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One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed 
during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve 
(ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically 
consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is 
appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur 
chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity 
analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product 
streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from 
swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable 
liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are 
assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature 
data grid and the composition explicit data channel of the ADC. 
 
Key words: accelerants; advanced distillation curve; evaporation patterns; ignitable liquids; trace analysis; weathering. 
 
Accepted: December 18, 2012 
 
Published: January 17, 2013 
 
http://dx.doi.org/10.6028/jres.118.003 
 
 
 
1.  Introduction 
 
      Fires are responsible for the loss of approximately $6 billion annually in the United States, and 
approximately $2 billion of this total is due to arson fires. Moreover, each year approximately 500 people 
die in the U.S. in arson fires [1]. The investigation of arson fires results in a surprisingly low arrest rate 
(approximately 19 %), and a very low conviction rate (approximately 2 %). On the other hand, there is 
reason to think that many past convictions for arson and arson related homicides are in fact unjustified 
[2,3]. The main reason for these problems is the absence of a clear profile of a typical arsonist, but the 
difficulty inherent in the chemical analysis of fire debris for residual accelerant (or the more modern term, 
ignitable liquid) is a contributing factor as well. 
      Many ignitable liquids can be used to start an arson fire, the most common being gasoline, kerosene, 
charcoal lighter fluid, paint thinners and solvents, and other less common fuels [4,5]. Attention is even 
being paid to the new alternative fuels such as biodiesel fuel as potential ignitable liquids [6]. Forensic 
scientists and criminalists must routinely identify and characterize the accelerant or ignitable liquid in a 
credible, defensible manner. The analysis of fire debris for the presence of residual ignitable liquid has long 
been an accepted and routine aspect of arson investigations. The techniques available for such analyses 
have evolved dramatically in recent years. The application of sophisticated techniques, such as nuclear 
magnetic resonance spectroscopy (1H and 13C), fluorescence spectroscopy, second derivative ultraviolet 
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spectroscopy, as well as gas and liquid chromatographic techniques, have been used [7-9]. The nature of 
ignitable liquids as multi-component, moderately volatile fluids makes the technique of gas 
chromatography the most important and widely used method for fire debris analysis [10,11]. Indeed, the 
majority of liquid residue analyses done in forensic labs utilize gas chromatography with some combination 
of detectors and peripherals [4,5,12-19]. The most common is gas chromatography with mass spectrometry 
as the detector [20-24]. 
 
 
2.  Ignitable Liquids 
 
      Gas chromatographic analyses of as-purchased ignitable liquids often produce chromatograms that are 
characteristic of each class of fluids. For example, gasolines and kerosenes have familiar elution-intensity 
characteristics that can be identified by simple pattern recognition methods [23,25-30]. A typical gas 
chromatogram of a fresh sample of gasoline will show a pattern of isoalkanes in the early elution region, 
along with some straight chain aliphatics. Later in the chromatogram (in the elution region of seven carbons 
and higher), one will see a familiar aromatic pattern with substituted ethyl- and dimethyl benzenes. Modern 
formulations of high antiknock index gasolines are typically high in aromatic content and low in aliphatic 
content. Naturally, there is a significant variation in gasoline both regionally and seasonally, expanding the 
variety of potential ignitable liquids that can be at issue in arson investigations. Despite these observations 
with gasoline, we note that some classes of fluids do not exhibit chromatograms that can be assembled into 
a neat classification. This will be discussed further below. 
      The National Center for Forensic Science (University of Central Florida) maintains a database 
(available online) called the Ignitable Liquids Reference Collection (ILRC) [31]. This database is an up to 
date, comprehensive catalog of ignitable liquids and accompanying characterization data used for the 
analysis of fire debris samples in accordance established practice, such as those embodied in ASTM 
practices and procedures. Each entry contains a gas chromatographic profile of the ignitable liquid for 
which mass spectrometry was used as the detector (gas chromatography – mass spectrometry). This allows 
the presentation of the total ion chromatogram, and also a description of the predominant ion profile. 
Moreover, the major peaks are identified, and a link is provided to the NIST Chemistry Web Book for each 
identified major compound to provide the user with a great deal of additional information [32]. The ILRC 
categorizes ignitable liquids into useful and distinct families to facilitate searching and reference. These 
categories, delineated in ASTM method E 1618, include aromatics, gasolines, heavy petroleum distillates, 
medium petroleum distillates, light petroleum distillates, isoparaffinics, normal alkanes, oxygenates, 
naphthalenics and miscellaneous compounds. Sources such as this database are invaluable starting points in 
the analysis of residual ignitable liquid in fire debris. We note, however, that the chromatograms presented 
in that database are for the as-received, ignitable liquid. The analysis of gasoline (and other ignitable 
liquids) in fire debris, as presented to the analyst, is far less straightforward than a simple comparison with 
the chromatogram of the starting fluid. As the sample of gasoline evaporates, the pattern will shift to the 
later eluting fractions [33]. This is often described as a weathering pattern, clearly illustrated in Fig. 1 for 
gasoline [11,26]. We note that (to a first approximation) as evaporation of gasoline is continued to dryness, 
the component suite shifts to heavier, lower vapor pressure, and higher boiling temperature components. 
Moreover, the suite trends toward enriching the aromatic constituents and depleting the isoalkane 
constituents. Appreciation of this trend is critical in fire debris analysis, since ignitable liquids have a 
remarkable persistence when held within the interstices of porous material, even when exposed to elevated 
temperatures [34-36]. 
      We should add that the weathering pattern developed by evaporation might be different from what may 
be observed in fire debris because of the potential of intermolecular interactions with the substrate. Thus, 
we refer to the component suite above as being a first approximation. The typical substrate encountered in 
fire debris analysis is carpet, carpet padding, or subfloor (made of wood). As the ignitable liquid vaporizes, 
it is possible for partitioning to take place with the substrate; interactions with the substrate may cause 
some molecules of the ignitable liquid to be retained more strongly than others. Examination of enthalpy of 
adsorption measurements of n-alkanes (the most extensively studied family of compounds) shows that 
many surfaces will interact strongly [37]. While the effect of intermolecular interaction has not been fully 
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Fig. 1. Total ion chromatograms of gasoline at various stages of evaporation. (a) fresh gasoline, (b) 25 % evaporated, (c) 50 % 
evaporated, (d) 75 % evaporated, (e) 90 % evaporated, (f) 95 % evaporated, (g) 98 % evaporated, (h) gasoline evaporated to dryness. 
Reproduced with permission from ref. [1]. 
 
 
studied for typical arson substrates, we point out that the interaction is a surface phenomenon. Thus, we 
expect the overall effect to be minor. The effect of evaporative weathering will be far more important in 
affecting the character of residual ignitable liquids in fire debris. Another factor that would cause a 
difference in the weathering pattern developed by evaporation would be the strong potential of thermal 
decomposition of the ignitable liquid, a topic treated in more detail later in the paper. 
      The pattern shift shown in Fig. 1, while specifically for gasoline, is similar in character to the 
weathering pattern shown by any ignitable liquid that is composed of many components. Clearly, the 
specific details will differ in terms of the composition suite that will be recovered after progressive 
evaporation, but the evaporative trend will always be noted. It is interesting that the evaporative trend of the 
sample is similar to what can be expected upon distillation of the starting fluid. In both cases, the fluid is 
fractionated primarily by its boiling temperature, and to a lesser extent by the influence of specific 
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intermolecular interactions. Strictly speaking, what is of most interest in fire debris analysis is not the 
distillate composition, but the composition of what is left in the distillation flask or kettle at a given 
temperature. These compositions are related, however, through the equation of state of the fluid. The phase 
diagram provides the four piece puzzle: dew point temperature, dew point composition, bubble point 
temperature and bubble point composition. Thus, the distillate composition anticipates the residual kettle 
composition. 
 
 
3.  The Advanced Distillation Curve Approach 
 
      What is indeed remarkable is the similarity of the evaporation profile of Fig. 1 with the output of a 
recently introduced technique called the advanced distillation curve (ADC) method [11,38-45]. The method 
has mainly been used in the characterization of fuels. In general terms, the classical distillation curve of a 
fluid is a graphical depiction of the boiling temperature of the fluid mixture plotted against the volume 
fraction distilled. This volume fraction is usually expressed as a cumulative percent of the total volume. 
One most often thinks of distillation curves in the context of petrochemicals and petroleum refining, but 
such curves are of great value in assessing the properties of any complex mixture. Indeed, the measurement 
of distillation curves has been part of complex fluid specifications for a century (typically listed as the fluid 
volatility), and they are inherent in the design of all fuels. 
      The ADC, which was developed to improve the classical measurement, is an analytical protocol that 
can be applied to any complex fluid. It features (1) a composition explicit data channel for each distillate 
fraction (for both qualitative and quantitative analysis), (2) temperature measurements that are true 
thermodynamic state points that can be modeled with an equation of state [46-50], (3) temperature, volume 
and pressure measurements of low uncertainty suitable for equation of state development, (4) consistency 
with a century of historical data [51], (5) an assessment of the energy content of each distillate fraction 
[40], (6) trace chemical analysis of each distillate fraction [52,53], (7) corrosivity assessment of each 
distillate fraction [54,55]. The first aspect summarized above, the composition explicit channel, essentially 
anticipates the evaporation profile of Fig. 1, as we have reported previously. The other features of the 
approach provide additional advantages applicable to the study of ignitable liquids, however. 
      Relating the evaporation profile to true thermodynamic state points of the distillation curve provides a 
link to thermodynamic theory. Thus, we are able to model the distillation curve resulting from our 
metrology with model based on an equation of state. Such thermodynamic model development is simply 
impossible with the classical approach to distillation curve measurement, or with any of the other 
techniques that are used to assess fuel volatility (or vapor liquid equilibrium). The application of the ADC 
to the study of fuels used as arson ignitable liquids thus has the potential of validating analyses, and 
providing a predictive framework to guide analyses of evaporated or weathered ignitable fluids absorbed in 
fire debris. 
      The apparatus used for the ADC measurement (depicted schematically in Fig. 2) has been described in 
detail elsewhere, so only a brief summary will be provided here. The distillation flask (in which the fuel 
sample is placed) is a 500 mL round bottom flask that is inserted in a two-part aluminum heating jacket, the 
lower part of which is contoured to fit the flask. Cartridge heaters are placed in the lower, contoured part of 
the jacket. The jacket and heaters are capable of operation up to 350 °C, with a local uniformity of 0.2 °C. 
Temperature is controlled with a PID controller that is programmed to simulate the fluid behavior. This is 
called a model predictive temperature controller. The jacket exterior is insulated with a Pyrex wool 
enclosure. 
      Three observation ports are provided in the insulation to allow penetration with a flexible, illuminated 
bore scope. The bore scope ports, illustrated in Fig. 2, are placed to observe the fluid in the boiling flask, 
the top of the boiling flask (where the spherical section joins the head, and the distillation head (at the 
bottom of the take-off). Above the distillation flask, a centering adapter provides access for two thermally-
tempered J-type thermocouples that enter the distillation head. One thermocouple (TC1 in Fig. 2) enters the 
distillation flask and is submerged in the fluid, to monitor the temperature of the bulk fluid. This 
temperature is referred to as Tk (signifying its placement in the kettle). This thermocouple is placed well 
below the surface of the fluid. The other thermocouple (TC2 in Fig. 2) is centered at the low point of 
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Fig. 2. Schematic diagram of the overall apparatus used for the measurement of distillation curves. Expanded views of the sampling 
adapter and the stabilized receiver are shown in the lower half of the figure. 
 
 
distillate take-off (the typical distillation head placement, as is done in classical distillations. The 
temperature measured directly in the fluid is a true state point that can be essential for modeling studies and 
comparison with theory. The temperature measured at the bottom of the distillation head take off point, 
referred to as Th, is needed to compare advanced distillation curve measurements with measurements that 
have been taken for the last century. Beneath the aluminum jacket, a magnetic stirrer drive is positioned to 
couple with a magnetic stir bar inside the distillation flask. Rapidly stirring the contents of the distillation 
flask during the measurement is essential for maintaining horizontal temperature uniformity in the fluid. 
The thermocouples positioned as stated above provide a rapid response to temperature. 
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      Vaporized fluid taken off the flask is directed into a forced-air condenser chilled with a vortex tube. 
The vortex tube can produce a cold air stream to a temperature as low as -40 °C. Following the condenser, 
the distillate enters a newly designed transfer adapter that allows instantaneous sampling of distillate for 
chemical analysis by any applicable means. The flow path of the distillate is focused to drop into a 0.05 mL 
“hammock” that is positioned directly below the flow path. A crimp cap fixture is incorporated as a side 
arm of the adapter, allowing a replaceable silicone or Teflon septum seal) to be positioned in line with the 
hammock. To sample the distillate, one simply uses a chromatographic syringe equipped with a blunt 
tipped needle, as shown in Fig. 3. 
 

 
 
Fig. 3. The distillation curve for STP Diesel Fuel Injector Treatment presented in Tk and Th. The curves presented are the averages of 
five separate measurements. The uncertainties relating to the measurements have been discussed in the text. 
 
 
      The composition explicit data channel allows the application of any applicable analytical technique. 
The most common technique that is applied is gas chromatography with mass spectrometric detection (GC-
MS). We have also augmented this with on line FTIR utilizing a light pipe (GC-MS-FTIR), but more 
commonly we have applied FTIR off-line [55]. Specific element analysis has been applied for sulfur with a 
sulfur chemiluminescence detector (GC-SCD). The sulfur analysis has been coupled with corrosivity 
analysis with a small scale copper strip corrosion test [56,57]. We have also applied Karl Fisher coulombic 
titrimetry and refractometry in specific cases [58], but any analytical method that can be applied to fluid 
samples can be used. 
      Our usual practice is to withdraw an aliquot of distillate via syringe, and immediately inject this into a 
pre-weighed vial containing a suitable solvent. Multiple analyses can subsequently be performed on this 
vial, and the statistics so generated provide confidence in the result. Moreover, the solvent can often serve 
to stabilize the sample by minimizing vaporization (with the addition of a keeper solvent) or a preservative. 
Another advantage of this approach is that the samples of all distillate fractions of a given measurement can 
be collected and analyzed at one time with an automatic sampler. Of course, it is possible to withdraw the 
aliquot from the hammock, and inject it immediately into the sampling port of the instrument, but this is 
rarely done. 
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      When the sample drops from the sampling transfer adapter, it flows into a level stabilized receiver to 
allow a volume measurement. This receiver consists of a central volume that gradually decreases in 
diameter at the base, and connects to a smaller-diameter side arm sight glass that is calibrated. The side arm 
stabilizes the fluid level for a precise volume measurement as the distillation proceeds. The large inner 
volume and the sight glass are enclosed in a water jacket that contains a thermometer and a magnetic stir 
bar for circulation. The side arm sight glass allows a volume measurement with an uncertainty of 0.05 mL. 
      We have applied this metrology to many fluids, most of which are fuels. This work has included the 
study azeotropes [59], gasolines [41,53,58,60,61], aviation fuels [39,47,50,62-74], diesel fuels [75-85], 
crude oils [54,55] and rocket propellants [39,86-89]. We note that although the method has multiple 
features (corrosivity, enthalpy, etc.), it is not always necessary or desirable to apply all of them in every 
application. The literature that we have developed lends itself naturally to the consideration of ignitable 
liquids, since many of these fuels have been used in arson. At this time, a comprehensive database of these 
data does not exist in one depository. For this reason, we list by reference these previous studies as a 
pointer. 
      In this paper, we extend the range of ADC application to the visualization of weathering patterns for a 
collection of ignitable liquids (other than common finished fuels) representing some of the ASTM classes. 
These classes include aromatics, gasolines, heavy petroleum distillates, medium petroleum distillates, light 
petroleum distillates, isoparaffinics, normal alkanes, oxygenates, naphthalenic-paraffinics and 
miscellaneous compounds. For each example we have considered, we measured the thermodynamically 
consistent distillation curve and a moiety family analysis as a function of distillate volume fraction. We 
also developed a series of annotated chromatograms (showing the predicted weathering pattern) for each of 
the ignitable liquids. 
 
 
4.  Experimental 
 
      Most of the fluids that we measured during the course of this work are listed (by ILRC category) in 
Table 1 [90]. Each fluid was obtained from either a commercial or military source, and was used either as 
received, or as withdrawn from its container. Prior to any distillation measurement, the fluid was analyzed 
by a gas chromatographic method to characterize the fluid and to allow us to optimize the distillation 
measurement. While each chromatographic method was optimized for the individual sample, all were done 
with a 30 m capillary column of 5 % phenyl-95 %-dimethyl polysiloxane having a thickness of 1 µm. 
 
Table 1. A listing of the ignitable liquids studies in this work, arranged according to the classifications in the Ignitable Liquids 
Reference Collection (ILRC) 
 

Light 
Petroleum 
Distillate 

Medium 
Petroleum 
Distillate 

Heavy 
Petroleum 
Distillate 

Oxygenated Normal 
Alkane Isoparaffinic Miscellaneous Aromatic 

• Klean Strip 
VM&P 
Naphtha 

• CRC Belt 
Dressing 

 

• WD-40 
• E-Z Paint 

Thinner 
• Kingsford 

Odorless 
Charcoal 
Lighter 

• 2-cycle oil 
and gasoline 
(16:1) 

 

• STP Gas 
Treatment 

• STP Diesel 
Fuel 
Injector 
Cleaner 

• Interlux 
Solvent 333 
Brushing 
Liquid 

• Gunk 
Liquid 
Wrench 

• Gold Eagle 
Quantum 
Octane 
Booster 

• Interlux 
Reducing 
Solvent 
2316N 

• Interlux 
Reducing 
Solvent 
2333N 

 

• Tiki Ultra-
Pure Lamp 
Oil 

• Lamplight 
Medallion 
Lamp Oil 

• Crown Paint 
Thinner 
 
 

• Weiman 
Wax Away 

 

• Klean Strip 
Pure Gum 
Spirits 
Turpentine 

• Gold Eagle 
Fuel Injector 
Cleaner 

 

• 3M General 
Purpose 
Adhesive 
Cleaner 

• SEM Solve 
Wax and 
Grease 
Remover 

• Interlux 
Special 
Thinner 
216 

• Norton 
Adhesive 
Cleaner 
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      The required volume of fluid for the distillation curve measurement (in each case 200 mL) was placed 
into the boiling flask with a 200 mL volumetric pipette. The thermocouples were then inserted into the 
proper locations to monitor Tk, the temperature in the fluid and Th, the temperature at the bottom of the 
take-off position in the distillation head. Enclosure heating was then commenced with a multi-step program 
based upon our experience with similar fluids, with guidance from the chemical analysis described in the 
previous paragraph [91]. Volume measurements were made in the level-stabilized receiver, and sample 
aliquots were collected at the receiver adapter hammock. In the course of this work, we performed between 
four and six complete distillation curve measurements for each of the fluid samples. 
      Since the measurements of the distillation curves were performed at ambient atmospheric pressure 
(measured with an electronic barometer), temperature readings were corrected for what should be obtained 
at standard atmospheric pressure (1 atm = 101.325 kPa). This adjustment was done with the modified 
Sydney Young equation, in which the constant term was assigned a value appropriate for the sample [92-
95]. This constant is correlated with the average carbon chain length of the fluid being measured, thus the 
initial chemical analysis of each ignitable liquid is critical in this regard. In some cases, Sydney Young 
constants that correspond to non-integral carbon numbers were used. The magnitude of the correction is of 
course dependent upon the extent of departure from standard atmospheric pressure. The location of the 
laboratory in which the measurements reported herein were performed is approximately 1650 m above sea 
level, resulting in a typical temperature adjustment of 8 °C. The actual measured temperatures are easily 
recovered from the Sydney Young equation at each measured atmospheric pressure. 
 
 
5.  Results 
 
      Brevity dictates that we do not describe in detail the measurements and results on all of the ignitable 
liquids listed in Table 1; rather we will select and discuss a few representative fluids. These selected 
examples will allow us to present the salient features of the method that are of particular relevance to the 
study of ignitable liquids. A complete listing of data and figures covering all the fluids is available as 
supplementary information. 
 
 
6.  ADC Results – Selected Examples 
 
6.1  CI Engine Fuel Injector Cleaner 
 
      The first ignitable liquid that we will consider is a compression ignition (CI, or diesel) engine fuel 
injector cleaning fluid. This fluid is sold commercially as an additive to diesel fuel that purports to maintain 
clean fuel injectors. The particular fluid that we obtained for measurement was sold commercially as STP 
Diesel Fuel Injector Treatment, classified as a heavy petroleum distillate. The efficacy or performance of 
this product is irrelevant to our purpose here; we seek merely to examine this fluid in terms of its known 
potential as an ignitable liquid in arson. This fluid is listed in the ILRC under sample reference No 0014. 
      We performed five separate distillations for this fluid, primarily to assess the uncertainty in the 
temperature data grid. During the initial heating of each aliquot in the distillation flask, the behavior of the 
fluid was carefully observed. Direct observation through the flask window or through the bore scope 
allowed measurement of the onset of boiling for each of the mixtures (Tk, measured with TC1 of Fig. 2). 
Typically, to ascertain the initial boiling behavior, we measure the onset of bubbling, the temperature at 
which bubbling is sustained, and the temperature at which the vapor rises into the distillation head. We 
have shown that this last temperature is actually the initial boiling temperature (that is, an approximation of 
the bubble point temperature at ambient pressure) of the fluid mixture. This measurement is significant for 
a mixture because it can be modeled with an equation of state. Vapor rise is accompanied by a sharp 
increase in Th (noted on TC2), and is therefore far less subjective to ascertain and thus is less uncertain than 
the onset of bubbling. Experience with previous mixtures indicates that the uncertainties in the onset and 
sustained bubbling temperatures are approximately 1 °C. The expanded uncertainty (considering the 
repeatability and the calibration) in the vapor rise temperature was 0.3 °C. In Table 2a, we present the 
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initial temperature observations for STP diesel fuel injector treatment. We note that these values are 
consistent with the classification of this fluid as a heavy petroleum distillate with components ranging up to 
seventeen carbon atoms. 
      During the measurement of the distillation curves of this fluid, both the kettle and head temperatures 
were recorded (Tk and Th, respectively). The ambient atmospheric pressure was also recorded and used to 
adjust the temperatures to what would be obtained at sea level atmospheric pressure by use of the modified 
Sydney Young equation. Each curve was measured five times, and the repeatability in temperature Tk was 
0.3 °C. The expanded uncertainty of the pressure measurement (considering repeatability and calibration) 
was 0.002 kPa. The uncertainty in the volume measurement that is used to obtain the distillate volume 
fraction was 0.05 mL. In Table 2b, we present head and kettle temperatures, as well as the measured 
atmospheric pressure, as a function of distillate cut. We note a distillation temperature range of 
approximately 70 °C. This is an appreciable range over which we can expect a significant change in 
composition. These data are presented graphically in Fig. 3. We note that the distillation proceeds from the 
initial boiling point and increases to the 90 percent distillate fraction with a sigmoidal-shaped curve. 
 
Table 2a. The initial boiling temperatures of STP Diesel Fuel Injector Treatment. These temperatures have been adjusted to 1 atm 
with the Sydney Young equation. The pressures at which the measurements were made are provided for each fuel to permit recovery 
of the actual measured temperature. The uncertainty (with a coverage factor k=2) in the onset and sustained bubbling temperatures is 
~2 °C. The uncertainty in the vapor rise temperature is actually much lower, at ~0.2 °C. 
 

Observed Temperature STP Diesel Fuel Injector Treatment 
ºC (83.3 kPa) 

Onset 159.1 

Sustained 189.2 

Vapor Rise 197.1 
 
Table 2b. The average measured distillation curve data (that is, the temperature data grid) for STP Diesel Fuel Injector Treatment. 
These temperatures have been adjusted to 1 atm with the Sydney Young equation; the experimental atmospheric pressures are 
provided to allow recovery of the actual measured temperatures. The uncertainty in the temperature measurements is 0.3 °C. 
 
 
  Distillate 

Volume 
Fraction, % 

STP Diesel Fuel Injector 
Treatment (83.3 kPa) 

Tk, °C Th, °C 
5 199.3 189.9 

10 201.0 192.3 
15 203.3 195.3 
20 205.7 197.9 
25 208.2 200.7 
30 210.8 204.0 
35 213.3 206.5 
40 216.2 209.6 
45 219.7 213.3 
50 222.7 216.7 
55 226.1 219.8 
60 229.8 223.9 
65 233.8 227.5 
70 238.5 232.3 
75 243.7 237.7 
80 249.7 243.5 
85 256.7 250.0 
90 268.7 257.6 
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      Clearly, the temperatures of the distillation curve are far lower than combustion temperatures. It is 
understood, however, that ignitable liquids that are recovered in fire debris (for example, in carpet pad or 
subfloor) do not encounter combustion temperatures. Rather, they encounter significantly lower 
temperatures that in fact may not depart very far from the distillation temperatures [34-36]. Otherwise, no 
recovery of residual fluid from fire debris would ever be possible. When one considers the behavior of 
ignitable liquids in fire debris analysis, the region of the distillation curve that is of most interest is usually 
the later part, but for reasons that will become clear later, it is important that the entire curve be available 
for examination. 
      We note from Fig. 3 that the temperature, Tk, exceeds (or leads) Th by approximately 7 °C over the 
entire curve. This is typical of complex fluids in which azeotropy does not occur. If azeotropic mixtures 
were present among major constituents, one would observe regions along the curve in which Tk and Th 
converge [59]. Since azeotropy among mixture constituents would cause the components of the mixture to 
behave like pure fluids, it is critical in the prediction of weathering patterns that such behavior be detected. 
      While the gross examination of the distillation curves is instructive and valuable for many fluid science 
purposes, the composition channel of the advanced approach can provide even greater understanding and 
information content, and this is especially relevant to visualizing the weathering pattern. One can sample 
and examine the individual fractions as they emerge from the condenser, and relate them to the temperature 
data grid of Fig. 3. This was done by withdrawing 7 μL aliquots of distillate (as a function of distillate 
volume fraction) and diluting this in a known mass (approximately 1 mL) of n-hexane. Each of these 
fractions thus prepared was analyzed by a gas chromatographic mass spectrometric method (30 m capillary 
column of 5 % phenyl-95 %-dimethyl polysiloxane having a thickness of 1 µm, temperature program from 
90 to 275 °C, 9 °C per minute, mass spectrometer set to record an ion mass range of 15 to 550 Da). 
      Before we discuss the detailed chromatographic analysis as a function of distillate volume fraction, we 
can provide a general overview of the composition by a moiety family analysis method that is based on the 
ASTM Method D-2789 [96]. In this method, one uses the GC-MS to classify hydrocarbon samples into six 
different types. The six different moieties are paraffins, monocycloparaffins, dicycloparaffins, 
alkylbenzenes (or aromatics), indanes and tetralins, and naphthalenes. While strictly applicable to low 
olefinnic gasolines, it is routinely used for the study of all fuels. The solvent, n-hexane, does not interfere 
with the main chromatographic peaks, and is not used in the subsequent calculation of moiety families. The 
results of these analyses (as % volume fractions) are presented in Fig. 4a and 4b. We note from Fig. 4a that 
the relative concentration of aliphatic constituents are approximately constant through the vaporization, but 
from Fig. 4b we note a very different behavior for alkylbenzenes, indanes, tetralins and naphthalenes. The 
alkylbenzene content, in particular, decreased markedly as vaporization proceeds, while there is a slight 
increase in the content of indanes, tetralins and naphthalenes. The consequence for the prediction of fire 
debris weathering patterns is clear; one can expect approximately similar aliphatic content in the weathered 
fluid as in the virgin fluid, albeit shifted to higher relative molecular mass. From Fig. 4b, on the other hand, 
we are led to expect a weathering pattern with a much lower content of alkylbenzenes, accompanied by a 
slight increase in indanes, tetralins and naphthalenes. 
      The general survey provided by the above technique is valuable as a starting point, but the composition 
explicit data channel of the ADC allows a more detailed analysis for each distillate fraction. This provides 
greater insight into the weathering pattern that may be expected for an ignitable liquid recovered in fire 
debris. The samples collected during the distillation can be used for analyses at any desired level of detail. 
In Fig. 5 we present the total ion chromatograms of the analysis of each fraction, with the major 
components labeled. The solvent, n-hexane, eluted before the main cluster of components, and was 
removed electronically. We note how the components progress from light to heavier (generally increasing 
carbon number) as the distillation proceeds, while in the later stages we note the disappearance of 
alkylbezene compounds. This is consistent with the moiety family analysis presented above, but with a 
greater level of detail. What we would expect to find in fire debris is a suite of compounds such as those 
represented in the 70 to 90 percent distillate fractions. Indeed, this is consistent with the kind of weathering 
patterns (as in Fig. 1) that are known in ignitable liquids. The advantage of the application of the ADC in 
this situation is that the information in Figs. 3-5 (assuming one distillation, and sample preparation for the 
GC-MS analyses) can be obtained in approximately 1.5 hrs rather than the weeks needed for typical 
weathering studies. 
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Fig. 4a. A summary of the moiety family analysis for the aliphatic hydrocarbons of STP Diesel Fuel Injector Treatment. 
 

 
 

Fig. 4b. A summary of the moiety family analysis for the cyclic hydrocarbons of STP Diesel Fuel Injector Treatment. 
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Fig. 5. Chromatographic behavior of STP Diesel Fuel Injector Treatment as a function of distillate volume fraction. Identified 
components are: (a) xylene (b) nonane (c) 1-ethyl-3-methylbenzene (d) decane (e) 1,2,4-trimethylbenzene (f) undecane (g) dodecane 
(h) tridecane (i) tetradecane (j) pentadecane (k) hexadecane (l) heptadecane. 
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6.2  Plastic Adhesive Solvent Promoter 
 
      The next ignitable liquid we will discuss is SEM Plastic Adhesive Promoter, a solvent classified as a 
light petroleum distillate that is used to prepare surfaces in preparation for adhesive construction. It is 
included in the ILRC database under sample reference No 0214. For brevity, we show in Fig. 6 the 
distillation curve in Tk (not presented are the Th data, which when examined with Tk do not show 
azeotropic convergence), with the moiety family analysis shown superimposed as insets. The range of the 
distillation is approximately 70 °C (as was the case with the previous sample), thus we can expect a 
significant change in composition to accompany this change. This composition change is clearly reflected 
in the moiety family analysis, where we observe a decrease in paraffins from a volume fraction of 
approximately 72 to 28 percent, accompanied by an increase in alkylaromatics from 10 to 80 percent. In 
Fig. 7, we present the total ion chromatograms of the analysis of each fraction, with the major components 
labeled. The solvent was again removed electronically. We note how the components progress from light to 
heavier (generally increasing carbon number) as the distillation proceeds, while in the later stages we note 
the increase of alkylbezene compounds. This is consistent with the moiety family analysis presented above. 
Following the same thoughts of our discussion of the previous sample, were this solvent used as an 
ignitable liquid, we would expect to find in fire debris a suite of compounds such as those represented in 
the 70 to 90 percent distillate fractions. 
 
 

 
 
 

Fig. 6. The distillation curve, presented in Tk, for SEM Plastic Adhesive Promoter, with insets showing the moiety family analysis. 
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Fig. 7. Chromatographic behavior of SEM Plastic Adhesive Promoter as a function of distillate volume fraction. Identified 
components are: (a) acetone (b) 3-methylhexane (c) heptane (d) toluene (e) butyl acetate (f) ethylbenzene (g) m,p-xylene (h) o-xylene. 
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6.3  Turpentine 
 
      We mentioned above that the temperature range of the distillation curve is a significant predictor of 
composition change. Indeed, we have examined many ignitable liquids in which the temperature change is 
modest (10 °C or less), or in which the temperature is approximately constant over the entire distillation 
curve. An example of an ignitable liquid that shows a very modest distillation temperature range is 
industrial turpentine, which typically distills over a range of 10 °C (the details of the distillation 
measurements performed on this liquid can be found in the supplementary information). Despite the modest 
distillation temperature range, we nevertheless noted a gradual progression in the composition profile over 
this temperature range. The components observed are: a) tricyclene, (b) (-)-α-pinene, (+)-α-pinene 
racemate, (c) camphene, (d) 1,4-cineole (e), limonene, (f) terpinolene, and (g) turpineol. All of these 
components are present from the 0.025 to the 90 percent distillate volume fraction, but as we can observe in 
Fig. 8, the clear trend is to enrich in the heavier components (terpinolene and turpineol) while diminishing 
the lightest component, tricyclene. Despite this trend, the dominant component over the entire vaporization 
range is the pinene racemate. We also note that the compositional differences between industrial 
turpentines and the pyrolysis products seen in lumber combustion can be visualized by the composition 
channel. This is often a source of confusion in fire debris analysis. The ADC can also visualize and predict 
the differences in compositions known to occur in turpentines made from forest woods in the United States 
and in Canada [97,98]. 
 
6.4  SI Engine Fuel Injector Cleaner 
 
      This kind of behavior observed above (with ignitable liquids having modest distillation temperature 
ranges) becomes even more pronounced with some fuel injector cleaners that have only a few components, 
with the major component (80 %, mass/mass) typically being methanol. In these instances, the distillation 
curve will be flat, and the composition will, as expected, reflect the composition profile present at the late 
stage of vaporization, but dominated by methanol. 
      An example of a fluid that shows a flat distillation curve is Gold Eagle Fuel Injector Cleaner. This is a 
product that is marketed as a solvent added to gasoline to remove deposits from injectors in spark ignition 
(SI) engines. This fluid is not specifically listed by name in the ILRC database, although several related 
fluids are present. We found that this fluid distilled over the entire volume range at a constant Tk 
temperature of approximately 64.5 °C, and the Th temperature of 64 °C. No convergence of Tk and Th was 
noted, a constant displacement of 0.6 °C between the two temperatures. The composition channel of the 
ADC revealed that the fluid was essentially pure methanol, over the entire distillation curve. For this fluid, 
the chromatographic profile of the starting material is a good representation of the pattern that could 
potentially be recovered in fire debris. 
 
 
7.  Ignitable Liquid Stability 
 
      One complicating factor that must be considered when developing weathering patterns is the potential 
of chemical reactions. Evidence of thermal decomposition is never visualized in classical evaporation 
studies, a major drawback. High temperatures can result in cracking of larger molecules into smaller 
molecules, and also the development of polymers and carbonaceous structures. For example, we have 
found thermal stress can produce a suite of decomposition products in some fluids, while other fluids are 
relatively stable. For example, the reactivity of methanol has been noted in numerous studies of the 
thermophysical properties and in supercritical fluid extraction, where it has been used as an entrainer or co-
solvent [99-101]. The composition explicit data channel of the ADC can provide guidance, however, in that 
often the reaction products due to thermal decomposition are detected. If desired, one can specifically look 
for potential reaction products, which, in the case of methanol (for example, in the fuel injector cleaner 
discussed in the prior section) would include dimethyl ether, formaldehyde, acetals and hemiacetals in 
addition to some hydrogen and carbon monoxide. Clearly, some ignitable liquids are more reactive than 
others. Linear, branched and aromatic hydrocarbons are stable under the typical conditions of distillation, 
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Fig. 8. Chromatographic behavior of turpentine as a function of distillate volume fraction. Identified components are: a) tricyclene (b) 
(-)-α-pinene, (+)-α-pinene racemate, (c) camphene (d) 1,4-cineole (e) limonene (f) terpinolene (g) turpineol. 
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but the presence of double bonds on the molecular backbone can increase reactivity, and one must be aware 
of this possibility. An ignitable liquid that has recently come to the fore is biodiesel fuel [6]. Some of the 
fatty acid ester constituents have one or more double bonds, making them subject to Diels-Alder reactions 
that result in larger species. In some cases, the reaction products may have to analyzed by liquid 
chromatographic techniques (HPLC). We note that this is a major advantage of the ADC over even the best 
classical studies of evaporation weathering. Evaporation studies will not visualize or predict the 
decomposition products that are associated with thermal stress, the ADC approach will do so, however. 
Indeed, the stability of biodiesel fuel has been studied directly with the ADC [84,102]. Since the reaction 
products can be light, with a high vapor pressures (as is the case with thermally stressed methanol), or 
heavy, with low vapor pressures (as is the case with thermally stressed biodiesel fuel), the entire distillation 
curve is important. 
 
 
8.  Influence of the Substrate 
 
      We conclude the description of our results with a preliminary observation regarding the presence of an 
ignitable liquid on a substrate. In an effort to approximate the effect of the substrate on the temperature data 
grid of the distillation curve, we performed distillations of the 91 AI summer grade gasoline in the presence 
of wood chips and coarsely chopped carpet. The wood chips we used were randomly shaped slivers of 
dried hickory, with a size ranging from 1 – 2 cm on edge, approximately 0.5 cm thick. The carpet with its 
underlayment was cut with a scissor from a remnant, into squares of approximately 1 cm on edge. 
Distillations were performed in the usual manner, with 200 mL of the gasoline, into which approximately 
3.7 g of either the wood chips or the chopped carpet were added. This resulted in a solids mass fraction of 
2.5 %. These quantities of solids do not impede the function of the stirrer, thus no additional uncertainty is 
introduced into the temperature measurement. Typical distillation curves measured for these tests are 
provided in Fig. 9, in which we present measurements with a 91 AI gasoline. This fluid was chosen because 
of its wide boiling temperature range. We note that the major effect of the substrate was to decrease the 
measured distillation temperatures by between 1 and 3 °C. This lowering appears to be more pronounced 
with the carpet than with the wood, although the uncertainty of the measurements prevents a definitive 
conclusion in this regard. It is likely that this observation results from the increased number of nucleation 
sites available to the gasoline in the presence of the substrate. This allows a faster rate of vaporization for a 
given heat input (through the aluminum enclosure surrounding the distillation flask). 
      It is possible that if the heat input (or rather the rate of the temperature program ramping) were made 
slower, the observation of lower vaporization temperatures would vanish. We chose not to do that 
experiment, however, since this runs counter to the situation encountered in a fire. The reverse experiment, 
in which the heating is done at a far more rapid rate, would be instructive. Doing so with the current 
apparatus would not be possible, however, since the large thermal mass of the enclosure is simply not 
designed for such rapid heating. We are currently considering designs for an approach that might enable 
this experiment to be performed. We are also considering modifications to allow a larger solids fraction. 
We recognize that in this preliminary experiment we have only addressed the temperature data grid in the 
presence of a substrate. We have not addressed the effect of the substrate on the composition of the fluids 
recovered in the fire debris. Clearly, any substrate will contribute to the suite of recovered materials, and 
these compounds must be differentiated from ignitable liquids 16,28,29]. This aspect is currently being 
addressed with the ADC approach, and will be reported later. 
 
 
9.  Relation of Composition Explicit Distillation Data to Fire Debris Analysis 
 
      Indeed, the most important aspect of the application of the ADC to the prediction of fire debris analysis 
profiles lies in the comparison with such analysis. In separate but related work, we have applied PLOT-
cryoadsorption to the analysis of fire debris produced on two types of wood with numerous ignitable 
liquids [103]. PLOT-cryoadsorption is a headspace sampling method [104] that has been applied to the 
characterization of energetic materials vapors [105], the early detection of food spoilage [106] and the 
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Fig 9. Distillation curves of 91 AI winter quarter gasoline and that gasoline in the presence of wood chips and chopped carpet. 
 
 
detection of grave soil (that is, illegally buried corpses) [107]. Although a detailed description of the results 
of fire debris analysis mentioned above is beyond the scope of this paper, we can describe in general terms 
the similarities between two illustrative examples. 
      A typical as-received diesel fuel will have an alkylbenzene content of between 18 and 20 %, 
mass/mass, on the basis of ASTM D-5186 [108]. During an ADC measurement, on will note the sharp drop 
of alkylbenzenes in the distillate as the temperature increases. From those observations on diesel fuels, 
cited earlier in the introduction, we measured an alkylbenzene content of between 5 and 6 % percent, and a 
napthalenic content of approximately 4 %, at the 80 distillate volume fraction. Consequently, one would 
expect a correspondingly low quantity in fire debris accelerated with diesel fuel. We measured in the 
headspace (by use of PLOT cryoadsorption coupled with GCMS) of such a fire debris sample 4.9 % 
(mass/mass) alkylaromatic and 3.2 % (mass/mass) naphthalenic content. The most prevalent compounds 
recovered from the fire debris were linear and branched alkanes (91.9 %, mass/mass), as predicted by the 
ADC. The uncertainty in the chromatographic method was 0.2 %, mass/mass. More details on all the fire 
debris measurements performed with this method will be presented in the future. 
 
 
10.  Conclusions 
 
      In this paper we have presented examples of the application of the advanced distillation curve method 
to the characterization of ignitable liquids of relevance to the analysis of fire debris. Moreover, we have 
provided a database of measurements performed on ignitable liquids other than common finished fuels. 
This follows our earlier work on numerous motor and aviation fuels; here our focus has been other 
commercial fluids such as functional additives, lubricants, illumination fuels and solvents. Useful forensic 
information can be obtained from the temperature data grid (Tk, Th, plotted against distillate volume 
fraction) and the composition explicit data channel. The range of the distillation temperatures (Tk) provides 
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an indication of the complexity of the fluid. A large temperature range is typically observed with a more 
complex fluid in terms of a multiplicity of components. In these situations, one may expect a significant 
change in composition as the ignitable liquid weathers. Likewise, when the change in temperature is very 
small, a very simple fluid (a single component or a few close boiling components) is indicated. Of course, 
there are exceptions to these general guidelines, such as is encountered with a binary mixture of fluids with 
very different boiling temperatures. These are rarely encountered in arson investigations, however. Another 
valuable aspect of the temperature data grid is indications of azeotropy potential. The convergence of Tk 
and Th (when plotted together on a distillation curve) occurs when azeotropy is exhibited among 
constituents of the mixture. Although we have not explicitly demonstrated this with an example, in this 
paper, our earlier work on motor fuels shows this feature with gasoline that is oxygenated with methanol or 
ethanol. 
      The composition channel of data of the ADC is especially useful for forensic applications. We have 
demonstrated how this aspect allows the weathering patterns for ignitable liquids to be visualized (by 
applying gas chromatography – mass spectrometry to the later parts of the distillation curve). We have also 
shown the value of moiety family analyses, and analyses done with specific detectors. The decomposition 
that one would expect to occur with ignitable liquids during weathering can also be observed explicitly, as 
we have done with gasoline oxygenates and biodiesel fuel. When considering ignitable liquids that are 
susceptible to decomposition during thermal stress, the ADC approach has a particular advantage over 
classical evaporation studies. The ADC will explicitly show the decomposition products, be they heavy or 
light. 
      We finish our conclusions with just a few sentences on the thermodynamic modeling aspect that was 
mentioned in the introduction. The fine details of this work are beyond the scope of this paper; the reader is 
referred to descriptions of our modeling work for more information. In general terms, our approach is to 
represent the molar Helmholtz energy, a, of a mixture as a sum of an ideal solution contribution and an 
excess contribution; we can use the theoretical formalism in two different ways. First, we can correlate 
experimental property data, producing a model to represent the data within experimental uncertainty. 
Second, we can use the model predictively to estimate property values, based on limited experimental data. 
With the ADC as a primary experimental input, we have used both of these approaches for aviation fuels, 
rocket propellants and diesel fuels. Here, it is important to utilize the entire temperature range of the 
distillation curve in the model development. Once derived, the model affords us the ability to predict 
distillation (or weathering) temperatures, and in some cases their associated compositions. This aspect is 
the topic of active research, and will be reported further in the near future. 
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