
1. Introduction

Automated microscopy has facilitated the large
scale acquisition of live cell image data [Sig06, Gor07,
Dav07, and Bah05]. In the case of low magnification
imaging in transmission mode, the migration, morph-
ology, and lineage development of large numbers of
single cells in culture can be monitored. However,
obtaining quantitative data related to single cell behav-
ior requires image analysis methods that can accurately
segment and track cells. When fluorescence protein
gene reporters are used, the activity of specific genes
can be related to phenotypic changes at a single cell
level. The analysis of living, single cells also provides
information on the variability that exists within
homogeneous cell populations [Ras05 and Si206].

Furthermore, multiple fluorescence protein reporters
transfected into single cells can be used to understand
the sequence of transcriptional changes that occurs in
response to perturbations. In order to facilitate the
extraction of quantitative data from live cell image sets,
automated image analysis methods are needed.

The diversity of both cell imaging techniques and
the cell lines used in biological research is enormous
making the task of developing reliable segmentation
and cell tracking algorithms even harder. Many popular
cell tracking techniques are based on complex proba-
bilistic models. In [Bah05] Gaussian probability
density functions are used to characterize the selected
tracking criteria. In [Mar06] cells are tracked by fitting
their tracks to a persistent random walk model based on
mean square displacement. In [Lia08] the final cell
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trajectories and lineages are established based on the
entire tracking history by using the interacting multiple
models (IMM) filter [Gen06]. In [Kha05], a Markov
Chain Monte Carlo based particle filter is used to
initially detect the position of the targets and then a
Rao-Blackwellized particle filter is applied. An impor-
tant class of tracking techniques consists of level set
methods [Bes00, Man02, and Shi05]. They produce
fairly accurate tracking results but are difficult to
implement and computationally expensive. The track-
ing techniques proposed in [Dor02, Ray02, Zim02] are
commonly referred to as active contour or snake tech-
niques. In general they do not consider all possible
tracking candidates in the frame, but focus on the can-
didates corresponding to a predefined model (e.g.,
located around a reference initial position). Finally,
tracking techniques based on mean-shift algorithms pro-
vide a fast solution, but often do not provide accurate
information about object contours [Col03, Com03,
Deb05]. Many available techniques are computationally
expensive and have a large number of parameters to
adjust for every track. We propose a new technique that
can produce accurate tracking with a small set of
adjustable parameters in situations where cell movement
between consecutive frames is limited so that there is
typically some cell pixel overlap between frames.

Our experience shows that when acquiring time-
lapse images at intervals ranging from 5 min to 15 min,
the movement of cultured mammalian cells between
two consecutive frames will be relatively small. This
means that between consecutive frames a typical cell
will occupy nearly the same position. In order to effec-
tively analyze large volumes of data (> 10 000 images)
an automated process requiring very little manual inter-
vention and involving a simple and meaningful set of 
parameters is needed. The overlap-based cell tracking
software developed by NIST was designed with this
goal in mind. It tracks cells across a set of time lapse
images based on the amount of overlap between

cellular regions in consecutive frames. It is designed to
be highly flexible and suitable for use in a wide range of
applications, requires little user interaction during the
tracking process, and has a fast execution time. Though
it requires that the change in a cell’s location from one
frame to the next be relatively small to work reliably,
acquiring images at 5 min to 15 min intervals is feasible
with standard automated live cell imaging systems and
provides image data that is suitable for an overlap-based
algorithm. The core tracking algorithm is shown in
Fig. 1.

In this paper, a general formulation of the motion
tracking problem will be given, followed by a brief
description of the input data and of the tracking criteria
employed. Some instances of application of the track-
ing software will be presented to further illustrate its
capabilities. We will conclude with a brief summary of
our results.

2. Problem Statement

Cellular tracking techniques are used to obtain
motion and life cycle behavior information about cells
by following the cells of interest through multiple, time
sequential images. The cell tracking problem can be
defined as: given a cell A from a current (source)
image, identify the corresponding cell B, if any, in the
subsequent (target) image. If cell A is tracked to B, then
the two cells are the same cell at successive moments in
time. This process involves examining all possible
combinatorial mappings of the cells in a source image
to the cells in the target image (Fig. 2) and finding the
optimal mapping. The process is then repeated using
the target image as the source image and the next image
in the set as the target image until the entire set 
of images has been traversed. The image to image
mappings are then chained together to form a complete
life-cycle track of every individual cell in the image set.
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Fig. 1. Core algorithm



Many different types of imagery can be obtained
with modern cellular microscopy instruments—in our
case we will be working with phase contrast images of
NIH-3T3 fibroblasts, shown in Fig. 3 below.

3. Image Data and Preliminary
Definitions

The input of the tracking algorithm is a series of
segmented images (masks) derived from the raw
microscopy data. The masks identify the individual
pixels in an image that correspond to a cellular region
and are generated from the raw phase contrast micro-
scope images using automated image segmentation.
Many segmentation techniques exist in the literature;
some are general purpose and others are specific to a
cell line and/or image acquisition parameters. The
specifics of the segmentation algorithm used in
this project will not be addressed here and in general
the NIST cell tracking algorithm can be used with
any segmentation algorithm. It is important to note
however that the reliability of the tracking outcome
is highly dependent on the accuracy of the segmenta-
tion.

The notation used to refer to a segmented image or
mask is Ik , with k = 1,2, …, N, Ik is the kth image in the
set and N is the total number of images in the set. The
segmentation process sets the value of all background
pixels in the mask to zero. It sets the value of all pixels
segmented into a cellular region to a positive integer
value called the cell number (Fig. 4). The cell numbers
are assigned to each segmented region starting at 1 and
continuing incrementally until all segmented regions
have been labeled. The regions are numbered in the
order in which the cells are encountered. The
notation used to represent a given pixel at a location in
the image is p(x, y), where:

(1)

The notation c k
i is used to identify cell number i

from the kth image. i = 1,2,…, Mk . Mk represents the
total number of cells that are present in the kth image.
For visual clarity, each number is also represented by a
unique color when plotted. Figure 4 shows the
segmented image generated from the phase contrast
image in Fig. 3.
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Fig. 2. Possible combinatorial tracking between two consecutive
frames.

Fig. 3. Example of a phase contrast microscopy image.
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4. The Overlap-Based Tracking Concept

The NIST cell tracking algorithm computes a cost
for each possible cell-to-cell mapping based on some
simple tracking criteria. The cost value represents a
measure of the probability that cell ck

i from image Ik

should be tracked to cell cj
( k + 1 ) in the subsequent

image. The cost function has been defined in such a
way that the higher the cost value is, the lower the
probability that the two cells should be identified as

being the same cell across frames. A general definition
of the cost function between a pair of cells from two
different images is given as follows:

(2)

Before describing in detail the tracking criteria used
in this paper, consider the two consecutive segmented
phase-contrast images shown in Fig. 5 below. Note, 
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Fig. 4. Segmented image mask for the example image in Fig. 3.

1( , ) (tracking criteria)k k+
i jd c c f=

Fig. 5. Image 1 and Image 2—two consecutive segmented images.



that individual cells do not significantly change their
position between consecutive frames. This is more
easily seen in Fig. 6 where the images are super-
imposed. This suggests that the number of common 

pixels (the overlap) between a pair of cells can be used
as the principal measure of cost. If a pair of cells shares
a large number of overlapping pixels, then these two
cells are most likely the same cell in different images.
If more than two cells overlap we will need to employ
additional criteria to further refine the cost. It is impor-
tant to note that for this technique to work reliably the
images must be acquired at a sufficiently high rate to
minimize cell movement between successive frames. If
the images are too far apart in time the cells may
migrate great distances across the image window and
will exhibit little or no overlap. At low acquisition rates
cell motion may appear so chaotic that even a human
observer will find it difficult to identify them correctly.  
The acquisition rate used for the NIST 3T3 cells
tracked in this paper is typical for this type of cell line.

The cost function uses the following criteria for
computing the cost of a mapping:

1. The amount of overlap between source and
target cells.

2. The Euclidean distance (offset) between the
centroids of the source and target cells.

3. The difference in size between the source and
target cells.

The metrics used for quantifying these criteria are
normalized between 0 and 1. A value of zero denotes a

perfect match between a pair of cells: all pixels overlap,
the centroids are in the same location and cells have the
same size. The cost function is defined as a sum of the
individual metrics, each representing a tracking criteri-
on. Hence, lower values of the cost function indicate a
higher probability that the source and target cells are
the same cell. This mathematical representation carries
desirable properties such as differentiability and the
ease of including additional tracking criteria by adding
new terms. Since the terms of the summation were
defined in such a way that they are independent, they
can be modified as needed without affecting the
remaining terms.

A more complete mathematical statement of the cost
function is:

where:
wo = the weight of the overlap term,
O = an overlap metric,
wc = the weight of the centroid offset term,
δc = a centroid offset metric,
ws = the weight of the cell size term, and
δs = a cell size metric.

The weights are provided for flexibility and allow
the basic algorithm to be tailored for use with different
cell lines and image acquisition conditions. For exam-
ple if the image acquisition rate were high and cells
overlap greatly between two consecutive frames then
wo should be set to a high value. If the size of the cells
changes very little between two consecutive frames
then a larger weight can be given for the size term. The
weights used in the examples presented in this paper
are:

4.1 Pathological Filtering

Some source/target pairs are so obviously undesir-
able that they are filtered prior to applying the cost
function. Specifically, if the source and target cells
have no pixels in common and the distance (in pixels)
between their centroids is greater than a user defined
threshold value, then the mapping is assigned an arbi-
trarily high cost (MAX_COST) to ensure that it will
never be chosen. For example, a cell in the upper
right corner should not be tracked to a cell in the lower
left corner (cells don’t jump that much between
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Fig. 6. Image 1 (red outline) superimposed on Image 2 (blue
outline).
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consecutive frames). By definition mappings with a
cost of MAX_COST are invalid. This filtering is
derived from common sense and experience with cell
biology and cell morphology.

4.2 The Overlap Metric

The overlap metric for a source/target pair is a meas-
ure of the number of pixels the two cells have in com-
mon between two consecutive frames. It is computed
using the formula:

where:

sk
i = the size in pixels of the source cell,

sj
(k+1) = the size in pixels of the target cell, and

no(ck
i , cj

(k+1)) = the number of pixels the two cells
have in common.

4.3 The Centroid Metric

The centroid metric is a measure of the Euclidean
distance between the centroids of the source and target
cells between two consecutive frames. Let the width
and height (in pixels) of a frame be represented by the
symbols Iwidth and Iheight and denote the centroid co-
ordinates (in pixels) of cell i in frame k by the symbols

(Xk
i , Yk

i ). The centroid metric for a source/target pair is
computed as:

4.4 The Size Metric

The size metric is a measure of the relative differ-
ence in the sizes of the source and target cells in two
consecutive frames. It is computed as:

4.5 Tracking Solution

Once the individual cell mappings between con-
secutive frames have been computed, the frame-to-
frame mappings are combined to produce a complete
life cycle track of all the cells in the set of images. The
sequentially assigned cell numbers given by the
segmentation process for the cells in each frame are
replaced with uniquely numbered track numbers that
identify the movement of each cell in time across the
entire set of images. Therefore a unique track number tn

will be associated to each uniquely identified cell,
n = 1,2, …, T where T represents the total number of
unique cells found in the image set. The pixels in the
images are relabeled to reflect the new track numbers
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Fig. 7. Two consecutive tracked images. The cells that were identified as being the same were given the same number and color in both images.



such that when a pair of cells has been assigned with a
tracking number the pixels from all images that belong
to a given cell will all have the same value.

In Fig. 5, in each segmented image, the cells were
numbered randomly from 1 to max. When these cells
are given a global number, they will carry the same
number thru time. Figure 7 shows that this is also

reflected by the colors of the cells, the same cell will
have the same color throughout the images.

5. Results and Outputs

After applying the cell tracker on the segmented
images, the results are documented and saved in the cell
tracker output folder as matrices. This enables fast
access to the output when needed. Figures 8, 9 and 10
show the centroid trajectories of the cells in 2D and 3D.
This will help to determine the traveling rate of cells.
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Fig. 8. 2D cell centroid trajectories. Each arrow in the image represents the direction and the distance traveled by the cell between two
consecutive frames. There is 15 min interval between each frame.
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Fig. 9. 3D cell centroid trajectories for some cells.

Fig. 10. 3D cell centroid trajectories for all cells.



6. Conclusion

An overlap cell tracking software developed by
NIST was described. This cell tracker has the ability to
track cells across a set of time lapse images acquired at
high rates based primarily on the amount of overlap
between cellular regions in consecutive frames. It was
designed to be highly flexible, requires little user para-
meterization, and has a fast execution time.

Future enhancements are planned for the cell tracker.
The ability to detect mitosis (when a source cell divides
into two new cells) will be added along with capability
of detecting colliding cells and giving a feedback to
segmentation when such behavior occurs. A cell shape
metric will be used to add a shape weight to the cost
function. This metric was not needed for tracking the
3T3 fibroblasts as they typically change shape rapidly
between consecutive frames. However, a shape-based
metric is in general needed to improve the tracking of
cell lines or other objects that are more morphological-
ly stable and it should increase the cell tracker’s
suitability for use in a wider range of applications.

The average computation time for tracking 500 cells
in our set of 252 images (520 × 696 pixels) on a single
core Pentium 3.4 GHz 3 GB RAM is 47 s. This trans-
lates to an average speed of 5.36 frames/s.
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