based on this idea, we develop a novel areal spline 
filter with an isotropic amplitude characteristic, starting from the high-order spline filter which 
approximates to the Gaussian filter. 
 
3.1  Separability of the Areal Gaussian Filter 
 
      The amplitude transfer function of the areal Gaussian filter is given by [20] 
 

                                                𝐻�𝜆𝑥, 𝜆𝑦� = exp �−π𝛼 ��
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where 𝛼 = ln2/π and 𝜆𝑥𝑥, 𝜆𝑦𝑦 are the cut-off wavelengths in the x- and y-directions respectively. The filter 
has an attenuation ratio of 50 % at the cut-off wavelength, for example, at 𝜆𝑥 = 𝜆𝑥𝑥  and 𝜆𝑦 = ∞ or at 
𝜆𝑦 = 𝜆𝑦𝑦 and 𝜆𝑥 = ∞. 
      The separability of the areal Gaussian function can be described as 
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where 𝐻(𝜆𝑥) and 𝐻(𝜆𝑦) are exactly the same as the profile Gaussian function. Therefore, an areal 
Gaussian filter is equivalent to a profile Gaussian filter in the x direction followed by the profile Gaussian 
filter in the y direction. Figure 2 shows the amplitude characteristic of Eq. (7), which depicts the 
performance of rotational invariance. The areal Gaussian filter is clearly isotropic if the constants 𝜆𝑥𝑥 and 
𝜆𝑦𝑦 are equal. 
 

 
       (a) The amplitude characteristic     (b) Top view of the amplitude characteristic 

 
Fig. 2. The amplitude characteristic of the areal Gaussian filter. 

 

http://dx.doi.org/10.6028/jres.120.006
http://dx.doi.org/10.6028/jres.120.006


 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.006 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 68 http://dx.doi.org/10.6028/jres.120.006 

 

3.2  Design of the Areal Spline Filter 
 
      The standard spline filter [10] can be extended directly for 3D data in the orthogonal directions. The 
amplitude characteristics of the areal spline filter are shown in Fig. 3, where Fig. 3 (a) is 𝛽 = 0 and (b) is 
𝛽 = 0.625242. 𝛽 called the tension parameter controls how tightly the spline curve fits through the data 
points [10]. The tension parameter also objectively controls how closely the transmission characteristic of 
the profile spline filter approximates that of the Gaussian filter. When 𝛽 = 0.625242, the best 
approximation to a Gaussian filter is achieved. From Figs. 3 (c) and (d), it can be found that the closer the 
transmission characteristic between the profile spline filter and the Gaussian filter, the stronger the isotropic 
characteristic of the corresponding areal spline filter. 
 

  
    (a) Amplitude characteristic (𝛽 = 0)                                 (b) Amplitude characteristic (𝛽 = 0.625242) 

 

 
        (c) Deviation of the amplitude characteristic of the    (d) Deviation of the amplitude characteristic of the standard 
        standard spline filter (𝛽 = 0) from the Gaussian filter   spline filter (𝛽 = 0.625242) from the Gaussian filter 
 

Fig. 3. The amplitude characteristics of the areal spline filters. 
 
 
      From the analysis above, it is feasible to approximate an isotropic amplitude characteristic of the areal 
spline filter by implementing an approximating spline filter in a manner similar to the separable areal 
Gaussian filter. Thus, based on a high-order spline filter, we construct an areal spline filter which provides 
a close approximation to an isotropic transmission characteristic. As expected, the higher the order, the 
better the isotropy of the transmission characteristic of the corresponding areal filter. Figures 4 (a) and (c) 
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show the amplitude characteristics of the high-order spline filter of 𝑛 = 4 and 𝑛 = 5, and Figs. 4 (b) and 
(d) show their deviations from the Gaussian filter. These figures illustrate that the maximum bias between 
the high-order spline filter 𝑛 = 4 and the Gaussian filter is 1.1493 %, while the maximum bias for high-
order spline filter 𝑛 = 5 is 0.5069 %. Although higher order spline filters can be created to achieve an even 
closer transmission characteristic to that of the Gaussian filter, in practice, excessive higher orders would 
result in slower computing speed. Hence, to balance between efficiency and effectiveness, we show 
examples for the filter with order 5 (that is, 𝑛 = 4), whose deviation is completely acceptable for most 
requirements. 
      Beside the isotropic characteristic, the high-order spline filter also inherits the feature of no end effects 
owing to the application of the complete matrix procedure instead of the convolution between data and 
discrete filter. It does not need extra data at the profile ends during the process and hence does not cause 
significant end error. That merit is the principal reason why we promote the application of the areal spline 
filter in surface metrology. 
 

 
   (a) Amplitude characteristic (𝑛 = 4)          (b) Amplitude characteristic deviation of the high-order 

        spline filter (𝑛 = 4) from the Gaussian filter 
 

 
   (c) Amplitude characteristic (𝑛 = 5)          (d) Amplitude characteristic deviation of the high-order 

        spline filter (𝑛 = 5) from the Gaussian filter 
 

Fig. 4. The amplitude characteristics of the high-order spline filters. 
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4.  Experiments and Comparison 
 
4.1  Computer Simulation 
 
      Comparing filtering results for a standard surface is helpful to highlight the advantages or shortcomings 
of an areal filtering algorithm. A simulated surface called the fundamental wavelength surface is shown in 
Fig. 5 (a), which contains a single frequency component. Various filtration techniques for mean surface 
extraction are applied to this simulated surface. Figures 5 (b) and (c) show respectively the results of the 
areal Gaussian filter and the new areal spline filter, where 𝜆𝑥𝑥 = 𝜆𝑦𝑦 = 500 points and the boundary 
condition is selected to be periodic. For the calculation of the Gaussian filter, the data beyond the edges and 
the corners is assumed to be zero. The deviation between the two filtered results shown in Fig. 5 (d) 
indicates that the mean surfaces calculated by applying these two areal filters are almost identical, except 
for the ends of the surface. If we ignore the 𝜆𝑥𝑥/2 or 𝜆𝑦𝑦/2 surface distorted at the edges and the corners 
(which is caused by the standard Gaussian filter (Fig. 5 (b)), the actual maximum deviation is only 
0.00073 µm and the largest relative error is less than 0.1 %. The result demonstrates both the isotropic 
characteristic and the ability for attenuating the end effects of the novel areal spline filter. 
 

 
       (a) Original simulated surface     (b) Mean surface by the areal Gaussian filter 

 

 
            (c) Mean surface by the High-order spline filter                   (d) The deviation between mean surfaces 
 

Fig. 5. Simulated fundamental wavelength surface. 
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      In order to further test the proposed spline filter, a more complicated simulated surface that consists of 
sinusoidal harmonic components is useful. Figure 6 (a) shows the simulated surface that is composed of 10 
harmonic components in each orthogonal direction with frequencies ranging from 0.1/𝜆𝑐 to 25/𝜆𝑐. Figures 
6 (b) and (c) are the results determined by the areal Gaussian filter and the areal high-order spline filter, 
respectively, where the boundary condition is non-periodic. The difference between them shown in Fig. 
6 (d) further illustrates that their filtering results are very close to each other except for those points at the 
boundary area. Not including those boundary area points, the maximum deviation between the two filtered 
results is 0.0046 µm, which is less than 0.1 % relative to the peak to peak value (2.3359 to −2.3359) of the 
simulated surface. 
 

 
       (a) Original simulated surface                 (b) Mean surface by the areal Gaussian filter 
 

 
              (c) Mean surface by the high-order spline filter                   d) The deviation between mean surfaces 
 

Fig. 6. Simulated standard surface. 
 
 
4.2  Practical Surface 
 
      Another example is given by applying the developed areal filter to an optical flat to validate its 
performance. The surface in Fig. 7 (a) is a standard calibrator surface with roughness parameter Ra less than 
about 2.5 nm measured by a disk scanning confocal microscope. The measured area is 2.027 mm × 
2.066 mm (1297 × 1322 sampling points). The cut-off wavelength 𝜆𝑥𝑥 = 𝜆𝑦𝑦 = 312.56 µm, which is about 
1/6 to 1/7 of the lateral measurement length in both directions. The filtered surface topography obtained 
with the Gaussian filter and the new spline filter are shown in Figs. 7 (b) and (c). 
      Although the deviation between the results from the two filters can be calculated as Fig. 7 (d) shows, it 
is difficult to evaluate the relative error, because the true amplitude value of the real surface is unknown. 
Fortunately, in Ref. [21], Song et al. introduce a practical method to make a useful topography comparison. 
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A novel surface parameter called the relative topography difference, 𝐷𝑠, is proposed for 2D and 3D surface 
topography measurement and comparison. “When 𝐷𝑠 = 0, the compared profiles or topographies must be 
exactly the same (point by point)”. The parameter 𝐷𝑠 and the cross-correlation function maximum 𝐶𝐶𝐶𝑚𝑚𝑚 
are used to quantify and describe their difference clearly. Calculating the mean surfaces shown in Figs. 
7 (b) and (c) with 1/2 cut-off wavelength trimmed on the edges, the results are obtained as 𝐷𝑠 =
0.000 745 % and 𝐶𝐶𝐶𝑚𝑚𝑚 = 0.999 993. Once again the results demonstrate that the areal high-order spline 
filter has an isotropic filtering characteristic like an areal Gaussian filter. 
 

 
              (a) Measured surface                 (b) Mean surface by the areal Gaussian filter 

 

 
              (c) Mean surface by the High-order spline filter                     (d) The deviation between mean surfaces 
 

Fig. 7. The original surface of standard calibrator. 
 
 
5.  Conclusion 
 
      Despite the advantages of no end effect and fast calculation, the spline filter has not been widely used in 
the measurement of 3D surfaces because of the severely anisotropic characteristic of the areal spline filter. 
      In this paper, in order to overcome the problem of the anisotropic amplitude characteristic on 
successive implementation of the profile spline filter in the orthogonal directions, an approximation method 
is proposed. In this method, a high-order spline filter is constructed, and high-accuracy approximation to 
the filtering characteristic of the Gaussian filter can be achieved with increasing order of the spline filter. It 
is illustrated that the maximum deviation of the 3D transmission characteristic of the high-order spline filter 
from that of the Gaussian filter is only 1.1493 % when 𝑛 = 4, and decreases to 0.5069 % when 𝑛 = 5. 
Moreover, if a higher order is selected, the spline filter will have a transmission characteristic even closer to 
the Gaussian filter. A practical implementation of the areal spline filter is tested on two computer simulated 
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surfaces and a smooth optical flat. As expected, the results reveal that the new areal spline filter not only 
possesses an isotropic transmission characteristic, but also inherits the ability to avoid end effects from the 
profile spline filtering algorithm. 
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