
1. Introduction

Software assurance is an important part of the soft-
ware development process to reduce risks and ensure
that the software is trustworthy. The critical importance
of establishing and assuring dependability and trust-
worthiness (e.g., safety, security, reliability, etc.) of
systems and/or software in avionics, industrial control
systems and other safety and mission-critical systems
has long been recognized.1 The key purpose of a soft-
ware assurance assessment is to show that the system,

as designed and built, functions as intended (functional
and dependable) and is free from defects and vulnera-
bilities that might be introduced intentionally or unin-
tentionally. Inspection, testing, certification and accred-
itation, and configuration management have all been
traditionally used in the software assurance process
with mixed results. In the report, “Software for
Dependable Systems—Sufficient Evidence?” by the
Committee on Certifiably Dependable Software
Systems of the National Research Council, [1] the
Committee recommends a strong evidence-based
approach for assessing and assuring dependability in
software systems that argues for and justifies depend-
ability claims based on explicit evidence supporting
such arguments and claims.

An evidence-based approach to software system
assurance can be made through use of an assurance case

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

209

[J. Res. Natl. Inst. Stand. Technol. 115, 209-216 (2010)]

Software Assurance Using Structured
Assurance Case Models

Volume 115 Number 3 May-June 2010

Thomas Rhodes, Frederick
Boland, Elizabeth Fong, and
Michael Kass

Software and Systems Division,
Information Technology
Laboratory,
National Institute of Standards
and Technology,
Gaithersburg, MD 20899-8970

trhodes@nist.gov
boland@nist.gov
efong@nist.gov
mkass@nist.gov

Software assurance is an important part of
the software development process to
reduce risks and ensure that the software is
dependable and trustworthy. Software
defects and weaknesses can often lead to
software errors and failures and to
exploitation by malicious users. Testing,
certification and accreditation have
been traditionally used in the software
assurance process to attempt to improve
software trustworthiness.

In this paper, we examine a methodolo-
gy known as a structured assurance model,
which has been widely used for assuring
system safety, for its potential application
to software assurance. We describe the
structured assurance model and examine
its application and use for software
assurance. We identify strengths and
weaknesses of this approach and suggest
areas for further investigation and testing.

Key words: product assurance; software
assurance; software assurance case; soft-
ware security; structured assurance case
model; structured software assurance
model.

Accepted: January 15, 2010

Available online: http://www.nist.gov/jres

Editor’s Note: This paper was originally published as NIST IR 7608, Software Assurance Using Structured Assurance Case Models, May 2009.
Content from the original publication has been included—some with minor revisions, except for the table of contents.

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.



methodology based on a structured assurance case
model. Structured assurance case models have been used
widely in the United Kingdom [2, 3] and United States
[4] for developing safe and secure systems. Proponents
of this approach have argued that a structured assurance
case model provides a common framework for bringing
together best practices in the safety, security, and reliabil-
ity domains to achieve a single, unified assurance case
[5]. However, the effectiveness of the structured assur-
ance case model as a mechanism for assuring software
system properties, such as security, reliability, availabili-
ty, and others, remains a subject of continuing investiga-
tions. Currently, various on-going research activities are
investigating application of the assurance case model
approach for assuring software properties, such as,
safety, security, and reliability [5, 6, 7].

In this paper, we describe the structured assurance
case model and examine its application to soft-
ware assurance with a simple software-based system
example.

2. Software Assurance

Various definitions of software assurance have been
given. For example, Wikipedia [8] references several
definitions of software assurance on their software
assurance web page. Many bear resemblance to the
definition of software assurance provided in the
IEEE Standard Glossary of Software Engineering
Terminology (IEEE 610.12) [9]. The National Aero-
nautics and Space Administration (NASA) Goddard
Spaceflight Center has adopted the IEEE definition.
Other definitions, such as that of the National Institute
of Standards and Technology (NIST) Software
Assurance Metrics and Tool Evaluation (SAMATE)
project [10], and the Department of Homeland Security
(DHS) Software Assurance (SwA) program [11] have
adopted the IEEE definition with some extensions
relating to software trustworthiness and security, as
described below:

• NIST/SAMATE project:

“The planned and systematic set of activities that 
ensures that software processes and products con-
form to requirements, standards and procedures in
order to help achieve:

– Trustworthiness—no exploitable vulnerabili-
ties exist either of malicious or unintended
origin, and

– Predictable execution—justifiable confidence
that software, when executed, functions as
intended.”

• DHS SwA Program: “Software assurance (SwA)
is the level of confidence that software is free 
from vulnerabilities, either intentionally designed 
into the software or accidentally inserted at any 
time during its life cycle, and that the software 
functions in the intended manner.” [12].

3. Structured Assurance Case

A structured assurance case is “a documented body
of evidence that provides a convincing and valid argu-
ment that a specified set of critical claims regarding a
system 's properties are adequately justified for a given
application in a given environment [13].” Much like a
legal case presented in a courtroom, an assurance case
is a comprehensive presentation of evidence and argu-
ments that support claims about properties or behaviors
of a product or system, such as, security, safety
reliability, etc. Hence, the structured assurance case
provides a structured, composable, and traceable model
for demonstrating and verifying the plausibility and
strength of claims made about a property of the product
or system in question.

3.1 Structured Assurance Case Model

The structured assurance case model is represented
as a directed graph whose nodes consist of claims,
arguments, and evidence elements. Figure 1 is a graph-
ical representation of an assurance case, showing the
relation between claims, arguments, and evidence. The
left-most claim is the top-level, overall claim. It is
decomposed and supported by two sub-claims. The
argument is that if all sub-claims are valid then the
overall claim is valid. The argument continues with fur-
ther sub-claims until, ultimately, a claim or sub-claim is
supported by evidence that is sufficient, objective, and
reproducible. This representation of an assurance case
model [2] has explicit elements for “claims” and
“evidence” with the argument being implied from the
structure and logical relationships among the claims
and evidence elements. Other notations, however, of a
structured assurance case model include an explicit
element for the “argument” along with claims and
evidence and in some cases provides notations for
assumptions and conditions.

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

210



Currently, the Object Management Group (OMG)
System Assurance Platform Task Force (PTF) (former-
ly the Software Assurance Special Interest Group) is
including the structured assurance case model as part of
a common framework of standards for analysis and
exchange of information related to systems assurance
and trustworthinesss [14]. This Framework and Meta-
model will provide a machine-readable repository for
assurance case artifacts, such as, claims, arguments,
and evidence, and enable software development and
testing tools to exchange and share information across
the software lifecycle in support of software assurance.

The standards group, ISO/IEC JTC1 Sub-Committee
7 WG7, is also including the structured assurance
model as a revision to Part 2 of the ISO/IEC 15026,
Systems and Software Assurance standard [15].

3.2 Claims and Sub-Claims

A claim is a statement asserting some characteristic,
property, or behavior of the software or system that can
be evaluated for truthfulness, is demonstrable, and is
supported by arguments based on objective evidence. A
claim may be further decomposed into sub-claims, and
expressed either as a positive or negative statement.

For example, one can declare positive claims about
the requirements-based, quality properties of software,
such as its dependability or availability, or one can
make negative claims about the same software by
claiming that the code does not contain specific weak-
nesses and vulnerabilities in the design and implemen-
tation that could be exploited to break or compromise
the system.

3.3 Arguments

Arguments are logical propositions intended to sup-
port a claim through reasoning or logic that links evi-
dence to a claim. Arguments define the relationships
directly linking each claim and/or sub-claims, and
piece of evidence, used by an argument to the claims
immediately supported by the argument. An argument
is the explanation of how the evidence can be interpret-
ed as supporting a claim or sub-claim.

Arguments can also include any unusual events or
conditions that are within the context of the claim. The
argument can contain considerations of potential caus-
es of failure and appropriate corrective actions if failure
occurs. Hence, an argument may include conditions,
assumptions, and judgments about the system, its use,

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

211

Fig. 1. Representation of a Structured Assurance Case Model.



and its operational environment, threats, and likelihood
of occurrence, for which the claims and evidence are
being marshaled as part of an overall assurance case.

3.4 Evidence

Evidence is information used to support a claim.
Ideally, evidence should be objective, reproducible,
repeatable, and non-disputable. Evidence is key to
making a credible assurance case. Without evidence,
there is no way to substantiate the claim.

The sources of evidence will depend in part on the
availability of artifacts. The evidence data collection may
be conducted formally, informally or semiformally.

Evidence comes in many different forms, so it is
impossible to dictate what kind of evidence or argu-
ment is appropriate for every situation. Evidence may
be in the form of an artifact which could be automati-
cally, semi-automatically or manually produced and
demonstrated. Evidence must be traceable to its source
and method of origination. The evidence may consist of
test results, formal analyses, simulation results, hazard
analyses, modeling, inspections, and can include deter-
ministic, probabilistic, and qualitative data or informa-
tion [14]. Examples of evidence data might be software
artifacts, methodologies, development processes, test-
ing results, people or programmer expertise and experi-
ence credentials, development environments, opera-
tional environments, or regulatory compliance.

4. Composing a Structured Software
Assurance Case Model

The structured assurance case model defined previ-
ously has potential in providing a framework for an
effective software assurance case. The model may be
developed in a top-down approach, bottom-up
approach, or a mix of both top-down and bottom-up
approaches.

The basic steps in implementing a structured assur-
ance case are to:

– Define or assert a top level claim about a soft-
ware or system property which is to be shown.

– Consider decomposing the top level claim into
smaller related sub-claims.

– Identify or provide the supporting evidence for
the sub-claims.

– Develop a set of arguments that link claims/sub-
claims to evidence to support the claims/sub-
claims.

– State any assumptions, judgments, and condi-
tions underlying the claims, arguments, and
evidence.

– Evaluate the strength and sufficiency of the
assurance case evidence and arguments in sub-
stantiating the claims and sub-claims.

The process is both cumulative and iterative.
Assurance claims and sub-claims may be decomposed
to any level of granularity until necessary and sufficient
evidence is obtained in supporting the satisfaction of a
claim or a sub-claim. The structured assurance case
then rests upon the aggregation of all sub-claims and
arguments, each supported by evidence, which collec-
tively satisfies a top-level claim. Ideally, objective
measures of whether the evidence is of high quality and
sufficient are desirable. However, in practice, this may
be difficult and sufficiency will often be decided by
some combination of objective evidence (e.g., test
results) and expert opinion that collectively provides
strong and plausible evidence supporting an argument
and claim.

4.1 Notations and Tools

Structuring assurance cases so they can be under-
stood is a challenge. Due to the massive amount of evi-
dence that may be needed to demonstrate an assurance
case for moderately-sized software, and to improve
human capability for reviewing and visualizing an
assurance case, automated tools have been developed.
Examples of notations for which tools have been
developed, include:

– Goal Structuring Notation (GSN) [16]
– Claims-Arguments-Evidence (CAE) [17]

Both use a graphical notation for representing the
structure of an assurance case. There are similarities
and differences in notations among different tools.
For example, the GSN notation defines node types for
Goals (claims), Strategy (argument), and Solution
(evidence), with supporting nodes that include
Assumptions, Justifications, Context, Models, and
Notes. CAE defines nodes for Claims, Arguments,
and Evidence. GSN has a goal-oriented view that

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

212



supports a top-down approach in developing the
structured assurance case beginning with claims, while
the CAE supports a bottom-up view that uses evidence
to determine which claims can be made. Currently,
within the Object Management Group (OMG) there is
an effort to produce a standard that encompasses
concepts from both of these notations [14].

4.2 Sources of Evidence

The sources of evidence will depend in part on the
availability of artifacts. The evidence data collection may
be conducted formally, informally or semiformally.

Data facts, as evidence, are collected to support the
argument that the software will satisfy particular claims
for software assurance.

4.3 A Simple Structured Assurance Case Example

As an illustration of a structured assurance case
model approach for a software-based product, a
simple example is shown for an automated teller
machine (ATM). This assurance-related claim
is derived from a presumed security specifi-
cation requirement for an ATM that states that the
ATM must not allow un-authorized access to a bank
account.

Figure 2 below illustrates this portion of the ATM
example using a simple claims-arguments-evidence
model. Note, that in practice, such a model would be a
more realistic and comprehensive model of sub-claims,
arguments and evidence.

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

213

Fig. 2. Assurance Case Model for ATM.



5. Potential Benefits, Issues and
Challenges

The structured assurance case model has been exten-
sively used and shown to be an effective approach for
assuring safety in avionics and other complex systems
[2]. Other applications have demonstrated its use for
assuring systems security [5, 6, 7] or as a framework
for a unified approach to safety, security, and reliabili-
ty. Work done by Ankrum and Kromholz of MITRE,
illustrated the use of structured assurance cases for
mapping and analyzing assurance standards, and for
analyzing a practical security-critical system [13].
Associated graphical notations can provide a visible
model for human use that is comprehensive, under-
standable, and which can provide traceability between
the model elements of claims, arguments, and
evidence.

The structured assurance case model, applied to
software assurance, can support various stakeholder
roles and needs, including those of the developer,
acquirer, and certifier throughout the system life-cycle.
The structured assurance case model provides a frame-
work for identifying critical properties of a software
system, such as, safety, security, and dependability, and
ensuring that these are addressed during development,
implementation, and testing. Furthermore, an assurance
framework enables capturing lifecycle artifacts that
provide the evidence needed to support claims
about these requirements. The structure and hierarchy
of the structured assurance case model can help
identify gaps between claims, arguments, and evidence,
and provide a consistent approach for software
assurance.

The structured assurance case model offers an addi-
tional approach to software assurance that has tradition-
ally been provided through certification and accredita-
tion activities by providing traceability. Thus, use of
this approach can improve the overall software assur-
ance process.

However, the use of structured assurance case
models for software assurance is an on-going topic of
research and case-studies. There are still open issues
surrounding the use of the structured assurance method
for software assurance, including:

– Measuring the effectiveness of the structured
assurance case model for software assurance.

– Determining what and how much evidence is
sufficient for verifying a claim/sub-claim.

– Ensuring that the quality of evidence is satisfac-
tory.

– Ensuring an appropriate level of detail or granu-
larity of sub-claims.

– Ensuring that relationships among claims, argu-
ments, and evidence are clear and explicit.

– Managing large, complex structured assurance
case models.

– Improving guidance on how to efficiently gath-
er, merge, and review arguments and evidence.

– Developing automated tools to analyze struc-
tured assurance cases.

Some ongoing issues with the structured assurance case
model approach include:

• Difficulty in transforming existing safety and
security requirements into the structure of an
evidence-based assurance model. Standards for
defining safety and security requirements for
application domains often specify a structure
and format that do not easily translate into a
structured assurance case model. The result can
be an assurance model that is incomplete, con-
tradictory, and not aligned with the require-
ments.

• Existing assurance models in safety and security
rely heavily on evidence of compliance to stan-
dards for lower levels of assurance (e.g., safety
integrity levels (SIL) and evaluation assurance
levels (EAL) respectively), with the assumption
that adherence to those standards validates the
overall assurance claim. Use of an evidence-
based model can facilitate the use of artifacts
generated by tools as evidence against the actual
system itself, providing a stronger claim of safe-
ty, security or other property for lower levels of
assurance.

• Assurance modeling of “system of systems”
adds another layer of complexity to the assur-
ance case. While a system may be deemed safe
or secure by itself in a particular environment,
the introduction of other systems into that envi-
ronment increases the complexity of the assur-
ance model and must be considered and evaluat-
ed as part of a larger system. Assurance case
models today do not address the assurance of
systems of systems.

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

214



6. Conclusions

Use of a structured assurance case method shows
promise for use in assurance of software properties,
such as, safety, security, reliability, and others. This
model provides an organized, structured approach to
software assurance based on claims, arguments and
evidence, and provides a means of traceability among
these elements.

The model appears useful throughout the software
development lifecycle by providing a framework where
intended product claims can be identified early in the
development cycle and used to identify system require-
ments upon which these claims can be based, and for
which arguments and evidence can be established dur-
ing development to support these claims.

However, further work is needed in developing mod-
els for different software system properties and exam-
ining relationships and patterns that may exist within
and among these models. Further work is also needed
to develop automated methods to handle and process
potentially large and complex assurance models, and
support definition, maintenance, and revision of large
assurance models, amounts of evidence, and to develop
methods for objective measurements for evaluating the
“quality” of the model in providing a strong software
system assurance case.

Acknowledgments

The authors wish to thank Scott Ankrum, MITRE
Corporation for his assistance in improving our under-
standing of structured software assurance case models.
We also thank the members of the Object Management
Group, System Assurance Platform Task Force
(formerly the Software Assurance Special Interest
Group) for their work that helped in the development of
this paper.

7. References

[1] Jackson, Daniel, Martyn Thomas, and Lynette I. Millett
(Editors), Software for Dependable Systems: Sufficient
Evidence? Committee on Certifiably Dependable Software
Systems, Computer Science and Telecommunications Board,
National Research Council, National Academies Press, ISBN:
0-309-66738-0, (available at http://www.nap.edu/cata-
log/11923.html)

[2] Tim P. Kelly, Arguing Safety—A Systematic Approach to
Safety Case Management,” DPhil Thesis, York University,
Department of Computer Science Report YCST, May 1999.

[3] S. Lautiere, D., Cooper, and D. Jackson, SafSec:
Commonalities Between Safety and Security Assurance,
Proceedings of the 13th Critical Systems Symposium,
Southampton, England, February 2005 (available at
http://www.praxis-his.com/publications/documents/SafeSec.pdf).

[4] S. Lautiere, D. Cooper, D. Jackson, and T. Cockram, Assurance
Cases: how assured are you? supplemental volume to DSN-
2004, Proceedings of the 2004 International Conference on
Dependable Systems and Networks 2004, (available at http://
www.praxis-his.com/publications/documents/AssuranceCase
DSNO4.pdf).

[5] Robert J. Ellison, John Goodenough, Charles Weinstock, and
Carol Woody, Survivability Assurance for System of Systems,
Software Engineering Institute Technical Report CMU/SEI-
2008-TR-008, May 2008.

[6] John Goodenough, Howard Lipson, and Chuck Weinstock,
Arguing Security—Creating Security Assurance Cases,
(available at https://buildsecurityin.us-cert.gov/daisy/bsi/arti-
cles/knowledge/assurance/643-BSI.html

[7] Howard Lipson, and Chuck Weinstock, Evidence of Assurance:
Laying the Foundation for a Credible Security Case, (available
at http://buildsecurityin.us-cert.gov/dairy/bsi/articles/knowl-
edges/assurance/973-BSI.html).

[8] Wikipedia Reference http://en.wikipedia.org/wiki/Software
Assurance

[9] IEEE Standard Glossary of Software Engineering Terminology
IEEE 610.12.

[10] SAMATE project, http://samate.nist.gov/.
[11] Department of Homeland Security Software Assurance

Program, http://buildsecurityin.us-cert.gov/swa/index.html
[12] Committee on National Security Systems 4009 National

Information Assurance Glossary, (available at
http://www.cnss.gov/Assets/pdf/cnssi 4009.pdf)

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

215



[13] T. Scott Ankrum and Alfred H. Krombolz. Structured
Assurance Cases: Three Common Standards, Slides presenta-
tion at the Association for Software Quality (ASQ) Section 509
meeting, the MITRE Corporation, 25, January 2006 (available
at http://www.asg509.org/ht/a/GetDocumentAction/i/2132).

[14] Software Assurance Evidence Metamodel (SAEM) Draft
Specification, Initial submission to SAEM RFP (swa/07-09-03)
OMG document: swa/08-02-01, Software Assurance ABSIG
(available at http://swa.omg.org/).

[15] Samuel, T. Redwine, Jr., Revision of ISO/IEC 15026, presenta-
tion slides at OMG SIG meeting, March 11, 2008.

[16] T. P. Kelly and R. A. Weaver, The Goal Structuring Notation—A
Safety Argument Notation, Proceedings of Dependable Systems
and Networks 2004, Workshop on Assurance Cases, July 2004.

[17] Emmet, Luke, Using Claims, Arguments and Evidence: A
Pragmatic View—and tool support in ASCE,
www.adelard.com.

About the authors: Frederick Boland, Elizabeth Fong,
and Michael Kass are Computer Scientists in the
Software and Systems Division of the Information
Technology Laboratory at NIST.

Thomas Rhodes is an Information Technology
Specialist in the Software and Systems Division of the
Information Technology Laboratory at NIST.

The National Institute of Standards and Technology
is an agency of the U.S. Department of Commerce.

Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

216


