
1. Introduction

The receiver operating characteristic (ROC) analysis
is an important statistical technique in many areas, such
as biometrics, medical decision making, etc. [1, 2].
Sampling variability can result in uncertainties of
performance measures in ROC analysis. In other
words, if a sample set is changed under the same
conditions, the measures will vary accordingly. Thus,
when evaluating and comparing the performance of
algorithms, the measurement uncertainties must be
taken into account. The key issue is how to calculate
the uncertainties of measures in ROC analysis. Our
ultimate goal is to perform the significance test in
evaluation and comparison using the standard errors
computed. The methods explored in this article can

have wide application in different areas, such as bio-
metrics, speaker recognition evaluation, and so on.
But in this article, the fingerprint-image matching
algorithms were taken as examples for illustration.

Generally speaking, for instance in biometrics,
genuine scores are created by comparing two different
images of the same subject, and impostor scores are
generated by matching two images of two different
subjects. Both scores may be referred to as similarity
scores. Notice that similarity scores must be generated
by matching the same finger, e.g., right-index finger, or
left-index finger, etc., or scores might be created by
two-finger fusion [3, 4]. These two sets of similarity
scores constitute two distributions, respectively, as
schematically depicted in Fig. 1 (A) for continuous
similarity scores.
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In receiver operating characteristic (ROC)
analysis, the sampling variability can
result in uncertainties of performance
measures. Thus, while evaluating and
comparing the performances of algorithms,
the measurement uncertainties must be
taken into account. The key issue is
how to calculate the uncertainties of
performance measures in ROC analysis.
Our ultimate goal is to perform the
significance test in evaluation and
comparison using the standard errors
computed. From the operational
perspective, based on fingerprint-image
matching algorithms on large datasets,
the measures and their uncertainties are
investigated in the three scenarios: 1) the
true accept rate (TAR) of genuine scores at
a specified false accept rate (FAR) of
impostor scores, 2) the TAR and FAR at a
given threshold, and 3) the equal error
rate. The uncertainties of measures are

calculated using the nonparametric
two-sample bootstrap based on our
extensive studies of bootstrap variability
on large datasets. The significance test is
carried out to determine whether the
difference between the performance of
one algorithm and a hypothesized value, or
the difference between the performances
of two algorithms where the correlation
is taken into account is statistically
significant. Examples are provided.
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The cumulative probabilities of genuine and
impostor scores from the highest similarity score to a
specified similarity score (i.e., threshold) are defined as
the true accept rate (TAR) and the false accept rate
(FAR), respectively. Thus, in the FAR-and-TAR coordi-
nate system, as the threshold moves from the highest
similarity score down to the lowest similarity score, an
ROC curve is constructed as drawn in Fig. 1 (B).

Any point P on an ROC curve has two coordinates
FAR and TAR and is associated with a threshold through
two distributions of genuine scores and impostor
scores. The three variables, FAR, TAR, and threshold,
are related to each other, as illustrated in Fig. 1 (A) and
(B). Any one of them can determine the other two. In
practice, it is never required that TAR be specified in the
first place. Thus, the metrics in the three scenarios are
of interest: 1) TAR at a specified FAR, 2) TAR and FAR
at a given threshold, and 3) the equal error rate (EER)
where 1—TAR (i.e., the probability of type I error) and
FAR (i.e., the probability of type II error) are equal
[5, 6]. The methods of computing the measures in these
three scenarios will be provided. The use of these
performance metrics to evaluate matching algorithms is
referred to as operational ROC analysis.

An ROC curve can also be measured by the area
under the ROC curve (AURC) [3, and references there-
in]. If the trapezoidal rule is employed, this area is
equivalent to the Mann-Whitney statistic formed by
genuine and impostor scores. Hence, the variance of the
Mann-Whitney statistic can be utilized as the variance
of AURC. Since the Mann-Whitney statistic is asymp-
totically normally distributed, the Z statistic can be
used to test the significance of the difference between
two ROC curves.

As an example, in Fig. 2 are depicted the discrete
probability distributions of genuine and impostor
scores generated by a matching algorithm. The integer
scores used by this algorithm run from 0 to 21 383.
This algorithm creates a little over 60 000 genuine
scores and a little over 120 000 impostor scores. Hence,
the probability is depicted in logarithmic scale. The
genuine scores have a stand-alone peak at the highest
score occupying 8.95 % of the whole population, and
the probability distribution of the impostor scores is a
normal-like distribution skewed towards higher scores.
Additional such examples can be found in Refs. [3, 4].

This example shows that the distributions of genuine
scores and impostor scores usually do not have well
defined parametric forms and the shapes of these two
distributions for a given algorithm may be considerably
different. Also the distributions may vary substantially
from algorithm to algorithm, which differentiates
algorithms in terms of matching accuracy [3]. An ROC
curve is characterized by the relative relationship
between these two distributions [3, 4]. This suggests
that the nonparametric statistical analysis may be
appropriate for evaluating fingerprint-image matching
algorithms applied to large-scale datasets. Hence, the
empirical distribution is used for each of the observed
similarity scores.

Furthermore, the two distribution functions of
genuine scores and impostor scores are indeed inter-
related by the algorithm that generates them. In other
words, the performance of a matching algorithm is
affected not only by genuine matching but also by
impostor matching. All statistics of interest in ROC
analysis are influenced by the combined impact of
these two sets of samples. While analyzing data, the
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Fig. 1 (A): A schematic diagram of two distributions of continuous genuine scores and impostor scores, showing three related
variables: TAR, FAR, and threshold. (B): A schematic drawing of an ROC curve constructed by moving the threshold from the
highest similarity score down to the lowest one.



probability distribution functions of similarity scores
are all discrete after converting scores to integers if
they are not so already, and thus the ROC curve is not
a smooth curve [3]. It is assumed that an ROC curve
discussed in this article is formed using the trapezoidal
rule.

The uncertainties of measures in all three scenarios
in terms of standard errors (SE) and 95 % confidence
intervals (CI) are computed using the nonparametric
two-sample bootstrap [7-10] based on our extensive
investigation of bootstrap variability on large finger-
print datasets. The two sets of samples are referred to as
a set of genuine scores and a set of impostor scores.

The one-sample bootstrap method assumes that an
independent and identically distributed (i.i.d.) random
sample of size n is drawn from a population with its
own probability distribution. The i.i.d. assumption is
also applied to the two-sample bootstrap method. Our
large government databases used for developing
similarity scores were randomly collected from real
practice rather than obtained from multiple biometric
acquisitions of a number of subjects, and thus had no
dependencies. The SEs of AURC on our databases com-
puted using the nonparametric two-sample bootstrap
with the i.i.d. assumption matched very well the analyt-
ical results using the Mann-Whitney statistic [11].
Moreover, an example was made, in which the similar-
ity scores were created using the random generator of
normal distribution “rnorm” in R [12]. Certainly, there
is no dependency among these scores at all. The result
shown in the example behaved in exactly the same way
as the results derived from our databases. As a result, in
our work, the random sample is treated as i.i.d..

With the i.i.d. assumption, the units of a nonpara-
metric two-sample bootstrap are scores in the sample.
As pointed out in Ref. [5], if the database had depend-
encies due to multiple biometric acquisitions, then the
i.i.d. assumption could not be made. Then, the sample
may need to be grouped into subsets according to
dependencies, and the objects of nonparametric two-
sample bootstrap would be subsets of the sample in
order to preserve the dependencies [10, 13, 14].
However, everything else in the bootstrap method re-
mains intact. Of course, how the sample is grouped into
subsets will have impact on the bootstrap results.

In this article, the total number of genuine scores is a
little over 60 000 and the total number of impostor
scores is a little over 120 000. As demonstrated in our
previous studies of sample size in fingerprint applica-
tions, if the numbers of similarity scores get larger than
these, the measurement accuracy will improve little
[15]. The research was carried out by applying the
Chebyshev’s inequality to the two metrics: the AURC
and the TAR at a specified FAR. With this number of
impostor scores, if the FAR is set to be 0.001 in
Scenario 1, then the number of false-accept instances
would be about 120, which is reasonably large in oper-
ational practice [4, 15].

Regarding the significance test in ROC analysis, the
first category is the one-algorithm significance test
related to evaluation, which is to determine whether
the difference between the performance of a single
algorithm and a hypothesized value is real or by
chance. The second category is the two-algorithm
significance test related to comparison, which is to
investigate whether the difference between the per-
formances of two algorithms is statistically significant.

Volume 116, Number 1, January-February 2011
Journal of Research of the National Institute of Standards and Technology

519

Fig. 2. The discrete probability distributions of the genuine scores (right) and the impostor scores (left) generated by a matching
algorithm. The integer scores used by this algorithm run from 0 to 21 383. A stand-alone peak at the highest score occupies 8.95 % of
the whole population of genuine scores.



The second category can be extended, for example, if
the performances of two different algorithms on the
same dataset are replaced by the performances of a
single algorithm on two different datasets.

While performing the comparison between two
matching algorithms, the metric TAR at a given FAR
and the metric EER are typically employed. It is impos-
sible to reach conclusion using TAR (the larger the
better) and FAR (the smaller the better) at a specified
threshold simultaneously, if both TAR and FAR of an
algorithm were larger (or smaller) than those of another
algorithm.

Such comparison issues can be dealt with intuitively
to some extent using 95 % CIs. But it is hard to reach
any conclusion while the 95 % CIs overlap for two-
algorithm significance test. Nonetheless, such an
approach cannot provide any quantitative information,
such as how much the p-value is, i.e., what the statisti-
cal significance of the difference is. Thus, the issue of
determining whether the difference is real or by chance
must be dealt with using the statistical hypothesis
testing.

It is hard to prove the normality of the distribution of
the statistics of interest in our applications using the
central limit theorem. For instance, for the metric TAR
at a given FAR, the genuine scores at the threshold
determined by the given FAR may have ties, and those
genuine scores at the threshold must be divided propor-
tionally according to the trapezoidal rule in order to
compute the TAR [5, 6].

However, the relationship between the two types of
95 % CIs for the statistics TAR at a given FAR and EER
was examined in all cases encountered in
Ref. [5, 6]. One type of 95 % CI was computed using
the definition of quantile; another type of 95 % CI was
calculated if the distribution of bootstrap replications of
the statistic was assumed to be normal. It was found
that these two types of 95 % CIs were matched up to
the third to fourth decimal place. The higher the accu-
racy of algorithm is, the more decimal places are
matched. Moreover, the Shapiro-Wilk normality test
[12] was conducted on the bootstrap replications of the
statistics of interest, and it was observed that the major-
ity of p-values were greater than 5 %, especially for
relatively high-accuracy algorithms.

All these suggest that the statistics of interest in our
applications are normally distributed regardless of the
distributions of genuine and impostor scores. Thus, the
Z-test will be used to determine the statistical signifi-
cance of the difference in two categories, as it was done
for AURC [3, and references therein]. In the case that
the alternative hypothesis is accepted, the sign of the

difference is employed to determine which is better
than the other. In ROC analysis, we do not know
beforehand the correlated pairs of metrics, such as TAR
for a given FAR, or EER, on which the hypothesis test-
ing is conducted. Thus, the paired t-test cannot serve
our purpose.

Bootstrap methods have been applied widely for
estimating measurement uncertainties, and so is the use
of ROC analysis. Numerous references can be found
[14, 16-23, and references therein]. However, employ-
ing the methods of nonparametric two-sample boot-
strap in ROC analysis can be found in medical applica-
tions and the Z-test was conducted on AURC [17-23].

In medical applications, sizes of data are small. In
our applications, such as biometrics and speaker recog-
nition, etc., the sizes of datasets are much larger. For
instance, in the fingerprint applications, tens and
hundreds of thousands of similarity scores are used.
Moreover, in comparison with other applications of
bootstrap methods, our statistics of interest are proba-
bilities, such as TAR, FAR, EER, etc., rather than a
simple arithmetic mean [5, 6, 10] and our data samples
of similarity scores have no parametric model to fit as
stated above [3, 10]. Hence, the bootstrap variability
was re-studied to determine the appropriate number of
bootstrap replications in our applications, in order to
reduce the bootstrap variance and ensure the accuracy
of the computation [5].

Further, in medical applications, the metric that is
used most is AURC due to small size of data. From the
operational perspective, the measures and accuracies of
the statistics of interest, such as TAR, FAR, EER, etc., in
all three scenarios were computed using the nonpara-
metric two-sample bootstrap [6]. The Z-test was
applied on TAR and EER. An algorithm for computing
the correlation coefficient involved in the Z-test in our
applications is provided. The way of computing corre-
lation coefficient in this paper is completely different
from the way in Ref. [17], which is based on a table
provided by other researchers. Our methods can also be
applied to AURC as well as a cost function defined, for
instance, as a weighted sum of the probabilities of
type I error and type II error in the speaker recognition
evaluation [24].

The formulations of discrete probability distributions
of genuine and impostor scores, as well as ROC curve
are presented in Sec. 2. The methods for calculating the
measures of statistics of interest in three scenarios are
shown in Sec. 3. The nonparametric two-sample boot-
strap algorithms of computing their uncertainties are
provided in Sec. 4. The empirical studies of bootstrap
variability on large fingerprint datasets and the number
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of bootstrap replications are explored in Sec. 5. The
general formulas of hypothesis testing along with an
algorithm for computing the correlation coefficient in
our applications are provided in Sec. 6. The results of
examples involving both high- and low-accuracy
algorithms1 are shown in Sec. 7. Finally, the conclu-
sions and discussion can be found in Sec. 8.

2. The Formulations of Discrete
Probability Distributions of
Similarity Scores and ROC Curve

Without loss of generality, the similarity scores used
by a matching algorithm are expressed inclusively
using the integer score set {s} = {smin , smin + 1, …, smax}.
Let G denote NG genuine scores generated by compar-
ing two different images of the same subject and I
denote NI impostor scores created by matching two
images of two different subjects.

Some scores in {s} may very well be used multiple
times in G and/or I, and some may not be used at all.
Hence, let Pi (s), where smin ≤ s ≤ smax and i ∈ {G, I},
denote the empirical probabilities of the genuine
scores and the impostor scores at a score s, respective-
ly. Certainly, both of them are normalized, i.e.,

The cumulative discrete probability distribution
functions of genuine scores and impostor scores are
defined in this article to be the probabilities cumulated
from the highest score smax down to the integer score s.
Thus, the cumulative probabilities of genuine scores
and impostor scores, i.e., the TAR and FAR, respective-
ly, are expressed as

(1)

where smin ≤ s ≤ smax and i ∈ {G, I}.
It is assumed that an ROC curve discussed in this

article is formed using the trapezoidal rule. Hence, an  
ROC curve is a curve connecting smax – smin + 1 points

{ (CI (s), CG (s)) | s = smax , smax–1, …, smin } using line
segment in the FAR-and-TAR coordinate system, and
extending to the origin of the coordinate system.
Overlap of points (CI (s), CG (s)) can occur, when both
PI (s) and PG (s) are zero. An ROC curve goes horizon-
tally, vertically, or inclined upper-rightwards at a score
s, depending on whether only PI (s) is nonzero, or
only PG (s) is nonzero, or both of them are nonzero,
respectively.

3. Methods of Computing Measures
3.1 Scenario 1: The Estimated TAR at a

Specified FAR

Given a FAR = f where 0 < f < 1, without loss of
generality, the corresponding threshold score t is
defined to satisfy

(2)

where both t and (t + 1) ∈ {s}. Hence, PI (t) = CI (t) –
CI (t + 1) > 0, i.e., the probability of impostor scores at
the threshold score t is always positive in Scenario 1.

It was shown in Ref. [5] that by using ROC curve the
estimated TAR at a specified FAR = f is given by

(3)

This formula takes into account the ties of genuine
scores and impostor scores, which not only can often
occur but also can be large while dealing with large size
of datasets.

3.2 Scenario 2: The Estimated TAR and FAR at a
Given Threshold

The estimated TAR and FAR at a given threshold
score t (t might not be a legitimate score) are expressed
by

(4)

In other words, the probabilities are cumulated from
the highest similarity score down to the legitimate
integer score that is the ceiling of the input threshold
score t [25].
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1 Specific hardware and software products identified in this report
were used in order to adequately support the development of technol-
ogy to conduct the performance evaluations described in this docu-
ment. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology,
nor does it imply that the products and equipment identified are
necessarily the best available for the purpose.
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3.3 Scenario 3: The Estimated EER

Generally speaking for discrete probability distribu-
tion functions there might not exist such a similarity
score (range) at which the probability of type I error
denoted by ER_I is exactly equal to the probability of
type II error denoted by ER_II. At a similarity score
s∈{s}, their estimators are expressed as

(5)

where CG (smax + 1) = 0 is assumed [25].

As the score s runs from the highest score smax down
to the lowest score smin , the estimator ER^_I (s) decreas-
es from 1 to PG (smin ), but the estimator ER^_II (s)
increases from PI (smax ) to 1. Both of them are
step functions. Hence, the absolute difference
| ER^_I (s) – ER^_II (s) | decreases first, and then
increases after reaching its minimum. It seems that for
discrete distributions the minimum can rarely reach
zero. Assume that the minimum is reached when the
score s is in the range [s1 , s2 ]. Then, the estimated EER
is defined to be

(6)

Since | ER^_I (s) – ER^_II (s) | has the same minimum
value in the range [s1 , s2 ], the corresponding threshold
score can simply be defined to be

(7)

4. Methods of Computing Uncertainties
—the Nonparametric Two-Sample
Bootstrap

The nonparametric two-sample bootstrap [7-10] is
employed to compute the estimates of measurement
uncertainties in all three scenarios. The algorithm is as
follows.

Algorithm I (Nonparametric two-sample bootstrap)

1: for i = 1 to B do
2: select NG scores randomly WR from G to form

a set {new NG genuine scores}i
3: select NI scores randomly WR from I to form

a set {new NI impostor scores}i
4: {new NG genuine scores}i & {new NI impostor

scores}i = > statistics
5: end for
6:

7: end

where B is the number of two-sample bootstrap repli-
cations and WR stands for “with replacement.” The
original genuine score set G and the original impostor
score set I are defined in Sec. 2. As shown from Step 1
to 5, Algorithm I runs B times. In the i-th iteration, NG

scores are randomly selected WR from the original
genuine score set G to form a new set of NG genuine
scores, NI scores are randomly selected WR from
the original impostor score set I to form a new set
of NI impostor scores, and then from these two
new sets of similarity scores the i-th bootstrap
replications of the estimated statistics of interest, i.e.,
T^ i

k , k = 1 or 1, 2, are generated.
The number k depends on the scenario. While FAR

is specified, T^ i
l stands for the i-th bootstrap replication

of the estimated TA^R ( f ) derived using Eq. (3). If the
threshold score t is given, T^ i

l is the i-th replication of
the estimated TA^R (t) and T^ i

2 is the i-th replication of
the estimated FA^R (t) derived using Eq. (4). When the
EER is the statistic of interest, T^ i

l is the i-th replication
of the estimated EE^R obtained using Eq. (6).

Finally as indicated in Step 6, from the sets
{T^ i

k | i = 1, …, Β}, k = 1 or 1, 2, the standard error
SE^

B
k estimated by the sample standard deviation of the

B replications, and the estimators of the α /2 100 % and
(1–α /2) 100 % quantiles of the bootstrap distribution,
denoted by Q^

B
k (α /2) and Q^

B
k (1–α /2) , at the signifi-

cance level α can be calculated [10]. The Definition 2
of quantile in Ref. [26] is adopted. That is, the sample
quantile is obtained by inverting the empirical distribu-
tion function with averaging at discontinuities. Thus,
(Q^

B
k (α /2), Q^

B
k (1–α /2)) stands for the estimated boot-

strap (1–α ) 100 % CI^ . If 95 % CI^ is of interest, then α
is set to be 0.05.
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If the statistic of interest is normally distributed, then
the estimated 95 % CÎ can also be computed using the
estimated SÊ. On the other hand, if these two types of
95 % CIs for the statistic of interest match well, then it
indicates that the distribution of the statistic of interest
is normal, as stated in Sec. 1.

5. Empirical Studies of Bootstrap
Variability and the Number of
Bootstrap Replications

5.1 Variability of Two-Sample Bootstrap Estimates

As discussed in the literature [8-10], bootstrap esti-
mates can have substantial variance that comes from
two distinct sources: sampling variability and bootstrap
resampling variability; and the bootstrap variance
results in the variability of the SE as well as of the
lower and upper bounds of CI of the bootstrap distribu-
tion of the statistic of interest. Hence, the sample size
and the number of bootstrap replications can be deter-
mined by studying the variances of SE and of the two
bounds of CI of the bootstrap distribution.

As stated in Sec. 1, the issue of sample sizes, i.e.,
both NG and NI in the context of fingerprint-image
matching algorithms, was studied [15]. Thus, they are
fixed throughout the computation in this article.
However, as discussed in Sec. 1, the number of two-
sample bootstrap replications B needs to be investigat-
ed for our applications.

5.2 Compute Coefficients of Variation

The empirical studies of bootstrap variability were
carried out on different statistics of interest in all
three scenarios as well as on the metric AURC [27]. It
was found they behaved in the same way. Thus,
only the results regarding the statistic of interest TAR
at a given FAR are presented. To take into account the
impact of the mean value, the coefficient of variation
(CV) is used. Here is an algorithm of computing
CVs of SE, lower and upper bounds of CI for TAR at a
given FAR.

Algorithm II (Bootstrap variability)

1: for i = 1 to L do
2: for j = 1 to B do
3: select NG scores randomly WR from G to

form a set {new NG genuine scores} j

4: select NI scores randomly WR from I to
form a set {new NI impostor scores}j

5: {new NG genuine scores}j & {new NI impos-
tor scores}j => statistic TÂRj (f )i, as FAR = f

6: end for
7:

8: end for
9:

10: end

where L is the number of Monte Carlo iterations and B
is the number of bootstrap replications. As indicated
from Step 1 to 8, Algorithm II runs L iterations for a
specified B. The part from Step 2 to 7 is equivalent to
the nonparametric two-sample bootstrap Algorithm I,
which generates the i-th SE^

B ( f ) i, Q^
B (α /2, f ) i and

Q^
B (1–α /2, f ) i in the i-th iteration for a specified B .
As shown in Step 9, for a specified B, after L itera-

tions of executing two-sample bootstrap algorithm, the
following three sets are generated,

(8)
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Thereafter, from these three sets, three CVs of SE,
lower bound and upper bound of CI, can be obtained,
respectively,

(9)

where VA^ RB, L(κ) denotes variance and E^ B, L(κ) denotes
mean of the set of L values. It is clear that the three CVs
are functions of B and L, besides the significance level
α and the FAR f. Therefore, the number of bootstrap
replications B can be determined by the tolerable CVs. 
Then, the question is: How many iterations L are suffi-

cient for a specified B to guarantee the accuracy of the
Monte Carlo computation?

5.3 The Number of Monte Carlo Iterations and 
Results of Coefficients of Variation

Two fingerprint-image matching algorithms, high-
accuracy A1 and low-accuracy A2, were employed.
The significance level α was set to be 5 % and the FAR
was specified at 0.001. The estimates of CVs of SE,
lower bound and upper bound of 95 % CI are denoted
by CV^ SE, CV^ LB, and CV^ UB, respectively. The empir-
ical bootstrap variability studies consume tremendous
CPU time. In order to save execution time and in the
meantime to preserve the computation accuracies, an
approach of numerical analysis rather than statistical
analysis is carried out in the following.
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,
,

,

ˆVAR ( )ˆCV ( ) ,
Ê ( )

B L
B L

B L

κ
κ

κ
=

, , , ( , ) ,orκ = −SE ( ) Q ( /2 ) Q 1 /2B,L B,L B,Lf f fαα αα

Table 1. High-accuracy Algorithm A1’s minimum, maximum, and range of 10 estimates of CV̂SEs, CV̂LBs, and CV̂UBs, as the number of
iterations L ran from 100 up to 1000 at intervals of 100 for each specified B. B ran from 200 up to 1000 at intervals of 200

Num. of replications B 200 400 600 800 1000

Min. 0.047524 0.034664 0.027754 0.023912 0.021570
CV̂SE Max. 0.054346 0.039866 0.031685 0.026866 0.023686

Range 0.006822 0.005202 0.003931 0.002954 0.002116

Min. 0.000062 0.000044 0.000036 0.000030 0.000026
CV̂LB Max. 0.000067 0.000047 0.000041 0.000037 0.000031

Range 0.000005 0.000003 0.000005 0.000007 0.000005

Min. 0.000054 0.000041 0.000032 0.000030 0.000026
CV̂UB Max. 0.000062 0.000044 0.000036 0.000032 0.000030

Range 0.000008 0.000003 0.000004 0.000002 0.000004

Table 2. High-accuracy Algorithm A1’s CV̂SEs, CV̂LBs, and CV̂UBs, while B ran from 1200 up to 2000 at intervals of 200 as the number of
iterations L was fixed at 500

Num. of replications B 1200 1400 1600 1800 2000

CV̂SE 0.021218 0.018613 0.017951 0.016331 0.016040

CV̂LB 0.000027 0.000024 0.000023 0.000023 0.000020

CV̂UB 0.000024 0.000023 0.000022 0.000020 0.000019



For high-accuracy Algorithm A1, the number of repli-
cations B was first set to be from 200 up to 1000 at inter-
vals of 200. For each B, the number of Monte Carlo iter-
ations L ran from 100 up to 1000 at intervals of 100, and
thus 10 estimates of CVSEs, CVLBs, and CVUBs were
generated. The minimum, maximum, and range of these
10 estimates in each case are shown in Table 1.

It is observed from Table 1 that the maximum
CV^ SEs get smaller as B increases and the ranges of
10 estimated CVSEs change from about 0.007 down to
0.002; the maximum CV^ LBs and CV^ UBs are less than
0.00007 and the ranges are not greater than 0.000008.
Therefore, the number of required Monte Carlo itera-
tions L does not need to vary from 100 up to 1000 at
intervals of 100. For estimating CVs, as the number of
replications B varied from 1200 up to 2000 at intervals
of 200, L was set to be 500. The corresponding
estimates of CVs are shown in Table 2.

As shown in Table 3 for low-accuracy Algorithm A2,
which has the same structure as Table 1, the ranges of
10 estimated CVSEs vary from about 0.006 down to
0.003. The maximum CV^ LBs and CV^ UBs are less than
0.0012, and the ranges are less than 0.0002. Thus,

the number of iterations L can also be set at 500.
This is how Table 4 was created for Algorithm
A2 for the number of replications B greater
than 1000.

The CVs for low-accuracy Algorithm A2 are all
greater than those for high-accuracy Algorithm A1,
correspondingly. This is consistent with what was
learned before [3, 4, 15]. Hence, the tolerances
for low-accuracy algorithms should be set larger than
those for high-accuracy algorithms if necessary.

5.4 Tolerances for the Coefficients of Variation

A further investigation was taken on the three CVs of
Algorithms A1 and A2, generated by 500 Monte Carlo
iterations with 2000 bootstrap replications, respective-
ly, which are listed in the last column of Table 2 and
Table 4. For each algorithm, 500 Monte Carlo iterations
generate 500 estimated SEs, lower bounds, and upper
bounds of 95 % CIs, respectively, which form distribu-
tions as indicated in Eq. (8). From each of these six
distributions, the estimated mean, SE, CV, and 95 % CI
were computed and shown in Table 5. Certainly,
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Table 3. Low-accuracy Algorithm A2’s minimum, maximum, and range of 10 estimates of CV̂SEs, CV̂LBs, and CV̂UBs, as the number of
iterations L ran from 100 up to 1000 at intervals of 100 for each specified B. B ran from 200 up to 1000 at intervals of 200

Num. of replications B 200 400 600 800 1000

Min. 0.056895 0.037193 0.031792 0.026763 0.024033

CV̂SE Max. 0.062609 0.043167 0.034696 0.030500 0.026695
Range 0.005714 0.005974 0.002904 0.003737 0.002662

Min. 0.000941 0.000677 0.000519 0.000473 0.000442

CV̂LB Max. 0.001052 0.000734 0.000627 0.000526 0.000478
Range 0.000111 0.000057 0.000108 0.000053 0.000036

Min. 0.001068 0.000685 0.000637 0.000532 0.000488

CV̂UB Max. 0.001171 0.000838 0.000738 0.000611 0.000544
Range 0.000103 0.000153 0.000101 0.000079 0.000056

Table 4. Low-accuracy Algorithm A2’s CV̂SEs, CV̂LBs, and CV̂UBs, while B ran from 1200 up to 2000 at intervals of 200 as the number of
iterations L was fixed at 500

Num. of replications B 1200 1400 1600 1800 2000

CV̂SE 0.023673 0.022299 0.021272 0.018918 0.017705

CV̂LB 0.000457 0.000397 0.000354 0.000331 0.000318

CV̂UB 0.000445 0.000429 0.000420 0.000389 0.000389



the estimated CVs in Table 5 are the same as those in
Table 2 and Table 4, respectively.

It is demonstrated in Table 5 that the distribution of
SÊs is of less dispersion than the distributions of
estimated lower bounds and upper bounds of 95 % CIs,
respectively, regardless of the accuracy of the
algorithm. This is because in the tail of the distribution
fewer samples occur [10]. However, the means of SÊs
are much less than 1, and on the contrary the means of
two estimated bounds of 95 % CIs are very close to 1
for high-accuracy algorithm and quite close to 1 for
low-accuracy algorithm. This is why the CV^ of SE^ is
much larger than the CV^ s of two estimated bounds of

95 % CIs for each algorithm. As a consequence, the
tolerance for CV of SE needs to be set larger than those
for CVs of two bounds of 95 % CIs.

5.5 The Number of Bootstrap Replications

All CV^ SEs, CV^ LBs, and CV^ UBs of Algorithms
A1 and A2 from Table 1 to Table 4 are depicted in
Fig. 3 through Fig. 5. In the cases where the number
of replications B was set to be from 200 up to
1000 at intervals of 200, only the maximum CV^ SEs,
CV^ LBs, and CV^ UBs from Table 1 and Table 3 are
used.
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Table 5. Means, SÊs, CV̂s, and 95 % CÎs of distributions of estimated SEs, lower bounds and upper bounds of 95 % CIs for Algorithms A1 and
A2, respectively, generated by 500 iterations with 2000 bootstrap replications

Algorithm Mean SÊ CV̂ 95 % Confidence interval

Standard error 0.000331 0.0000053 0.016040 (0.000320, 0.000341)
A1 Lower bound 0.992617 0.0000198 0.000020 (0.992575, 0.992654)

Upper bound 0.993913 0.0000192 0.000019 (0.993873, 0.993954)

Standard erro 0.003474 0.0000615 0.017705 (0.003362, 0.003618)
A2 Lower bound 0.789746 0.0002514 0.000318 (0.789244, 0.790220)

Upper bound 0.804121 0.0003124 0.000389 (0.803522, 0.804700)

Fig. 3. CV̂SEs for high-accuracy Algorithm A1 and low-accuracy Algorithm A2 as a function of the number of replications. The
tolerance is set to be 0.02.
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Fig. 5. CV̂LBs and CV̂UBs for low-accuracy Algorithm A2 as a function of the number of replications. The tolerance is set to
be 0.000450.

Fig. 4. CV̂LBs and CV̂UBs for high-accuracy Algorithm A1 as a function of the number of replications. The tolerance is set to
be 0.000025.



The CV^ SEs of Algorithms A1 and A2 are drawn in
Fig. 3. It shows that all CV^ SEs decrease as the number
of replications B increases. If the tolerance is set to
be 0.02, 1400 two-sample bootstrap replications are
sufficient for high-accuracy Algorithm A1, and 1800
replications are enough for low-accuracy Algorithm
A2. To achieve the same level of accuracy, high-
accuracy matching algorithms generally require less
execution than low-accuracy algorithms do [3, 4, 15].

The CV^ LBs and CV^ UBs for Algorithm A1 are
shown in Fig. 4. As discussed in Sec. 5.4, the tolerances
for CVs of two bounds of 95 % CIs should be set
smaller. Hence, if the tolerance is set to be 0.000025,
1400 replications can meet the requirement. Those for
Algorithm A2 are depicted in Fig. 5. As pointed out in
Sec. 5.3, the tolerance for low-accuracy algorithms
should be set larger. Thus, if the tolerance is set to be
0.000450, 1400 replications can satisfy the restriction.

The maximum tolerance set for CVs so far is 0.02,
which is acceptable [10]. This 2 % tolerance holds
good not only for the statistic of interest in Scenario 1,
but also for the statistics of interest in Scenarios 2 and
3 as well as for the metric AURC, as stated in Sec. 5.2
[27]. To reconcile numbers of replications for different
qualities of algorithms, and further to be more conser-
vative, it is suggested that 2000 two-sample bootstrap
replications be required in order to achieve statistical
accuracy of computation.

6. Hypothesis Testing

From comparison perspective, the statistics TAR at a
given FAR and EER are of interest, as pointed out in
Sec. 1. In all cases encountered in the references [5, 6]
and Sec. 7.1, it was found that the 95 % CIs of the
statistics of interest computed using the definition of
quantile did match the 95 % CIs calculated if the
distributions of the 2000 bootstrap replications of the
statistics were assumed to be normal. The matching
was up to the third to fourth decimal place. The higher
the accuracy of algorithm is, the more decimal places
are matched. Moreover, the Shapiro-Wilk normality
test [12] was conducted on the 2000 bootstrap replica-
tions of the statistics of interest. It was observed that the
majority of p-values were greater than 5 %, especially
for high-accuracy algorithms. As a result, it is suggest-
ed that the statistics of interest in our applications

be assumed to be normally distributed regardless of
the discrete empirical distributions of genuine and
impostor scores.

Under the normality assumption, in analogy to
AURC [3, and references therein], the straightforward
way to perform the significance test is the Z-test. The Z
statistic has the standard normal distribution with zero
expectation and a variance of one. The SEs of all statis-
tics of interest involved in the Z statistic in our applica-
tions can be computed using the nonparametric
two-sample bootstrap.

There is no reason to believe a priori that the per-
formance of one algorithm is likely to be better than a
hypothesized value or the performance of the other
algorithm. Further, the two-tailed test is generally more
conservative than the one-tailed test in the sense that
the former is more difficult to reject the null hypothesis
for a given significance level [28]. Thus, the two-tailed
test is used in this article. In the case that the alternative
hypothesis is accepted, the sign of the difference is
employed to determine which is better than the other.

6.1 One-Algorithm Hypothesis Testing

Let T denote a probability measure, such as TAR and
EER, for an algorithm and μo denote the hypothesized
value. Then, the null and alternative hypotheses are

(10)

Based on the normality assumption, the Z statistic is

(11)

where T^ is the estimator of the statistic of interest and
SE(T^ ) stands for its SE.

While evaluating the performance of an algorithm,
besides p-value, other factors also need to be taken into
account, such as the characteristic of the statistic of
interest (the larger the better or the smaller the better)
and the sign of the difference between the estimator and
the accuracy criterion value. For instance, if the statis-
tic of interest is TAR (the larger the better) and its
estimator is less than μo , then less-than-5 % p-value
indicates that this algorithm fails the test.
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6.2 Two-Algorithm Hypothesis Testing

Let T1 and T2 denote the probability measures, such
as TAR and EER, for Algorithms 1 and 2, respectively.
Then, the null and alternative hypotheses are

(12)

Based on the normality assumption, the general Z
statistic for two-algorithm hypothesis testing is
expressed as

(13)

where T^
1 and T^

2 are two estimators of the statistics of
interest, SE (T^

1) and SE (T^
2) stand for their SEs, respec-

tively, and r is the correlation coefficient between
T^

1 and T^
2 . If the two statistics of interest are positively

correlated and the correlation coefficient r is not taken
into account, it can leave the denominator of Eq. (13)
larger and the Z score smaller; thereby reduce the
chance of detecting a difference between the perform-
ances of two algorithms.

6.3 An Algorithm for Computing the Correlation
Coefficient

The two statistics of interest of any two algorithms
may or may not be correlated, depending on how the
sets of similarity scores are generated. In our tests,
different fingerprint-image matching algorithms gener-
ated different sets of similarity scores, respectively,
using the same set of fingerprint images. Any two
scores with the same ordinal number of entry in the two
sets of similarity scores were generated using the same
two images, and thus co-varied. All algorithms have the
same tendency to assign a higher (or lower) similarity
score to the match where two fingerprint images are
more (or less) similar. Such a characteristic may cause
positive correlation between two sets of similarity

scores of two algorithms. Subsequently, it may result in
the positive correlation between the statistics of interest
of two algorithms.

It is assumed that any two Algorithms denoted by A
and B generate the same amount of genuine scores as
well as impostor scores. The genuine score sets and
the impostor score sets of Algorithms A and B are
denoted, respectively, by Gi and Ii where i ∈ { A, B },
in analogy to G and I defined in Sec. 2. The two
j-th genuine (impostor) scores, say, mi

j (ni
j) where

i ∈ { A, B }, co-vary. An algorithm for computing the
correlation coefficient of the statistic of interest T, i.e.,
either TAR or EER, is as follows.

Algorithm III (Correlation coefficient)

1: for i = 1 to M do
2: Synchronized_WR_Random_Sampling (NG,

GA, ΘΘA
i , GB, ΘΘB

i )
3: Synchronized_WR_Random_Sampling (NI,

IA, ΞΞA
i , IB, ΞΞB

i )
4: the new genuine score set ΘΘA

i and the new
impostor score set ΞΞA

i = > statistic T^ A
i

5: the new genuine score set ΘΘB
i and the new

impostor score set ΞΞB
i = > statistic T^ B

i

6: end for
7: { T^ A

i | i = 1, …, M} and { T^ B
i | i = 1, …, M} => the 

correlation coefficient rAB
T

8: end

1.1: function Synchronized_WR_Random_Sampling
(N, SA, ΓΓA, SB, ΓΓB )

1.2: for j = 1 to N do
1.3: select randomly WR an index k ∈ { 1, …, N }
1.4: γ A

j = sA
k

1.5: γ B
j = sB

k

1.6: end for
1.7: end function

where sA
k , γ A

j , sB
k , and γ B

j are members of the score
sets SA, ΓΓA, SB, and ΓΓB respectively. Based on our
bootstrap variability studies, the number of iterations M
is set to be 2000.
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From Step 1 to 6, this algorithm runs M iterations. In
the i-th iteration, the synchronized WR random sam-
pling is carried out on GA and GB (IA and IB) to gener-
ate two new genuine (impostor) score sets ΘΘA

i and ΘΘB
i

( ΞΞA
i and ΞΞB

i ), respectively. From Step 1.1 to 1.7,
during the sampling iterations, if a similarity score of
Algorithm A is randomly selected, then the co-varying
similarity score (i.e., with the same ordinal number of
entry) of Algorithm B is also selected. All correlated
similarity scores between two algorithms are randomly
selected simultaneously. Hence, the correlation in the
similarity scores between two algorithms is preserved if
there is any. After sampling, in Step 4 (5), the i-th
estimated statistic T^ A

i (T^ B
i ) of Algorithm A (B) is

computed from the new score sets ΘΘA
i and ΞΞA

i

(ΘΘB
i and ΞΞB

i ). Finally after M iterations in Step 7, the
correlation coefficient rAB

T of the statistic of interest T
of Algorithms A and B can be calculated from the two
sets of estimated statistics of interest.

This algorithm involves a synchronized random
sampling. In practice, if the p-value is not considerably
different from the critical values, such as 5 %, 1 %, etc.,
then in order to reduce the computational fluctuation
this algorithm needs to run multiple times. Even though
the fluctuation is quite small based on our observations
in our test, to be more conservative, in this article, the
average out of 10 runs was taken to be the resultant
correlation coefficient for significance test.

As stated in Sec. 6.2, Eq. (13) is the general formula
for performing two-algorithm hypothesis testing. If the
method of generating similarity scores as described in
this section is encountered, then two co-varied scores
with the same ordinal number of entry in the two sets
of similarity scores of two algorithms can be treated as
a score pair as indicated in the synchronized random
sampling in Algorithm III, and the bootstrap objects
can be such correlated pairs of similarity scores. Thus,
to perform hypothesis testing, Eq. (11) can be
employed. However, after expansion the expression of
SE in the denominator in Eq. (11) is the same as the
denominator in Eq. (13). To explicitly illustrate the

correlation of two statistics of interest in our applica-
tions, the correlation coefficients will be calculated.
Thus, Eq. (13) will be employed for two-algorithm
hypothesis testing.

7. Results

Algorithms A1 and A2 used for empirical studies of
bootstrap variability in Sec. 5 were also taken to be
examples for measures and uncertainties. Five
algorithms, B1 through B5, were used as examples for
evaluations and comparisons. Algorithms A1 and B1
are the same one. B1 and B2 are of high accuracy; B3
through B5 are of relatively low accuracy; and A2 is
of low accuracy. More examples can be found in
Ref. [5, 6, 29]. Different algorithms employed different
types of scoring systems, such as integers, real numbers
in different ranges. Results were kept up to six decimal
places for illustration.

7.1 Measures and Uncertainties

7.1.1 Measures and Uncertainties of TAR at a
Specified FAR

The estimated TÂR (f) at a specified FAR can be
computed using Eq. (3). The FAR was set to be 0.001
[4, 15]. In Table 6 are shown the estimates of TARs,
SEs, and 95 % CIs for high-accuracy A1 and low-accu-
racy A2. As indicated in Sec. 4, the 95 % CIs were
calculated using the Definition 2 of quantile in
Ref. [26]. The 95 % CIs can also be computed if the
distribution of 2000 bootstrap replications of the statis-
tic TÂR (f) for each algorithm is assumed to be normal.
These two types of 95 % CIs do match up to the third
to fourth decimal place depending on the accuracy of
the algorithm. For example, for high-accuracy
Algorithm A1, the 95 % CI of the estimated TÂR (f) is
(0.992622, 0.993922) as shown in Table 6, and the
95 % CI assuming normal distribution is (0.992618,
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Table 6. The estimates of TARs, SEs, and 95 % CIs for high-accuracy Algorithm A1 and low-accuracy Algorithm A2, respectively, while FAR
was specified at 0.001

Algorithm TÂR (f) SÊ 95 % Confidence interval

A1 0.993255 0.000325 (0.992622, 0.993922)
A2 0.796753 0.003503 (0.789545, 0.803961)



0.993892) using the estimated SÊ 0.000325. It is also
found that the higher the accuracy of the algorithm is,
the smaller the SE is. These observations are consistent
with those in Ref. [3, 15].

As investigated in Sec. 5.4, for Algorithms A1 and
A2, the nonparametric two-sample bootstrap was
executed for 500 times while the number of bootstrap
replications B was fixed at 2000. The resultant 95 %
CIs of 500 SEs, lower bounds and upper bounds of
95 % CIs for A1 and A2, respectively, were shown in
the last column of Table 5. Note that the results shown
in Table 6 were generated only by a random run that is
not one of the above 500 runs. However, it is observed
that the SEs, lower bounds and upper bounds of 95 %
CIs for A1 and A2 shown in Table 6 all fall in the
corresponding 95 % CIs shown in Table 5.

This observation demonstrates that although com-
puting measurement uncertainties using two-sample
bootstrap is a stochastic process, the SE, lower bound
and upper bound of 95 % CI of the statistic of interest
may fall into the CIs with 95 % probability, which are
generated by many executions of two-sample bootstrap
with 2000 bootstrap replications. Moreover, these CIs
are very narrow from the practical point of view.

7.1.2 Measures and Uncertainties of TAR and FAR
at a Given Threshold

In Table 7 are shown the estimates of TARs and FARs
along with their estimated SEs and 95 % CIs for
Algorithms A1 and A2 while the threshold score t is
given. The 95 % CIs shown in Table 7, which were
computed using the definition of quantile, do match the

95 % CIs up to the third to fourth decimal place
depending on the accuracy of the algorithm for both
TARs and FARs, which were calculated if the distribu-
tions of 2000 bootstrap replications of the statistics
TÂR (t) and FÂR (t) are assumed to be normal, respec-
tively. For instance, for high-accuracy Algorithm A1,
the 95 % CI of the estimated FÂR (t) is (0.000820,
0.001184) as shown in Table 7 and the 95 % CI assum-
ing normal distribution is (0.000830, 0.001186) using
the estimated SÊ 0.000091.

The input threshold can vary. To show the opera-
tional significance, the estimated threshold score
derived from Eq. (2) at a given FAR 0.001 in Sec. 7.1.1
was chosen to be the input threshold score t for each
algorithm in Table 7 [6]. It is observed that for each
algorithm the estimated statistic of interest TÂR (t) and
the specified FAR 0.001 in Table 6 all fall into the
corresponding 95 % CIs in Table 7, and reversely so
does the estimated TÂR (t) in Table 7. Moreover, all
corresponding 95 % CIs in these two tables are equiva-
lent especially for high-accuracy algorithm. All these
observations indicate that the computation using the
nonparametric two-sample bootstrap with 2000 boot-
strap replications is quite self-consistent.

The two 95 % CIs of the estimated FÂR (t) and
TÂR (t), formed by 2000 FAR-and-TAR points paired by
bootstrap replications, constitute a rectangle around the
estimators. If the threshold changes, the rectangle can
move along an ROC curve. The bootstrap replications
of FAR are not correlated with the bootstrap replica-
tions of TAR at any threshold. By no means, this
rectangle is a 95 % confidence rectangle. The rectangle
only shows the bounds of the two 95 % CIs [6].
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Table 7. The estimates of TARs and FARs along with their estimated SEs and 95 % CIs for high-accuracy Algorithm A1 and low-accuracy
Algorithm A2, respectively, while the threshold score t is given, which was obtained while FAR was set to be 0.001 in Sec. 7.1.1.

Algorithm
Threshold TÂR (t)

95 % Confidence intervalscore t FÂR (t) SÊ

A1 455
0.993255 0.000337 (0.992605, 0.993905)
0.001008 0.000091 (0.000820, 0.001184)

A2 0.634030 0.796753 0.001590 (0.793641, 0.799792)
0.001000 0.000092 (0.000836, 0.001189)



7.1.3 Measures and Uncertainties of EER

Besides statistical (random) error, the accuracy of
EER also includes systematic error stemming from the
discreteness of the distributions of similarity scores,
which is expressed in terms of the relative error, i.e.,
half of the minimum of the absolute difference
| ER^_I (s) - ER^ _II (s) | divided by the estimated EE^ R
derived from Eq. (6). The systematic errors of two
algorithms are shown in Table 8. They can reach as high
as 0.51 %, which occurs even for high-accuracy
Algorithm A1. It is also noticed that the minimum
of the absolute difference can occur within a score
range rather than at a single score due to the reason
stated in Sec. 3.3.

In Table 9 are presented the estimates of EERs along
with their estimated SEs and 95 % CIs for high-accura-
cy Algorithm A1 and low-accuracy Algorithm A2. As 
expected, the higher the accuracy of algorithm is, the
smaller the estimated EE^ R is. This is because the two
distributions of genuine scores and impostor scores are
more apart and thus the ROC curve is higher [3, 4].
Further, the 95 % CIs shown in Table 9 computed using
the definition of quantile do match the 95 % CIs up

to the third to fourth decimal place depending on
algorithm’s accuracy, which were calculated if the
distributions of 2000 bootstrap replications of the
statistic EER are assumed to be normal. For example,
for high-accuracy Algorithm A1, the 95 % CI of the
estimated EE^ R is (0.005511, 0.006703) as shown in
Table 9 and the 95 % CI assuming normal distribution is
(0.005474, 0.006654) using the estimated SÊ 0.000301.

7.2 Evaluations and Comparisons

High-accuracy Algorithms B1 and B2 were taken as
examples for one-algorithm hypothesis testing related to
evaluations, while TAR at a specified FAR 0.001 was
employed. Relatively low-accuracy Algorithms B3
through B5 were used for two-algorithm significance
test related to comparisons, while EER was used.
The method applied to TAR can be applied to EER,
and vice versa. The only difference is that for TAR
it is the larger the better, but for EER it is the smaller the
better. More examples can be found in Ref. [29]. The
estimates of TARs, EERs, SEs, and 95 % CIs of
B1 through B5 are presented in Table 10 and Table 11,
respectively.
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Table 8. The systematic errors of EER for Algorithms A1 and A2. The minimum of the absolute difference can occur either at a score or within
a score range

A1 346 0.000061 0.006064 0.51 %

A2 [0.510836, 0.510837] 0.000003 0.068650 0.00 %

Min
Algorithm Score (range) ( | ER^ _I (s) - ER^ _II (s) | ) EE^ R Systematic Error

A1 0.006064 0.000301 (0.005511, 0.006703)

A2 0.068650 0.000743 (0.067174, 0.070162)

Table 9. The estimates of EER, SEs, and 95 % CIs for high-accuracy Algorithm A1 and low-accuracy Algorithm A2

Algorithm EE^ R SE^ 95 % Confidence interval

Table 10. The estimates of TARs, SEs, and 95 % CIs for high-accuracy Algorithms B1 and B2, while FAR was specified at 0.001

Algorithm TA^ R (f) SE^ 95 % Confidence interval

B1 0.993255 0.000325 (0.992622, 0.993922)

B2 0.989263 0.000470 (0.988307, 0.990159)



7.2.1 One-Algorithm Hypothesis Testing

The estimates of TARs and 95 % CIs for Algorithms
B1 and B2 are drawn in Fig. 6. For illustration, assume
that the hypothesized value μo was set to be 0.988500.
By applying Eq. (11), the two-tailed p-values were
calculated. They are shown in Table 12. For B1, the
p-value was equal to 0.0000, and thus the alternative
hypothesis Ha : T ≠ μo is very strongly accepted. With
the positive sign of the difference between TÂR ( f ) and 

μo , it is concluded that the TÂR ( f ) of B1 is very
significantly greater than the accuracy criterion value
0.988500. In other words, Algorithm B1 passes the test.

For B2, the two-tailed p-value was 0.1049, which
was greater than 5 %. It suggests that the null hypo-
thesis Ho : T = μo be accepted. That is, the difference
between TÂR ( f ) and μo is not real but by chance at
the significance level 10 %. Hence, Algorithm B2 fails
the test, if the performance is required to be better than
the accuracy criterion value μo set as 0.988500.
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Table 11. The estimates of EERs, SEs, and 95 % CIs for relatively low-accuracy Algorithms B3 through B5

Algorithm EE^ R SE^ 95 % Confidence interval

B3 0.012409 0.000378 (0.011638, 0.013148)

B4 0.012903 0.000360 (0.012205, 0.013609)

B5 0.013634 0.000338 (0.012940, 0.014287)

Fig. 6. The estimates of TARs and 95 % CIs for Algorithms B1 and B2 at a specified FAR 0.001, along with the hypothesized value μo
set at 0.988500.

Table 12. The two-tailed p-values for Algorithms B1 and B2

Algorithm p-value

B1 0.0000
B2 0.1049



Indeed, it is trivial to prove that if the 95 % CI
contains the hypothesized value μo , the null hypothesis
Ho can be accepted with at least 5 % significance level;
otherwise, Ho is rejected with at most 5 % significance
level. Both are with respect to the two-tailed hypo-
thesis testing. However, the approach of merely using
the relative position between 95 % CI and the horizon-
tal line at the hypothesized value does not provide
quantitative information regarding the statistical
significance of the difference.

7.2.2 Two-Algorithm Hypothesis Testing

The estimates of EERs and 95 % CIs for relatively
low-accuracy Algorithms B3 through B5 are drawn in
Fig. 7. The 95 % CIs of these three algorithms mutual-
ly overlap. The hypothesis testing for two algorithms
cannot be judged merely using the confidence interval
approach.

The average correlation coefficients of EER among
B3 through B5 out of ten runs using the algorithm in
Sec. 6.3 are presented in Table 13. The average cor-
relation coefficient of EER between high-accuracy
Algorithms B1 and B2 was 0.567842, which is larger
than those for relatively low-accuracy Algorithms. In
this regard, many more examples can be found in
Ref. [29]. It is expected that the tendency of assigning
higher (lower) similarity scores to the matching results
of more (less) similar images for high-accuracy

algorithms is stronger than the tendency for relatively
low-accuracy algorithms. These results provide
evidence that the synchronized algorithm for comput-
ing the correlation coefficient is quite reasonable.

After applying Eq. (13), the two-tailed p-values of
EERs among B3 through B5 were calculated. They are
presented in Table 14. For Algorithms B3 and B4, it
was 0.2370, which was much greater than 5 %. It sug-
gests that the null hypothesis Ho : T1 = T2 be accepted.
That is to say, the difference between the performances
of B3 and B4 is not statistically significant. To some
extent, this conclusion is supported by the fact that the
95 % CIs of these two algorithms heavily overlap each
other, as illustrated in Fig. 7.

For Algorithms B4 and B5, the two-tailed p-value
was 0.0457. Without considering the correlation coeffi-
cient, it increased to 0.1392. As pointed out in Sec. 6.2,
neglecting the positive correlation coefficient can
reduce the chance of detecting a difference between the
performances of two algorithms. Since 0.0457 is
slightly less than 5 %, the alternative hypothesis
Ha : T1 ≠ T2 is accepted with borderline evidence. Due
to the sign of the difference between the two estimated
EERs, the performance of B4 is reasonably better than
the performance of B5, even though the 95 % CI of B4
quite overlaps the 95 % CI of B5 as shown in Fig. 7.

For Algorithms B3 and B5, the two-tailed p-value
was 0.0019, which was much less than 5 %. It suggests
that the alternative hypothesis Ha : T1 ≠ T2 be strongly
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Fig. 7. The estimates of EERs and 95 % CIs for Algorithms B3 through B5.



accepted. Because of the sign of the difference between
the two estimated EERs, the performance of B3 is con-
siderably better than the performance of B5, although
their 95 % CIs slightly overlap.

Further, the p-value 0.0019 between B3 and B5 is
much smaller than the p-value 0.0457 between B4 and
B5. It indicates that the difference between the per-
formances of B3 and B5 is more statistically significant
than the difference between the performances of B4
and B5. To some extent, this conclusion can be
supported by the relationship among their 95 % CIs as
illustrated in Fig. 7.

8. Conclusions and Discussion

The measures in operational ROC analysis, such as
TAR, EER, etc., were computed by taking account of
the ties of similarity scores at the threshold. The
genuine scores at the threshold determined by a given
FAR must be divided proportionally according to the
trapezoidal rule in order to compute the TAR for the
given FAR.

Concerning EER, due to discreteness of distributions
of similarity scores, generally speaking the probability
of type I error can rarely be exactly equal to the proba-
bility of type II error. Hence, the systematic error
can occur besides statistical error. For example, for
Algorithm A1, the estimated systematic error is
1/2 × 0.000061 / 0.006064 = 0.51 % as shown in
Table 8. The estimated total relative error due to both 

systematic error and statistical error is 0.000301 /
0.006064 = 4.96 % from Table 9. Thus, the systematic
error is estimated to be about 10 % of the total relative
error. In all other cases encountered in Ref. [6],
algorithms had less systematic errors, smaller total
relative errors, and smaller ratios of the systematic
errors to the total relative errors. Nonetheless, it must
be recognized that systematic error exists when EER is
employed.

The uncertainties of measures in operational ROC
analysis in terms of SE and 95 % CI were computed
using the nonparametric two-sample bootstrap method.
In our applications, tens and hundreds of thousands of
similarity scores are used; our statistics of interest are
probabilities such as TAR, FAR, EER, etc., rather than a
simple arithmetic mean; and our data samples of
similarity scores are not normally distributed. Due to
these characteristics, the bootstrap variability was re-
studied empirically to determine the appropriate
number of bootstrap replications in our applications, in
order to reduce the bootstrap variance and ensure the
accuracy of the computation. The number of bootstrap
replications in our applications was determined to be
2000.

As pointed out in Sec. 5.1, the variance of two-
sample bootstrap is also caused by sample sizes. If the
sizes of similarity scores get larger than what were used
here, as stated in Sec. 1, there is little improvement in
accuracy. On the other hand, if the sample sizes, for
instance, in other biometric applications, are less than
the ones dealt with here, the same number of bootstrap 
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Table 13. The average correlation coefficients of the statistic of interest EER out of ten runs among relatively low-accuracy Algorithms
B3 through B5

Algorithm B3 B4 B5

B3 1.000000 0.360888 0.398198
B4 1.000000 0.453439
B5 1.000000

Table 14. The two-tailed p-values of two statistics of interest EERs for Algorithms B3 through B5, where the correlation coefficient was taken
into account

Algorithm B3 B4 B5

B3 1.0000 0.2370 0.0019
B4 1.0000 0.0457
B5 1.0000



replications (2000) can be safely applied. Nonetheless,
if the number of bootstrap replications needs to be
revisited, the empirical methods for studying the boot-
strap variability developed in this article should remain
the same.

Regarding operational ROC analysis in our applica-
tions, it is important to determine whether the differ-
ence between the performance of one algorithm and an
accuracy criterion value, or the difference between the
performances of two algorithms where the correlation
is taken into account is statistically significant. In this
regard, such hypothesis testing has not been addressed
in the literature.

While conducting comparisons, in some cases the
95 % CIs can be applied to some extent. Nonetheless,
the issue of determining quantitatively whether the
difference is real or by chance must be dealt with
using the significance test, especially when 95 % CIs
are overlapped. For instance, as demonstrated in
Sec. 7.2.2, all three 95 % CIs were mutually overlapped
to a certain degree, but the hypothesis testing showed
that the statistical significances of the differences in
performances among the three algorithms were quite
different accordingly in terms of p-values. More exam-
ples can be found in Ref. [29].

For such comparison issues, the two statistics of
interest, TAR at a specified FAR and EER, are typically
employed. They can be treated as normally distributed
regardless of the distributions of genuine scores and
impostor scores. This assumption is supported by the
matches in various cases between two types of 95 %
CIs. One is computed using the definition of quantile,
and the other is calculated if the distribution of 2000
bootstrap replications of the statistic of interest is
assumed to be normal. It is also partly supported by the
Shapiro-Wilk normality test.

Under the normality assumption, the Z-test can be
applied. Involved in the Z-test, all the SEs can be com-
puted using the nonparametric two-sample bootstrap
with 2000 bootstrap replications. In this article, an
algorithm is provided to calculate the correlation
coefficient between two statistics of interest of two
matching algorithms, under the assumption that for
these two algorithms any two scores with the same
ordinal number of entry in the two sets of similarity
scores were generated using the same two images, as
discussed in Sec. 6.3. If the orders in the two score sets
changed manually, in other words, if the similarity
scores with the same ordinal number did not co-vary,
then the correlation coefficients computed using the
algorithm in Sec. 6.3 would be close to zero. This also

supports the synchronized algorithm for computing the
correlation coefficient.

In some literature [30], the false non-match
rate (FNMR) was employed, which is defined to be
1 – TAR. It is trivial to prove that as far as SEs, correla-
tion coefficients, Z scores, and p-values are concerned,
there is no difference between TAR and FNMR.
However, the lower (upper) bound of 95 % CI of
FNMR is equal to one minus the upper (lower) bound
of 95 % CI of TAR [5, 6]. For TAR, two bounds of 95 %
CIs are close to 1 as discussed in Sec. 5.4. Thus, for
FNMR, they are close to 0 instead. Such a difference
can have impact on CVs.

In Table 5, if TAR is replaced by FNMR, the CVs of
SE for Algorithms A1 and A2 remain the same; but the
CVs of lower bound and upper bound of 95 % CI were
0.003152 and 0.002687 for A1, and 0.001595 and
0.001196 for A2, respectively. These CVs increased
considerably; however they were all less than the
tolerance 0.02. Hence, the assertion that the number of
two-sample bootstrap replications is 2000 is still valid
if FNMR is employed. Nonetheless, it needs to point
out that FNMR has more variability than TAR regarding
the two bounds of 95 % CI.

While dealing with 1-to-n identification issues,
cumulative match characteristic (CMC) analysis is
employed. A CMC curve is formed by matching each
image in the probe with each image in the gallery. To
compute the uncertainty of the identification rate at a
rank, the bootstrap method can also be applied.
Different schemes of resampling probe and gallery can
be proposed. Further, if the distribution of the identifi-
cation rate at a rank can be assumed to be normal, then
the Z-test can be used to determine the statistical signif-
icance of the difference of identification rates.
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