
1. Introduction

Accurate measurement of the Residual Resistivity
Ratio (RRR) of niobium samples is important to assure
that critical material-purity specifications are met in the
construction of superconducting radio-frequency (RF)
cavities. The RRR value quantifies the overall level of
impurities in niobium including: carbon, oxygen, nitro-
gen, and hydrogen. The RRR value also indicates the
low-temperature thermal conductivity of the niobium.
High-purity niobium, with RRR greater than 300, is
needed for resonant cavities with the best possible
quality factor, Q, for particle accelerators in high-
energy physics, nuclear physics, light source, and
neutron source applications. One possible future appli-
cation of such a neutron source is to transfer radio-
active waste into shorter-lived, less toxic material.

The accepted definition of RRR for pure niobium is
the ratio of the electrical resistivities or resistances
measured at 273 K (the ice point) and 4.2 K (the boil-
ing point of helium at standard atmospheric pressure).
However, pure niobium is superconducting below
about 9.3 K, so the low-temperature resistance is
defined as the normal-state (i.e., non-superconducting
state) resistance extrapolated to 4.2 K and zero magnet-
ic field.

A resistance surface as a function of temperature and
transverse magnetic field is shown in Fig. 1. When the
combination of field and temperature is low enough,
the sample is in the superconducting state and the
resistance is zero. The transition from normal state to
superconducting (the “waterfall” in Fig. 1) occurs at
lower magnetic fields as the temperature is increased.
For temperatures above 9.4 K or 9.5 K, the sample is
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normal at zero magnetic field. The surface was gener-
ated with measurements of resistance (R) versus tem-
perature (T) at zero magnetic field and measurements
of resistance versus magnetic field (H) at various set
temperatures.

Three quantities that are common variables in RRR
measurements of superconductors are temperature,
magnetic field, and angle of the magnetic field. In this
paper, the term temperature refers to the thermodynam-
ic temperature, T, of the specimen in units of kelvins,
K. The term magnetic field (or field) refers to the exter-
nal applied magnetic-field strength, H. For conven-
ience and consistency with the practice of the supercon-
ductor industry, we express our magnetic field in terms
of μ0H in units of teslas, T, where μ0 = 4π × 10–7 H/m,
the permeability of free space. The term angle refers to
the angle between the magnetic field strength vector
and the nominal current direction in the specimen. In
this paper, only two angles were used: applied magnet-
ic field parallel and transverse to the specimen current.

The terms resistance (R) and resistivity (ρ) are both
used in this paper. They are related by

(1)

where  is the distance between the voltage taps and A
is the cross-sectional area of the sample. R is the meas-
ured, extrinsic parameter of the sample and ρ is an
intrinsic property of the material. A and  do change
with temperature due to thermal contraction; however,
this effect is insignificant for RRR measurements. Thus,
the ratio of resistances of a sample at different temper-
atures is the same as the ratio of resistivities. We will
typically use resistance when referring to measured
values and resistivity when considering theoretical
arguments in this paper.
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Fig. 1. Resistance of a high-purity niobium specimen versus temperature and transverse magnetic field.
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Usually, the RRR is derived from either of two
methods for obtaining data needed to extrapolate
the normal-state resistance of a niobium specimen:
(1) measure the normal-state resistance as a function of
field at 4.2 K and extrapolate to zero field (field extrap-
olation), or (2) measure the normal-state resistance as a
function of temperature in zero field and extrapolate to
4.2 K (temperature extrapolation). Both methods
require the precise measurement of resistance as small
as 0.5 μΩ on a specimen that resists wetting by solder.
Both methods have their difficulties and each would
typically be done with a method-specific experimental
apparatus. In the NIST laboratory, however, both types
of measurements are made during a single sequence,
with one apparatus, to directly compare methods on a
given specimen. Because liquid helium boils near 4.0 K
at the atmospheric pressure of our test site, data are
reported at 4.03 K rather than 4.2 K. We abbreviate
4.03 K as “4 K” throughout this document.

Some laboratories that perform RRR measurements
using the field extrapolation method use an experimen-
tal configuration in which the magnetic field is parallel
to the sample current. The NIST system can be adapted
to use either a parallel field or a magnetic field trans-
verse to the specimen current. Though values of mag-
netoresistance depend on field orientation, statistical
models we discuss below apply to data from either field
orientation. We investigate a new model for estimating
RRR based on both field and temperature data that take
advantage of the Kohler relationship [1, 2].

While it is possible to obtain an estimate for RRR for
superconducting samples, we need to acknowledge the
fact that RRR estimates are model-dependent extra-
polations used to predict a value that does not exist. We
also explore the possibility of changing the definition
of RRR for superconducting samples so that it is based
on actual measurements instead of model-dependent
extrapolations. Specifically, we propose defining RRR
as the ratio of the resistance at 273 K to the resistance
at 10 K at zero magnetic field for pure niobium
samples.

2. Temperature Models

The first common method used to obtain the extrap-
olated normal-state resistance is based on the measure-

ment of resistance at various temperatures and zero
magnetic field. Three monotonic equations were con-
sidered as potential functional models for the resistance
(R) versus temperature (T) relationship:

(2)

(3)

(4)

where η0 , η1 , γ0 , γ1 , γ2 , φ0 , φ1 , φ2 , and φ3 are unknown
parameters to be estimated by linear (or nonlinear)
least-squares analysis. We will refer to the three empir-
ical models as the T3 model, the TC model, and the TM
(Morgan-Mercer-Flodin) model [3], respectively.
Resistance data used for the fits were collected at zero
applied magnetic field and increasing values of temper-
ature. We fit measured resistance for temperatures
between 9.5 K and 16 K, which is a somewhat
conservative range because there may have been some
normal-state data below 9.5 K. Figure 2 displays resist-
ance versus temperature data for sample #2, and Fig. 3
displays residuals from fitting the three models. 
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Fig. 2. Zero-field resistance versus temperature for sample #2.



The estimated values of γ 2 in the TC model Eq. (3)
were within a narrow range for samples with typical
RRR values. For these samples, we obtained a median
γ 2 of 3.00, minimum γ 2 of 2.97, and maximum γ 2 of
3.03. (One sample with a very low RRR had γ 2 estimat-
ed as 3.09.) By comparison, the γ 2 values for aluminum
vary between 2 and 5 [4], whereas the γ 2 values for
copper vary between 5 and 6, depending on purity [5].

One might think the data shown in Fig. 2 would be
fairly easy to fit with a simple function; however, the
residuals from the T3 and TC models have a definite
pattern, indicating that the models do not account for
all structure in the data. One possible explanation for
the residual structure is that there is a small systematic

error in the thermometer calibration. The TM model
appears to fit the data fairly well because the residuals
have no discernable pattern. The residuals for all three
models are small because most residuals are less than
0.1 % of the measured resistance.

In past interlaboratory comparisons, differences in
RRR between laboratories have been as large as 10 %,
and participating laboratories were required to measure
RRR with a relative standard uncertainty of less than
5 % of the measured value [6]. Thus, the residuals in
Fig. 3, as well as all subsequent residuals, are effective-
ly negligible, and the relative uncertainty associated
with all RRR measurements reported in this document
will be 5 %, which represents a worst-case error.
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Fig. 3. Residuals from three models, (a) T3, (b) TC, and (c) TM, fit to the sample #2 data in Fig. 2.
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3. Field Models

A second common method of determining normal-
state resistance involves measuring resistance over a
range of magnetic fields at a fixed temperature, the
normal boiling point of liquid helium. In the NIST
measurement system, data can be collected for both
parallel and transverse magnetic field configurations
and for various fixed temperatures from 4 K to 20 K.
For a single temperature, we were able to model
resistance versus magnetic field for both magnet
configurations using the model

(5)

We will call this the field model, H. We also fit a
Morgan-Mercer-Flodin model, which we refer to as the
HM model,

(6)

The two empirical, monotonic field models were
selected based on fitting the data at 10 K, because the
full range of fields could be utilized and the behavior of
the curve near zero field could be examined. For data at
7 K we fit fields greater than 0.5 T, and for data at 4 K
we fit fields greater than 1.2 T. (Each magnetoresis-
tance curve was examined to determine appropriate
limits for the data; some curves required more trim-
ming than others. In general, more data points were
trimmed in parallel field than were trimmed in trans-
verse field [1].) These conservative ranges were select-
ed to ensure that all data used in the fit were “normal.” 
Figure 4 displays measured resistance versus magnetic
field for sample #2 for three fixed temperatures and
transverse field. Each resistance symbol in Fig. 4 is the
result of overlaying 15 repeated measurements at the
corresponding combination of field and temperature.

We fit the H model and the HM model to sample #2
data (transverse field) for each temperature separately
to obtain the residuals shown in Fig. 5. We display the
residuals for all three temperatures on a single graph for
comparison. The 4 K residuals for both models are the
smallest in magnitude while the 10 K residuals are the
largest. Although the residuals themselves are small
relative to the magnitude of the measured resistance,
the same pattern was obtained for all samples meas-

ured, suggesting that the pattern could be an artifact of
the measuring system. The most likely source of the
residual structure is nonlinearity in the magnet calibra-
tion at low fields.

4. The Kohler Relationship

We examine a new field-extrapolation measurement
method based on the standard 4 K data, but supple-
mented by additional magnetoresistance data acquired
at various fixed temperatures up to 20 K. Figure 6 dis-
plays an example of magnetoresistance measurements
collected for sample #13 at five normal-state tempera-
tures (10 K, 12.5 K, 13 K, 16 K, 20 K) and two temper-
atures (4 K, 7 K) that produce the superconducting-to-
normal state transition.

The additional magnetoresistance curves at different
temperatures, though not needed in traditional extrapo-
lations, have allowed for a potential new measurement
procedure derived by generalizing an empirical rule
developed by Kohler [2] to describe the behavior of
many non-superconducting polycrystalline metals. The
mathematical form of Kohler’s rule is

(7)

where H > 0 T is the applied field, ρH is the resistivity
at field H, and ρ0 is the resistivity at zero field. Kohler’s
essential observation was that the function f is single-
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Fig. 4. Resistance versus field data for sample #2 for three tempera-
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valued over a range of temperatures, increases mono-
tonically, and depends only on the metal and the
relative orientation of the field and current. Fickett [5]
observed, regarding Kohler’s rule, that “Very few
metals show agreement when wide ranges of tempera-
ture, purity, defect concentration, and field are used.”
For example, copper follows Kohler’s rule, whereas
aluminum does not.

A Kohler diagram of resistance data R is a plot
of ΔRH (T)/R0 (T) = [RH (T) – R0 (T)]/R0 (T) versus
H ⋅ RR(T), where T is the temperature and RR(T) is the
resistivity ratio RH (273 K)/R0 (T). Figure 7(a) displays
the Kohler transformation of the normal-state data
(T ≥ 10 K) shown in Fig. 6.

We developed a generalized version of Kohler’s rule
where RR(T) is replaced by [RH (273 K)/R0 (T)]θ, for
some constant θ to be determined. Figure 7(b) shows a
Kohler plot of the data in Fig. 6 after applying a Kohler
transformation with θ = 0.82. We use this particular
value of θ , previously determined in [1], for illustration
purposes only. (For the data analyzed in this paper, val-
ues of θ ranged from 0.82 to 1.44 for transverse fields
and ranged from 0.72 to 1.12 for parallel fields.) Since R0

is undefined at the lower temperatures for superconduc-
tors, we can only show the data for temperatures where
niobium is in the normal state.

The generalized Kohler transformation shown in
Fig. 7(b) appears to provide a better alignment of the
magnetoresistance curves at different temperatures than
the traditional Kohler transformation in Fig. 7(a). The fit-
ting procedure we propose is based on the generalized
Kohler transformation and will be called the
modified Kohler, or MK model.

In our application, we want to use additional tempera-
ture data for the same specimen to impose the general
structure at higher temperatures on estimated curves at
temperatures where the specimen is superconducting at
the lower fields. We use a generalized Kohler transfor-
mation to align the temperature data. Absent a theoreti-
cal function f in the Kohler rule, we have considered var-
ious monotonic model functions suggested by
Fig. 6. Specifically, we seek a single model that will
fit all the individual magnetoresistance curves. For
instance, a very good representation of our measurement
experiment can be derived from the growth-curve [3],

(8)

where we define

(9)

and

(10)

The value of R0 estimated from the T = 4 K magne-
toresistance curve is the parameter needed to compute
RRR. We re-arrange the growth-curve equation so that
the measured resistance is isolated on the left-hand side

(11)
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Fig. 5. Residuals for sample #2 data (transverse field) for (a) the H
model and (b) the HM model. The models were fit to the three tem-
peratures separately. All measured resistance values were greater
than 1000 nΩ.
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Fig. 7. Sample #13 measurements after applying the (a) Kohler transformation and (b) the modified Kohler transformation with θ = 0.82. We
selected the minimum measured value of resistance as the value of R0 in the transformations.

Fig. 6. Resistance versus magnetic field at various temperatures for sample #13 using the transverse magnetic
field configuration.

(a) (b)



Our goal is to combine magnetoresistance curves and
estimate R0 for each curve, as well as the common para-
meters θ, β1, β2, β3. Since R0 depends on temperature, a
suitable empirical equation for the zero-field tempera-
ture response R0 (T) can be substituted for R0 in the
model. We use the model

(12)

based on earlier studies on zero-field temperature-
extrapolation measurement data. Thus, the modified
Kohler  model predicts resistance for any given temper-
ature and field.

Figure 8 shows all the data used to fit the modified
Kohler model for sample #2. (We show the 0 T data 
for completeness.) The zero-field temperature 
data were constrained to be within 9.5 K and 16 K, the 
transverse magnetoresistance data were all less than or 
equal to5 T, the 7 K transverse magnetoresistance data  
twere greater than 0.5 T, and the 4 K transverse magne-
to-resistance data were greater than 1.2 T. Residuals
from the fit are shown in Fig. 9. Absolute deviations, all
within 0.5 % of measured values of resistance, confirm
that the Kohler-based model may offer a promising
alternative to other measurement approaches. The
residual structure shown in Fig. 9 is similar to the struc-
ture in the fit of the magnetoresistance data (Fig. 5).

Our measurement system is capable of producing
data over a wide range of temperatures and fields, so
we performed an analysis to investigate the sensitivity
of the model and the resulting estimates of RRR when
various subsets of the data were used in the model fit.
Table 1 displays RRR values computed for sample #13
for various data trimming scenarios.

The results in Table 1 indicate that trimming the
magnetoresistance data at 5 T versus 8 T does not
appear to have much influence on the value of RRR
based on the MK model. For example, when the zero-
field temperature data and all temperatures for magne-
toresistance data are included in the model fit (top two
rows in the table), the RRR using a maximum of 8 T
(413.1) and the RRR using a maximum of 5 T (413.4)
differ only by 0.3.

The inclusion of zero-field temperature data (for the
case where all temperatures for magnetoresistance are 
included) does seem to have an effect on RRR. The
RRR when zero-field temperature data are included
(413.1, 413.4) increases by about 2 when zero-field
temperature data are not included (415.6, 415.2).

However, the MK model seems to be the most sensi-
tive to the inclusion of more temperatures for magne-
toresistance data (when zero-field temperature data are
included) since RRR for the case where all temperatures
are included (413.1, 413.4) differs by about 3 when
only (4 K, 7 K, 10 K) magnetoresistance data are used
(416.0, 416.2). There are not enough distinct tempera-
tures to fit the MK model for the case where the zero-
field temperature data are excluded and only tempera-
tures (4 K, 7 K, 10 K) magnetoresistance data are used.
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Fig. 8. Data used to fit the modified Kohler model for sample #2.

Fig. 9. Residuals from modified Kohler fit. All measured resistance
values were greater than 1000 nΩ.
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For the rest of the paper, the results from the MK
model are based on zero-field temperature data (9.5 to
16 K) and magnetoresistance data at 4 K, 7 K, and 10
K. We selected these three temperatures for the magne-
toresistance data because that was the minimum com-
mon data set for all experimental runs on 14 niobium
superconducting samples.

5. Model Comparison

At first glance, all six models under consideration
are equally plausible for predicting resistance at 4 K
and zero field, especially since there is no “true value”
we can use for comparison. However, if we assume that 

the shape of the magnetoresistance curve is similar over 
the range of temperature from 4 to 10 K, then
the MK model has the clear advantage. The MK model
imposes the shape of the magnetoresistance curve
at higher temperatures (where data are available)
on the data at lower temperatures (where data are
not available), thus providing a more realistic
extrapolation at the lower temperatures than all other
models.

One way to compare the various models is to plot the
differences between the average measured resistance
and the model-based values of resistance at 10 K for
each sample, as shown in Fig. 10. We would like the
measured resistance to be fairly close to the predicted
resistance.
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Table 1. RRR values for sample #13 based on the modified Kohler model for various data trimming scenarios. The designation of “All”
temperatures in column three includes 4, 5, 6, 7, 8, 9, 10, 12, 13.5, and 16 K.

Zero-Field Maximum Field for Temperatures for RRR
Temperature Data Magnetoresistance Magnetoresistance

Included (9.5 – 16 K) Data (T) Data (K)

Y 8 All 413.1

Y 5 All 413.4

N 8 All 415.6

N 5 All 415.2

Fig. 10. Difference between the mean resistance and the model-based resistance at 10 K and zero field for all six models and all samples.

Y 8 4, 7, 10 416.0

Y 5 4, 7, 10 416.2



The differences for the field models, H and HM, are
generally much larger than those for the MK and
temperature models, indicating that the field models
may be more biased than the other models even when
they are fit to the 10 K data where data for zero field
exist.

While Fig. 10 displays a small potential model bias,
Fig. 11, which displays predicted values of resistance
for both field and temperature models, provides a
visual representation of the large effect of model
dependence on the extrapolated resistance.

The effect of model dependence on the extrapolation
of resistance is also evident in the estimated RRR
values. Table 2 displays the percent differences
between RRR based on the MK model (column 2)

and RRR for each of the other five models (T3, TC, TM,
H, and HM) at 4 K and nominally zero field for
14 niobium superconducting samples. Because we
assume the MK model provides the best method for
extrapolation, we compare each model to the MK
model. Samples #1, #2, #10, #11, and #13 were
measured on more than one occasion. For consistency,
the MK model was fit to the combined magneto-
resistance data (4 K, 7 K, and 10 K) and temperature
data at zero field for all samples even though some
samples have additional magnetoresistance data at 
higher temperatures.

The RRR estimates for the MK model are always
lower than the estimates for all other models. The RRR
values produced by the TM model are the closest to the 
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Sample RRR MK T3 (%) TC (%) TM (%) H (%) HM (%)

1a 344.1 1.69 1.88 0.67 2.89 2.59
1b 346.0 1.56 1.83 1.05 2.55 2.27
2a 183.4 1.10 1.05 0.49 1.37 1.37
2b 183.3 1.19 1.13 0.51 1.05 1.49
2c 182.8 1.23 1.16 0.63 1.06 1.05

3 413.3 2.19 2.01 1.33 2.33 2.31
4 55.7 0.54 0.39 0.17 0.37 0.38
5 394.7 2.03 1.92 0.86 1.99
6 413.5 1.92 1.99 1.16 3.01 2.91
7 363.3 1.79 1.70 0.80 2.12 1.9
8 392.4 1.81 1.70 0.91 1.14 0.82
9 289.6 1.83 1.82 1.09 1.73 1.64

10a 245.9 1.52 1.50 0.93 1.99 1.95
10b 245.5 1.39 1.38 0.77 1.90 1.88

11a 581.7 2.70 2.39 1.19 7.62 7.57
11b 585.4 2.22 1.89 0.94 5.76 5.65

12 291.2 1.61 1.63 0.79 2.31 2.28
13a 416.2 2.05 2.12 1.44 3.77 3.24
13b 412.6 2.25 2.28 1.55 3.11 2.76

14a 364.1 1.99 2.15 1.35 2.30 1.84

2d 183.4 0.98 0.93 0.30 3.34 3.26

10c 246.5 1.08 1.09 0.54 17.52 18.04

11c 581.0 2.94 2.67 1.64 34.93 20.21

13c 413.4 1.96 2.01 1.31 15.34 11.57

13d 416.9 2.21 2.28 1.58 7.69 4.08

13e 414.8 2.19 2.21 1.53 8.12 4.63

14b 363.2 1.94 1.99 1.21 9.24 6.63

1.86

Table 2. Percent differences between RRR at 4 K based on the MK model (column 1) and the RRR at 4 K extrapolated from each of the
remaining five models. The shaded rows indicate results based on parallel-field measurements; all other rows were based on transverse field
measurements



MK estimates, while the H and HM models produce the
largest values of RRR. The parallel-field and trans-
verse-field RRR estimates are similar for a single
sample for the MK model; however the H and HM
models can produce wildly different estimates, depend-
ing on the magnetic field orientation.

Figure 12 demonstrates that samples with multiple
measurements in transverse field have fairly repeatable
values of RRR for a given model. Figure 12(a) shows 
the percent differences between estimated RRR values
and the average RRR value for each sample and model 

combination for the transverse field orientation.
Figure 12(b) shows the percent differences between
estimated RRR values and the average RRR for sample
#13 and each model for the parallel field orientation.
The percent differences among all samples (with repeat
measurements) and estimation methods in transverse
field are within 0.8 %. Measurements taken in
parallel field for sample #13 are not as repeatable for
the H and HM methods since those percent differences
are both about 4.1 %.
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Fig. 11. Extrapolated values of resistance for (a) models T3, TC, and TM using the temperature data taken at near zero field and (b) models H,
HM, and MK using the transverse field data taken at 4 K.

Fig. 12. Percent difference between RRR estimates and the average RRR for (a) each sample (with repeat measurements) and model combination
for the transverse field orientation, and (b) sample #13 and each model for the parallel field orientation. These two plots show data that have been
normalized for each sample and each model separately.

(a) (b)

(a) (b)



We think the RRR values produced by the MK method
are the best possible estimates of RRR; however, this
method is not very practical for routine characterization.
The T3, TC, TM, H, and HM methods (transverse field 
only) differ from the MK estimate of RRR by as much as
2.70 %, 2.39 %, 1.55 %, 3.77 %, and 3.24 %,
respectively, indicating that RRR estimates in other
laboratories may have similar biases if they do not
use the MK method. Of course, the bias and repeat-
ability associated with our particular measurement 
sys-tem may not be typical of other measurement
systems.

6. ANew Definition of RRR forSuperconductors

Although all the models we consider result in
plausible RRR values, the quality of the RRR estimate
depends on the ability of the model to extrapolate

beyond the range of data. However, it is difficult to
decide which model is best because the value we are
trying to predict does not physically exist.

Other superconductors, such as Nb-Ti and Nb3Sn
wires, use a different definition of RRR. The RRR of
these composite wires is based on the measured low-
temperature resistance just above the transition temper-
ature (about 9.3 K for Nb-Ti and 17 K for Nb3Sn) [7,8].
Composite superconducting wires incorporate a
significant fraction of normal conducting material, such
as copper, to improve their thermal stability. For these
wires, the RRR is an indication of the purity and
thermal conductivity of the stabilizer, not of the
superconducting component. For composite wires,
the RRR is a stability figure of merit. The measured
composite wire normal-state resistance is not extra-
polated to 4.2 K (or the application temperature)
mainly because the resulting RRR would be nearly the
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Table 3. Percent differences between RRR at 10 K (column 2) and the predicted RRR at 10 K based on the six models. The shaded rows
indicate results based on parallel-field measurements, all other rows were based on transverse field measurements

Sample RRR MK (%) T3 (%) TC (%) TM (%) H (%) HM (%)

1a 300.8 –0.13 –0.44 –0.42 –0.43 0.24 0.21
1b 300.8 0.06 0.03 0.05 0.04 0.27 0.23
2a 169.2 0.02 0.03 0.02 0.01 –0.02 –0.03
2b 169.3 0.00 0.00 –0.01 –0.02 0.05 0.04
2c 168.9 0.01 0.03 0.02 0.01 0.08 0.07

3 353.4 0.02 –0.04 –0.06 –0.07 0.33 0.31
4 54.3 –0.01 0.01 0.00 –0.01 0.00 0.00
5 339.1 0.04 0.03 0.02 0.00 0.41 0.39
6 352.0 0.18 0.06 0.06 0.05 0.41 0.38
7 314.1 0.21 0.07 0.06 0.05 0.36 0.33
8 336.1 0.26 0.09 0.07 0.06 0.38 0.35
9 258.3 –0.06 –0.04 –0.04 –0.05 0.29 0.26

10a 222.2 0.06 0.04 0.04 0.03 0.23 0.22
10b 221.7 0.04 0.01 0.01 0.00 0.16 0.14

11a 471.0 0.08 –0.10 –0.13 –0.15 0.46 0.41
11b 470.5 0.22 0.16 0.13 0.12 0.49 0.44

12 258.8 0.06 0.07 0.07 0.05 0.25 0.23
13a 354.6 0.03 –0.06 –0.06 –0.07 0.22 0.18
13b 352.6 0.00 –0.01 –0.01 –0.02 0.45 0.41

14a 315.7 0.06 0.02 0.03 0.02 0.17 0.13

2d 168.9 0.04 0.07 0.07 0.06 –0.02 –0.03

10c 221.9 0.01 0.02 0.02 0.01 0.05 0.02

11c 470.8 0.02 0.05 0.03 0.02 0.24 0.06

13c 352.2 0.02 0.01 0.02 0.00 0.20 0.11

13d 355.8 –0.04 –0.05 –0.05 –0.06 0.12 0.05

13e 354.0 0.05 –0.05 –0.05 –0.06 0.22 0.14

14b 314.9 –0.01 –0.03 –0.02 –0.03 0.13 0.08



same as the normal-state RRR and extrapolation could
give incorrect results. Thus, we investigate the possibil-
ity of changing the definition of pure niobium RRR.

We think a new definition of RRR that does not
depend on extrapolating an arbitrary model is needed for
pure superconducting materials. We propose defining
RRR to be the ratio of the resistance at 273 K to the
resistance at 10 K and zero magnetic field, both of which
can be measured. Table 3 lists the percent difference
between RRR based on measurements and RRR based on
the six models for each sample at 10 K.

The percent differences for all temperature models are
within 0.44 %, and the percent differences for field
models are all within 0.49 %. For all samples, the H
and HM models produce higher RRR values than the
RRR based on data (column 2). The remaining models
produce values that are quite similar to the RRR. In
general, the percent differences based on actual data at
10 K (Table 3) are smaller than the percent differences
for extrapolated values at 4 K (Table 2).

Figure 13 displays the estimated RRR at 10 K based
on data and the extrapolated MK RRR at 4 K for 14
samples. Similar patterns were observed for graphs
based on the remaining five models. Since the relation-
ship between the RRR values at 4 K and 10 K appear to
be highly correlated, the new value of RRR would have
the same meaning as the current value but would just
have a different, somewhat distorted scale. For pure
niobium, the effect of changing the low-temperature 
resistance definition from 4.2 K to 10 K changes

the RRR significantly, especially at higher values of
RRR which is the region of interest.

Figure 14 displays extrapolated RRR values at 4 K
based on the MK model and RRR values at 10 K based
on data for the 14 samples. The relative order of the
proposed RRR at 10 K is consistent with the extrapolat-
ed RRR 4 K values. The scaling of the proposed RRR at
10 K has the greatest effect on samples with higher
RRR values.
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Fig. 13. Relationship between estimated RRR at 10 K based on data
and extrapolated RRR at 4 K based on the MK model for 14 samples.
A reference line at 45° is shown to indicate perfect agreement
between estimates.

Fig. 14. Extrapolated RRR at 4 K based on the MK model and estimated RRR at 10 K based on data for 14 samples.



7. A First-Order Correction

Another possible method for computing RRR at 4 K
is based on a simple empirical relationship that utilizes
the difference between the resistance at 10 K and the
resistance at 4 K. The measured resistance is an extrin-
sic material parameter that depends on the voltage tap
spacing, cross-sectional area, and the resistivity (an
intrinsic material parameter) of the superconductor.
Thus, the difference in the low-temperature R must be
related to an intrinsic parameter to be applied to meas-
urements with different voltage tap spacing and cross-
sectional area in general. The temperature dependence
of the total resistivity ρ (T) [9] is

(13)

where ρ p (T) is the temperature-dependent intrinsic
phonon resistivity and ρ I is the temperature-independent
resistivity due to impurities. It is well known that the sec-
ond term has a small dependence on temperature [9],
but we will ignore this for our first order cor-
rection. The difference between R(10 K) and R(4 K) is
proportional to the difference between ρ p (10 K) and
ρ p (4 K), which in turn is proportional to ρ p (273 K).
The measured R(273 K) is also approximately propor-
tional to ρ p (273 K), assuming that ρ I is much less than
ρ p (273 K). Thus,

(14)

or

(15)

where κ is a proportionality constant. We estimate κ by

(16)

where R(10 K) and R(273 K) are based on measure-
ment data and R(4 K) is the predicted resistance based
on the MK model.

Figure 15 shows the estimated values of κ versus
the RRR at 4 K using the MK model for 14 samples.
The values range from 0.00040 to 0.00047 and vary
systematically with RRR. Since many materials have
slight temperature dependence due to impurities [9], 
the dependence of κ on RRR is expected. To provide a
single, conservative, proportionality constant for all

niobium samples, we recommend using the minimum
value of κ = 0.000403. This value would be more
appropriate for samples having high RRR values.

Table 4 lists values of κ, estimates of RRR at 4 K
based on the MK model, RRR computed from the
minimum value of κ (0.000403), and the percent
difference between RRR based on the MK model and
RRR values based on the minimum κ. RRR values
based on the minimum κ were computed from meas-
urements of R(10 K). The values of RRR based on the
minimum κ are all within 1.16 % of the RRR values
computed based on the MK model. The percent differ-
ences are consistent with those recorded in Table 2 for
the various models.

The value of κ may depend on the purity of the
niobium, and this value may need to be re-determined
periodically, as the types and amounts of various
impurities change with material source and processing
techniques. The proportionality constant corresponding
to 4.2 K would be 0.0004.

As mentioned earlier, magnetoresistance curves for
temperatures other than 4 K, 7 K, and 10 K were avail-
able for some samples. We investigated the effect of
fitting all available data on the value of κ and found
that the minimum κ decreased from 0.000403 (based
on three temperatures) to 0.000395 (based on all avail-
able temperatures). However, values of RRR computed
when κ = 0.000395 differed from the RRR reported in
Table 4 (column 4) by at most 0.5 % for the highest
RRR samples.
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Fig. 15. The proportionality constant, κ, versus estimated RRR at
4 K based on the MK model for all 14 samples.
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8. Conclusions

Several monotonic models were investigated for
fitting resistance versus magnetic field and/or tempera-
ture for the purpose of computing the RRR of pure
niobium samples. Because we assume that magneto-
resistance data at 4 K are from the same family of curves
as data at 10 K, where the zero-field behavior can be
measured directly, we think the MK model provides the
best extrapolated resistance values. Thus, we compared
five models to the modified Kohler model. While the
modified Kohler model was probably the best choice for
predicting resistance at 4.2 K or 4.03 K, none of the

models can be proven to be correct, because niobium is
superconducting at 4.2 K or 4.03 K and zero magnetic
field. The TM model also performs well and does not
require the large amount of data needed for the MK
model.

We propose a new definition of RRR for niobium
based on measurements at 10 K instead of model-
dependent extrapolations to 4.2 K or 4.03 K. The
proposed RRR has many advantages over the current
RRR: it is based on measurements, there is no model
needed, and there is no need to extrapolate to a point
that does not exist for superconducting materials.

Our recommendations are as follows.

1. Redefine RRR for niobium based on measure-
ments at 10 K. Although the RRR scale would
be altered, thus slightly penalizing samples with
larger RRR values, there would be no bias or 
uncertainty due to model fitting in the resulting-
values. Alternatively, the RRR at 4.2 K could be
estimated using

(17)

This first-order correction removes much of the 
distortion and penalty of making the RRR deter-
mination using two measurements, R(10 K) and
R(273 K), and no extrapolation is needed once a 
value of κ (0.0004 based on data presented here)
has been established.

2. Although the results are less definitive, resist-
ance versus temperature data at zero field may
be used to fit the TM model. This model pro-
vides RRR estimates that are closest to the MK
values for many different samples. The TC
model can also be used. The γ 2 exponent might
be useful for indicating problems (noisy data,
high resistance or temperature uncertainty) or
changes in impurity levels if the exponent
deviates significantly from 3.00.

3. If magnetoresistance data are used to calculate
RRR, we recommend the transverse magnet ori-
entation over the parallel magnet orientation.
Although trimming data for the upper fields
appears to have little influence on RRR
estimates, trimming data for the lower fields
must be done with care. The lower-field data
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MK Min. κ Min. κ RRR –
Sample κ RRR RRR MK RRR (%)

1a 0.00042 344.1 342.3 –0.52
1b 0.00043 346.0 342.3 –1.07
2a 0.00046 183.4 181.6 –0.99
2b 0.00045 183.3 181.7 –0.89
2c 0.00045 182.8 181.2 –0.87

3 0.00041 413.3 412.1 –0.28
4 0.00046 55.7 55.5 –0.33
5 0.00042 394.7 392.8 –0.48
6 0.00042 413.5 410.1 –0.82
7 0.00043 363.3 359.6 –1.03
8 0.00043 392.4 388.8 –0.93
9 0.00042 289.6 288.3 –0.46

10a 0.00043 245.9 244.1 –0.74
10b 0.00044 245.5 243.4 –0.85

11a 0.00040 581.7 581.4 –0.06
11b 0.00042 585.4 580.6 –0.83

12 0.00043 291.2 289.0 –0.78
13a 0.00042 416.2 413.8 –0.57
13b 0.00041 412.6 411.0 –0.40

14a 0.00042 364.1 361.7 –0.66

2d 0.00047 183.4 181.3 –1.16

– 10c 0.00045 246.5 243.7 –1.14

11c 0.00040 581.0 581.0 0.00

13c 0.00042 413.4 410.4 –0.72

13d 0.00041 416.9 415.3 –0.38

13e 0.00041 414.8 412.9 –0.46

14b 0.00042 363.2 360.7 –0.68

Table 4. Values of κ, RRR at 4 K based on the MK model, the value
of RRR based on the minimum κ (0.000403), and the percent
difference between the MK RRR and the RRR based on the minimum
κ for each sample. The shaded rows indicate results based on
parallel-field measurements; all other rows were based on transverse
field measurements

(273 K) /[ (10 K) 0.0004 (273 K)] ,
RRR
R R R

=
−



must be trimmed so that the points do not
appear to be decreasing (data points just above
the overall transition may not be fully in the
normal state). Also, it may be better to have
more data points in a narrower field range up to
5 T rather than spread out over a wider range of
fields with points above 5 T.
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