
1. Introduction

To test the proficiency of individual laboratories in
conducting specific tasks, interlaboratory comparisons
(ILC) are often used. In ILC between measurement
laboratories, the task is generally the measurement of a
common artifact or fractions of the same sample of
material. To develop a certified reference material, a
well characterized material is measured by two or more
methods in one or more laboratories. In both cases
the data consist of multiple results of measurement

(measured values with associated uncertainties) of a
common measurand. To assess the differences between
two or more measured values for the same measurand,
metrologists have for many years used a test proposed
by physicist Raymond T. Birge in 1932 [1]. Birge intro-
duced the term consistency for lack of significant dif-
ferences between measured values. The Birge test is
based on treating the measured values as realizations of
random draws from sampling probability density func-
tions (pdfs). A sampling pdf models possible outcomes
for measured values in contemplated replications of the
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In some metrology applications multiple
results of measurement for a common
measurand are obtained and it is necessary
to determine whether the results agree
with each other. A result of measurement
based on the Guide to the Expression of
Uncertainty in Measurement (GUM)
consists of a measured value together with
its associated standard uncertainty. In
the GUM, the measured value is regarded
as the expected value and the standard
uncertainty is regarded as the standard
deviation, both known values, of a
state-of-knowledge probability
distribution. A state-of-knowledge
distribution represented by a result need
not be completely known. Then how can
one assess the differences between the
results based on the GUM? Metrologists
have for many years used the Birge chi-
square test as 'a rule of thumb’ to assess
the differences between two or more
measured values for the same
measurand by pretending that the standard
uncertainties were the standard deviations
of the presumed sampling probability
distributions from random variation of the
measured values. We point out that this is
misuse of the standard uncertainties; the
Birge test and the concept of statistical 

consistency motivated by it do not apply
to the results of measurement based on
the GUM. In 2008, the International
Vocabulary of Metrology, third edition
(VIM3) introduced the concept of
metrological compatibility. We propose
that the concept of metrological compati-
bility be used to assess the differences
between results based on the GUM
for the same measurand. A test of the
metrological compatibility of two results
of measurement does not conflict with a
pairwise Birge test of the statistical
consistency of the corresponding measured
values.
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measurement procedure in the same conditions.
Therefore, the consistency of measured values assessed
by the Birge test is statistical consistency. The Birge
test applies to uncorrelated measured values only. In
Sec. 2, we review a concept of statistical consistency
motivated by the Birge test. The idea of statistical
consistency belongs to the period when the error
analysis view of measurements was prevalent. The
error analysis view of measurements was a hindrance to
communicating the results of measurement and in
advancing the science and technology of measurement.
Therefore leading authorities in the field of metrology
developed the Guide to the Expression of Uncertainty
in Measurement (GUM) [2]. According to the GUM, a
result of measurement consists of a measured value
together with its associated standard uncertainty. In the
GUM, the measured value is regarded as the expected
value and the standard uncertainty is regarded as
the standard deviation, both known values, of a state-
of-knowledge probability distribution. A state-of-
knowledge distribution represented by a result of meas-
urement need not be completely known. We note in
Sec. 3 that the Birge test and the concept of statistical
consistency motivated by it are not applicable to the
results of measurement based on the GUM. Then how
can one assess the differences between results based on
the GUM for the same measurand? In 2008, the
International Vocabulary of Metrology, third edition
(VIM3) [3] introduced the concept of metrological
compatibility of two or more results of measurement
determined according to the (GUM). In Sec. 4, we
review the VIM3 concept of metrological compatibili-
ty and propose that this concept be used to assess the
differences between multiple results based on the GUM
for the same measurand. In Sec. 5, we show that a test
of the metrological compatibility of two results of
measurement does not conflict with a pairwise Birge
test of the statistical consistency of the corresponding
measured values.

2. The Birge Test and Concept of
Statistical Consistency

Suppose x1 , …, xn are n measured values for a com-
mon measurand which is believed to be sufficiently
stable. The Birge test is based on regarding the meas-
ured values x1 , …, xn as realizations of random draws
from their presumed sampling pdfs. A sampling pdf
models possible outcomes in contemplated replications
of a measurement procedure subject to random effects
in the same conditions. Therefore, the consistency (lack

of significant differences between measured values)
assessed by the Birge test is statistical consistency. The
Birge test is applicable when the sampling pdfs of the
measured values x1 , …, xn are uncorrelated. The Birge
test requires knowledge of the variances σ1

2, …, σn
2 of

the sampling pdfs of respectively. Statistical consisten-
cy of the measured values x1 , …, xn means that their
expected values are indistinguishable 1 in view of the
corresponding variances. Specifically, the Birge test
checks whether the measured values x1 , …, xn may be
modeled as realizations from normal (Gaussian) sam-
pling pdfs with unknown but equal expected values and
known variances σ1

2, …, σn
2. Birge proposed that to

check the consistency of the measured values x1 , …, xn,
one can calculate the test statistic

(1)

where wi = 1/σi
2, for i = 1, 2, …, n, and xW = Σi wi xi /Σi wi

is the weighted mean of x1 , …, xn . If the calculated value
of R2 is substantially larger than one, then the disper-
sion of x1 , …, xn is greater than what can be expected
from the normal pdfs with equal expected values and
known variances σ1

2, …, σn
2 . In that case the measured

values x1 , …, xn can be declared to be statistically
inconsistent.

Statistical interpretation of the Birge test: Birge
was a physicist and he proposed his test independently
of and before much of the statistical theory as it is
known today was established. However, the Birge test
of consistency can now be interpreted as a classical
(sampling theory) statistical test of hypothesis. The
measured values x1 , …, xn are presumed to have normal
sampling pdfs with unknown but equal expected values
and variance-covariance matrix τ 2 × Diag [σ1

2, …, σn
2 ],

where τ 2 is an unknown parameter and σ1
2, …, σn

2are
known. The null hypothesis H0 is that τ 2 ≤ 1 and the
alternative hypothesis H1 is that τ 2 > 1. The null
hypothesis H0 means that the variances of x1 , …, xn are
not greater than σ1

2, …, σn
2 , respectively. The alterna-

tive hypothesis H1 means that the variances of  x1 , …,
xn are greater than  σ1

2, …, σn
2 [4]. The classical p-value

pC is the maximum probability under the null hypo-
thesis of realizing in contemplated replications of the n
measurements a value of the test statistic more extreme 
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1 In statistical literature the term consistency is applied to a statisti-
cal estimator. A point statistical estimator is said to be consistent
if it approaches the parameter being estimated as the sample size
increases.
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than its realized (calculated) value. The classical
p-value of a realization of (n – 1) R2 is

(2)

where χ 2
(n – 1) denotes a variable with the chi-square

probability distribution with degrees of freedom (n – 1)
[4]. If the classical p-value pC is too small, say, less than
0.05, then the null hypothesis is rejected with level of
significance 0.05 or less. A rejection of the null hypo-
thesis means that the dispersion of the measured values
x1 , …, xn is greater than what can be expected from
normal distributions for x1 , …, xn with equal expected
values and stated variances σ1

2, …, σn
2, respectively.

The dispersion of x1 , …, xn can be greater than expect-
ed under the null hypothesis because either the vari-
ances of x1 , …, xn are greater than σ1

2, …, σn
2 or their

expected values are not equal. If the stated variances
σ1

2, …, σn
2 are not questionable then the assumption

that the expected values of x1 , …, xn are equal appears
to be unreasonable. In that case, the measured values
x1 , …, xn can be declared to be statistically inconsistent.

Limitations of the Birge test: A limitation of the
Birge test is that it is applicable for uncorrelated meas-
ured values x1 , …, xn only. However, it can be easily
generalized to correlated measured values x1 , …, xn

whose covariances denoted by σ1
2, …, σ (n – 1) n are

known [4]. The Birge test suggests the following notion
of the statistical consistency of the measured values
x1 , …, xn : The measured values x = (x1 , …, xn)t are
said to be statistically consistent if their dispersion
is not greater than what can be expected from the
normal consistency model which postulates that the
joint n-variate sampling pdf of x is normal N(1μ , D)
with unknown expected value 1μ and variance-co-
variance matrix D = [σ ij ], where 1 = (1, …, 1)t, σ ij is
the covariance between xi and xj , and σ ii = σ i

2 for
i, j = 1, 2, …, n [4].

Another limitation of the Birge test (and of its gener-
alized version for correlated measured values) is that it
is a one sided test of hypothesis which checks whether
the dispersion of x1 , …, xn is more than what can be
expected from a normal consistency model. A review of
the Birge test in [5] notes that if the realized value of
the Birge test statistic R2 is substantially less than one,
then the stated variances σ1

2, …, σn
2 may well be too

large. To avoid declarations of statistical consistency
from overstated variances, the following definition of
statistical consistency was proposed in [6].

Definition of statistical consistency: The measured
values x = (x1 , …, xn)t are said to be statistically con-
sistent if they reasonably fit the normal consistency
model which postulates that the joint n-variate
sampling pdf of x is normal N(1μ , D) with unknown
expected value 1μ and variance-covariance matrix
D = [σ ij ].

This definition requires a different approach for test-
ing statistical consistency than the Birge test and its
generalized version for correlated values. A modern
method to assess the fit of a statistical model to the data
is Bayesian posterior predictive checking [6]. Posterior
predictive checking is a Bayesian adaptation of the
classical (sampling theory) statistical hypothesis test-
ing. A function of the data (and possibly unknown
parameters) called ‘discrepancy measure’ is defined
to characterize a potential discrepancy between the
statistical model and the data. The posterior predictive
p-value pP of adiscrepancy measure T(x) is the proba-
bility of realizing in contemplated replications a value
of the discrepancy measure more extreme than its
realized value. If the posterior predictive p-value is
close to zero (or to one) then the fit of the statistical
model to data is suspect.

If the measured values x1 , …, xn were uncorrelated,
then the statistic Tc (x) = (n – 1) R2 = Σi wi (xi – xW)2 is a
useful discrepancy measure to check the overall fit of
the normal consistency model N(1μ , D) to the meas-
ured values x1 , …, xn. As discussed in [6, Sec. 2.4], the
posterior predictive p-value of the realized discrepancy
measure Tc (x) = (n – 1) R2 is

(3)

We note that (3) is identical to the classical p-value
pC given in (2). Thus Bayesian posterior predictive
checking of the discrepancy measure Tc (x) = (n – 1) R2

is equivalent to the Birge test of statistical consistency.
Bayesian posterior predictive checking can be used

to investigate any number of potential discrepancies
between the statistical model and the data. To assess the
difference between two particular measured values
xi and xj , the statistic Ti – j (x) = | xi – xj | is a useful
discrepancy measure, for i, j = 1, 2, …, n and i ≠ j .
The Bayesian posterior predictive p-value of the real-
ized discrepancy measure | xi – xj | is

(4)
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where ρij is the correlation coefficient between the
presumed normal sampling pdfs of xi and xj ; the covari-
ance between xi and xj is σij = ρij σi σj , and Z denotes
a variable with standard normal distribution N(0, 1)
[6, Sec. 3.2]. A posterior predictive p-value pP close to
zero suggests that the difference between xi and xj is
larger than what can be expected from the normal
statistical consistency model N(1μ , D). That is, the
measured values xi and xj do not seem to have the same
expected value and hence they are not mutually
statistically consistent.

3. Concept of Statistical Consistency
Does Not Apply to Results Based
on the GUM

A result of measurement determined according to
the GUM consists of a measured value together
with its associated standard uncertainty. Suppose
[x1, u(x1)], …, [xn, u(xn)] are n results of measurement
for a common measurand, where x1, …, xn are the meas-
ured values and u(x1), …, u(xn) are the corresponding
standard uncertainties. According to the GUM, a meas-
ured value xi and its associated standard uncertainty
u(xi) represent a state-of-knowledge pdf attributed to
the measurand, for i = 1, 2, …, n. Following the GUM,
we use the symbol Xi for a quantity as well as for a vari-
able with a state-of-knowledge pdf about the quantity
Xi represented by the result [xi, u(xi)], for i = 1, 2, …, n.
The measured value xi is regarded as the expected value
E(Xi) and the standard uncertainty u(xi) is regarded
as the standard deviation S(Xi) of the pdf of Xi,
for i = 1, 2, …, n. The mainstream GUM requires
knowledge of only the expected value E(Xi) and the
standard deviation S(Xi) of a state-of-knowledge pdf
of Xi. The GUM does not require that the state-of-
knowledge pdf of Xi be completely known. When the
state-of-knowledge pdfs of X1, …, Xn are correlated, the
correlation coefficients are assumed to be known.
Following the GUM we denote the correlation coeffi-
cient R(Xi, Xj) between the state-of-knowledge pdfs of
Xi and Xj by the symbol r(xi, xj). Note that {x1, …, xn},
{u(x1), …, u(xn)}, and {r(x1, x2), …, r(x(n – 1), xn)} are
symbols for known values.

For many years, metrologists have used the Birge
test as ‘a rule of thumb’ to assess the consistency of the
measured values by treating the squared standard
uncertainties u2(x1), …, u2(xn) as the known variances
σ1

2, …, σn
2 of the presumed normal (Gaussian)

sampling pdfs of the measured values x1, …, xn; see, for
example [8]. The guideline for the analysis of key

comparisons developed by the BIPM Director’s
Advisory Group on Uncertainties recommends the use
of Birge chi-square test to assess the consistency of
measured values by treating the squared standard
uncertainties as the known variances of the presumed
sampling pdfs of the measured values [9]. The consis-
tency of the measured values from CIPM key compar-
isons and supplementary comparisons is almost always
assessed using the Birge test [10].

The squared standard uncertainties u2(x1), …, u2(xn)
cannot in any logical sense be identified with the
known variances σ1

2, …, σn
2 of the presumed normal

(Gaussian) sampling pdfs of the measured values
x1, …, xn . The standard deviation of a sampling pdf
represents possible dispersion from random variation in
contemplated replications of the measurement pro-
cedures. A standard uncertainty expresses the dispersion
of a state-of-knowledge pdf which could be attributed
to the measurand based on all available statistical and
non-statistical information. A standard uncertainty
includes all significant components whether arising
from random effects or from corrections applied for
systematic effects. All available statistical and non-
statistical information is used to evaluate a standard un-
certainty. In measurements done in high echelon labo-
ratories, the component of uncertainty arising from ran-
dom effects is generally a very small part of the com-
bined standard uncertainty. Treating the squared stan-
dard uncertainties u2(x1), …, u2(xn) determined accord-
ing to the GUM as the known variances σ1

2, …, σn
2

from random variation (in contemplated replications of
the measurements) is a misuse of the standard uncer-
tainties. Also, as noted earlier, the state-of-knowledge
pdfs represented by the results [x1, u(x1)], …, [xn, u(xn)]
may not be completely known. Therefore the Birge test
and the concept of statistical consistency motivated by
the Birge test do not apply to the results of measure-
ment determined according to the GUM.

4. VIM3 Concept of Metrological
Compatibility Applies to Results
Based on the GUM

A measured quantity value [3, definitions 1.19 and
2.10] is a product of a numerical value and a measure-
ment unit. The measurement unit implies that the meas-
ured value is traceable to a reference for that measure-
ment unit. A result of measurement (measured value
together with its associated standard uncertainty) is
traceable to a reference only if the result can be related
to a practical realization of that reference through a 
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documented unbroken chain of calibrations each
contributing to the measurement uncertainty [3, defini-
tion 2.41]. Two or more results of measurement are
metrologically comparable only if they are traceable to
the same reference [3, definition 2.46]. Metrological
comparability does not imply that the measured values
have similar magnitudes. Thus, for example, distance
between my apartment and my office expressed in
meters is metrologically comparable to the distance
between my apartment and the moon also expressed in
meters. The concept of metrological compatibility
discussed in the next section applies only to those
results of measurement for a common measurand
which are metrologically comparable. That is, the
results must be traceable to the same reference.

The concept of statistical consistency can be applied
to any set of numerical values which have similar
magnitudes. They do not have to be measured values.
Thus, for example, one can test statistical consistency
of deviations (or relative deviations expressed as
percentage) from a benchmark value. Although a
metrologist is expected to assess consistency of only
those measured values which have the same mea-
surement unit, it is not a requirement of statistical
consistency.

All n results [x1, u(x1)], …, [xn, u(xn)] for a common
measurand must be traceable to the same reference for
them to be metrologically comparable [3, definition 2.46].
The VIM3 concept of metrological compatibility is
defined for two results of measurement at a time. The
following definition is an elaboration of the succinct
definition given in VIM3 [3, definition 2.47].

Definition of metrological compatibility: Two
metrologically comparable results [x1, u(x1)] and
[x2, u(x2)] for the same measurand are said be metro-
logically compatible if

(5)

for a specified threshold κ, where r (x1, x2) is a symbol
for the correlation coefficient R(X1, X2) between the
variables X1 and X2 . The quantity in the denominator of
(5) is the standard deviation of the state-of-knowledge
pdf for X1 – X2, which may be incompletely deter-

mined. When the pdfs represented by [x1, u(x1)] and
[x2, u(x2)] are uncorrelated, then R(X1, X2) = 0 and (5)
reduces to

(6)

A set of metrologically comparable results
[x1, u(x1)], [x2, u(x2)], …, [xn, u(xn)] for the same mea-
surand is said be metrologically compatible if for every
one of the n(n – 1) /2 pairs of results [xi, u(xi)] and
[xj , u(xj )] we have

(7)

for a specified threshold κ [3, definition 2.47]. The
VIM3 does not discuss how the threshold κ should be
determined. A conventional value of κ is two.

The concept of metrological compatibility can be
used to assess the differences between the results of
measurement based on the GUM for the same measur-
and. The concepts of metrological comparability
and compatibility do not require that the state-of-
knowledge pdfs represented by the results [x1, u(x1)],
[x2, u(x2)], …, [xn, u(xn)] be completely known.
Thus they fit the GUM. When the set of results
[x1, u(x1)], …, [xn, u(xn)] is metrologically compatible,
we can say that the differences between the measured
values x1, …, xn are insignificant in view of the uncer-
tainties u(x1), …, u(xn).

To assess metrological compatibility of results based
on the GUM using the criteria (5), (6), or (7), the
threshold κ needs to be specified. A proper choice of κ
is to a large extent a matter of agreement because it
requires accepting the economic consequences of that
choice. Although a conventional value of κ is two,
depending on the application, the interested parties
could agree on a different value for κ. Once the value
of the threshold κ is set the conclusion of a test of
metrological compatibility based on the VIM3 defini-
tion is dichotomous, either a set of results is metrolog-
ically compatible or incompatible. The concept of
metrological compatibility is being used by metrolo-
gists who are familiar with it; see for example [11, 12].
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The VIM3 definition of metrological compatibility
can be easily extended to metrological compatibility of
a set of results and a reference result [xR , u(xR)], where
xR is the reference value with standard uncertainty
u(xR). Suppose the pdfs represented by the measure-
ment results are uncorrelated with the pdf represented
by the reference result. A set of results [x1, u(x1)], …,
[xn, u(xn)] metrologically comparable with a reference
result [xR, u(xR)] is compatible if

(8)

for i = 1, 2, …, n [13]. Similarly a set of results
[x1, u(x1)], …, [xn , u(xn)] metrologically comparable
with a combined result [xC, u(xC)], where xC is the
combined value (such as arithmetic mean or a weighted
mean) with standard uncertainty u(xC) is compatible if

(9)

where r (xi , xC) denotes the correlation coefficient
between the pdfs represented by [xi , u(xi)] and
[xC, u(xC)], for i = 1, 2, …, n [13].

5. Concluding Remarks

For many years, metrologists have used the Birge
chi-square test as ‘a rule of thumb’ to assess the dif-
ferences between two or more measured values for
the same measurand by pretending that the squared
standard uncertainties were the known variances of the
presumed normal sampling pdfs of the measured
values. This is misuse of the standard uncertainties
based on the GUM. The Birge test and the concept of
statistical consistency do not apply to the results of
measurement based on the GUM. As discussed in this
paper, the VIM3 concept of metrological compatibility
can be used to assess the differences between the
results of measurement determined according to the
GUM. Thus metrologists can start using the VIM3 con-
cept of metrological compatibility in place of the Birge
test to assess the differences between multiple results of
measurement of the same measurand.

The following is a pertinent question. Could the con-
clusions (about mutual agreement of results) based on

the VIM3 concept of metrological compatibility and
the Birge test (based on treating squared standard
uncertainties as the known variances of sampling pdfs
of measured values) differ? It is difficult to directly
compare the Birge test and a test of metrological com-
patibility because the former is defined for an arbitrary
positive integer n > 1 and the latter is defined for only
two results at a time. For pairwise comparisons (n = 2),
the Birge test statistic R2 = Σi wi (xi – xW)2 / (n – 1)
reduces to

(10)

which is square of (x1 – x2) /√ (σ1
2 + σ2

2 ). Under the null
hypothesis that the presumed normal sampling pdfs of
x1 and x2 have the same expected value, the
distribution of (x1 – x2) /√ (σ1

2 + σ2
2 ) is normal N(0, 1).

Therefore when n = 2, the normal distribution can be
used to assess the absolute difference | x1 – x2 |. The
square of a normal N(0, 1) variable has the chi-square
distribution χ 2

(1) with degrees of freedom 1. Therefore
the square of the (1 – α / 2) × 100-th percentile
z[1 – α / 2] of normal N(0, 1) distribution is equal to the
(1 – α) × 100-th percentile χ 2

(1) [1 – α] of χ 2
(1) distribution.

Thus the realized value of (10) being less than χ 2
(1) [1 – α]

is equivalent to the ratio (x1 – x2) /√ (σ1
2 + σ2

2 ) being
less than z[1 – α / 2] . It follows that declaration of Birge
statistical consistency when the classical p-value pC of
the Birge test (2) is less than 0.05 (for example) is
equivalent to the realization that

(11)

We note from (6) and (11) that if the threshold κ for
metrological compatibility is set as κ = 2 then the con-
clusion of a check of metrological compatibility
between a pair of results [x1, u(x1)] and [x2 , u(x2 )]
would be identical to the assessment of statistical con-
sistency between x1 and x2 based on the Birge test by
(wrongly) treating u 2 (x1) and u 2 (x2) as σ1

2 and σ2
2 ,

respectively (and treating the correlation coefficient
R(X1, X2) as ρ12 which is zero in the Birge test).
Therefore a pairwise Birge test of statistical consisten-
cy and a test of metrological compatibility do not
conflict.
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