
1. Introduction

Currently, we see a renascence of research on transi-
tion-metal diborides. For example, well-known are
many current studies on ReB2 and OsB2 as superhard
materials, rivaling even diamond.

Titanium diboride’s physical and mechanical proper-
ties received review elsewhere [1, 2]. This compound is
known well for low mass density, high hardness, high
melting point, low electrical resistivity, good thermal
conductivity, and good chemical inertness. However,
the problems in preparing full-dense, high-quality
monocrystals preclude their extensive study. Akimitsu
and colleagues [3] reported superconductivity at 40 K
in a same-crystal-structure companion compound:
MgB2.

The importance of elastic-stiffness coefficients for
both science and technology also received review [4].

Titanium diboride’s monocrystal elastic stiffnesses
appeared in two reports. The values of Gilman and
Roberts [5] depart strongly from the more recent report
of Spoor and colleagues [6], mainly in the off-diagonal
C12 and C13 . The first measurements were made by a
pulse-echo method, the second by resonance ultrasonic
spectroscopy, but by a very different mechanical setup
than used in the present study.

Here, we report a third set of measurements,
which agree closely with the Spoor et al. results. From
our Ci j measurements, we estimate the Debye charac-
teristic temperature, the quintessential harmonic-lattice
property. Also, we estimate the Grüneisen parameter,
the quintessential anharmonic property.

Figure 1 shows the TiB2 crystal structure, obviously
a layered structure suggesting strong elastic anisotropy,
not observed as shown below, creating a conundrum.
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2. Measurements
2.1 Crystal

An oriented parallelepiped specimen 1.8 mm ×
2.3 mm × 3.9 mm was prepared from a larger crystal
grown by a floating zone method [7, 8]. Fluorescent
x-ray analysis revealed no significant impurities. The
exact stoichiometry was TiB1.97 . The crystal faces with
respect to the above dimensions were [2 – 1 – 10],
[ – 1100], [0001]. These directions represent an a-axis,
the c-axis, and the direction orthogonal to both. Laue
x-ray diffraction confirmed these orientations within 1°.

2.2 Method
To measure the Cij , we used resonance ultrasound

spectroscopy, summarized in Fig. 2 [9-11]. Briefly, one
clamps lightly a regular-shape (cube, cylinder, cube,
parallelepiped) specimen between two piezo-
electric transducers. One transducer is swept through
frequency and the second transducer detects the speci-
men’s macroscopic vibration frequencies (Fig. 3).
Frequencies of a specimen are determined by five
factors: (1) shape, (2) size, (3) mass or mass density,
(4) elastic-stiffness coefficients Cij , and (5) crystal-axis
orientation relative to macroscopic shape. Thus, by
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Fig. 1. Schematic crystal structure of titanium diboride (AlB2 type,
C32, hexagonal, P6/mmm, hP3, M = 1, D6h

1, No. 191). Small
spheres represent boron atoms, large spheres titanium atoms. The
hexagonal boron net resembles strongly that of graphitic carbon; thus
we expect strong interatomic bonding within the boron net. The
titanium atoms nest in interstices provided by the boron net. The
axial ratio equals 3.228/3.028 = 1.066, relatively high for the
AlB2-compound group. Each Ti atom is surrounded by twelve equi-
distant boron atoms. Each boron atom has three boron atoms at a
short distance, and six titanium atoms at a much longer distance.

Fig. 2. Schematic measurement setup. Specimen (parallelepiped) is clamped loosely between two piezoelectric
transducers. One transducer is swept through frequency. The second transducer detects macroscopic resonance
frequencies, which depend on specimen shape, size, mass, and elastic-stiffness coefficients, the Cij .
Courtesy of A. Migliori (Los Alamos National Laboratory).



measuring the resonance frequencies fn , one can deter-
mine by an inverse calculation the stiffnesses Cij . The
problem is strongly overdetermined: about one hundred
fn to determine five Cij . Not reported here, one can also
determine the complete internal-friction tensor
Q ij

–1 = Δ fn /fn = Cij
*/Cij , where Δ fn denotes resonance-

peak width, C ij
* the imaginary part, and Cij the real part

of the total C~ij tensor. Well-described elsewhere [12],
the inverse problem involves Lagrangean minimiza-
tion, the Rayleigh-Ritz method, and a least-squares
procedure for measured and deduced fn values.

We determined mass density by careful mass and
size measurements: ρ = 4.502 ± 0.016 g/cm3. This
compares with reported x-ray mass densities of 4.504
to 4.53. We ascribe the differences to heavier impurities
on the Ti sites. From this mass density, we concluded
our specimen contains no significant void content.
From the sharp resonance peaks (Fig. 3), we concluded
our specimen contains few cracks.

2.3 Errors

Errors arise from many sources: crystal orientation,
crystal dimensions, nonparallelism, the inverse prob-
lem (measured-frequency to Ci j k l conversion), speci-
men-transducer interactions. Several authors described
these errors elsewhere, especially the first reference
[13-15]. The effect of the slight (1 %) departure from
stoichiometry is hard to estimate. Because of the strong
covalent bonding within the boron planes, we conjec-
ture a very small error arising from an occasional miss-
ing boron atom.

3. Results and Discussion

Table 1 shows our principal results: the Cij and their
uncertainties. (Because the two previous reports omit-
ted error estimates, very detailed comparisons are
precluded.) Only five Cij are independent because
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Fig. 3. Macroscopic resonance spectrum. Resonance frequnecies fn yield Cij by an inverse-problem calculation.
Highly overdetermined, the problem uses about one hundred resonance frequencies fn to determine the five inde-
pendent Cij . Vertical bars at bottom show predicted resonance frequencies. The inset shows a resonance-peak
profile, with a Lorentzian shape, the half-power width giving the internal friction Qi j

– 1, the imaginary part of the
total Cij .

Frequency (kHz)



C66 = (C11 – C12)/2. As usual (they fail to correspond
directly to a phonon), the off-diagonal Cij (C12 and C13)
show the largest uncertainties. Table 1 also gives the
Spoor et al. results [6], which differ from ours by an
average of 2.2 %. The average uncertainty in our six Cij

is 0.7 %. The close agreement between our results and
the Spoor et al. results suggests strongly that the earli-
er Gilman–Roberts results [5] are wrong, the largest
discrepancies occurring in the off-diagonal Cij : C12 and
C13. Further support for the correctness of the
Ledbetter-Tanaka / Spoor et al. results arises from
ab initio calculations that yielded B = 251 GPa and
ν = 0.12 [16], versus 417 and 0.32 for Gilman-Roberts.

Table 1 also shows the principal Young moduli Eii

computed by

(1)

Here Sij denotes the elastic-compliance tensor, the ten-
sor inverse of the Cij . As we expect from C11 > C33 , E11

exceeds E33 ; that is, TiB2 is much stiffer within
the basal plane than along the c-axis. Obviously, this
relates to the crystal structure where the covalent-
bonded boron atoms lie in the plane perpendicular
to x3 .

Table 1 shows also the three principal Poisson ratios
νij computed by

(2)

Within the boron plane, the Poisson ratio ν 12 is
extremely low, reflecting strong covalent bonding and
the strong resistance of boron atoms to change their
bond angles. The ν 13 Poisson ratio is only slightly
below normal, indicating weaker bonds out of the
boron-atom planes than those within the planes.

The shear elastic anisotropy of hexagonal crystals
can be expressed in various ways. The simplest is
C66 /C44 , 1.15 for TiB2 , thus weak elastic anisotropy
(the isotropic case corresponding to 1.00). Because the
Young modulus depends so strongly on the shear mod-
ulus, a Young-modulus variation with direction also
serves as an effective shear-anisotropy indicator. Spoor
and colleagues showed a Young-modulus representa-
tion surface; it is nearly spherical [6]. From the alter-
nating-layer boron-titanium crystal structure (Fig. 1),
one expects higher elastic anisotropy than one finds.

The lower part of Table 1 gives the averaged-
over-direction quasiisotropic elastic constants obtained
from the Cij by a Voigt-Reuss-Hill average [17]. These
constants include longitudinal modulus CL , bulk mod-
ulus B, shear modulus G, Young modulus E, and
Poisson ratio ν. These are the elastic constants appro-
priate to a full-density nontextured polycrystalline
aggregate in which the grain boundaries cause no soft-
ening. Grain size produces no effect on elastic con-
stants if it is small relative to specimen size. ( A review-
er pointed out that nanosize grains may soften the
elastic constants.) The most unusual feature of our
results is the high G /B ratio, thus low Poisson ratio.
Our nonpublished results on a YB66 monocrystal gave
an averaged-over-direction (Kröner method) Poisson
ratio of 0.13. For boron, a handbook value is ν = 0.089
[18]. Both the bulk and shear moduli of TiB2
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Table 1. Monocrystal and polycrystal elastic constants of titanium
diboride. Unless specified, all units are GPa, except for the Poisson
ratios, ν, which are dimensionless

Present Gilman - Roberts Spoor et al.b

ρ (g/cm3) 4.502 ± 0.016

Monocrystal elastic constants

C11 654.4 ± 1.9 690 660

C33 458.1 ± 1.4 440 432

C44 262.6 ± 0.3 250 260

C66 302.7 ± 0.7 140 306

C12 48.98 ± 1.4 410 48

C13 95.25 ± 0.55 320 93

E11 633.3 ± 2.2 389 639

E33 432.3 ± 1.7 254 408

ν 12 0.0460 ± 0.0022 0.3877 0.0437

ν 13 0.1984 ± 0.0015 0.4453 0.2059

ν 31 0.1354 ± 0.0010 0.2909 0.1314

Debye characteristic temperature

Θ D (K) 1217 ± 6 989 1211

Voigt-Reuss-Hill-average quasiisotropic (polycrystal) elastic constants

CL 599.9 642 593

B 247.5 417 244

G 264.3 169 262

E 584.7 446 579

ν 0.1063 0.3219 0.1037
a Ref. 5.
b Ref. 6.

-1
ij ij .E S=

ij ij ii/ .S Sν = −



exceed considerably (by 30 % to 40 %) the handbook
values of boron: 248/179 = 1.39 and 264/203 = 1.30,
showing the strong interatomic bonds in TiB2 , both for
extension-compression and for shear-bending. Beside
implying a low Poisson ratio, the very high G /B ratio
holds implications for several other crystal-bonding
properties: covalency, Cauchy-relation departure,
many-body forces, and others. We plan to discuss all
these elsewhere.

The elastic stiffnesses yield three useful sound
velocities: the longitudinal velocity

(3)

the shear or transverse velocity

(4)

and the mean velocity (as defined by Debye)

(5)

We found ν l = 1.54, ν s = 0.766, and ν m = 0.835 cm/μs.
From the Cij and the mass density, we can compute

the acoustic Debye characterisitic temperature ΘD. At
zero temperature, the acoustic ΘD becomes identical
with the calorimetric ΘD [19]. ΘD is proportional to the
mean sound velocity:

(6)

where ν m denotes mean sound velocity and K is given
by

(7)

Here h denotes Planck’s constant, k Boltzmann’s
constant, and Va atomic volume. The velocity ν m comes
from the integration over all directions:

(8)

Here ν 1 denotes the quasilongitudinal wave velocity,
ν 2 and ν 3 the quasitransverse wave velocities, and dΩ

an increment of solid angle. Equation (8) can not be
integrated analytically, and numerous numerical and
approximate methods have been used for its solution.
Phase velocities ν a are roots of the Christoffel
equations:

(9)

This expression follows from equations of motion
for plane, monochromatic waves, where ρ denotes
mass density, Cijkl fourth-rank elastic-stiffness tensor,
x i components of the unit wave vector relative to the
cubic axes, and δ il the Kronecker operator. Equation (9)
usually yields three distinct real roots ρν 2.

We computed an exact Θ D by using a distribution of
489 vectors proposed by Overton and Schuch [20],
which we distributed over the usual 48 [100]-[110]-
[111] stereographic unit triangles, thus a total of 23 472
directions. We obtained Θ D = 1217 K. This result
differs enormously from the handbook calorimetric
value, 1576 K. Often, calorimetric values contain large
errors because of large extrapolations to zero tempera-
ture and/or large uncertainties in the lowest-tempera-
ture lattice specific heat.

From B and from handbook values of heat capacity
C, volume thermal expansivity β , and volume V, we
computed the effective Grüneisen parameter:

(10)

We obtained γ = 1.71, the handbook values for boron
and titanium being 1.85 and 1.33. Alternative gammas
can be computed when one knows the third-order
elastic-stiffness coefficients, the Cijklmn [21]. The few
gammas known for compounds similar to TiB2 pre-
clude any comparisons. Following Pearson’s reasoning
[22], the Ti-B bonds would lead to  γ = 2.

Finally, because some authors suspect voids/cracks
in TiB2 , we want to describe briefly how the above full-
dense quasiisotropic elastic constants would change
with voids. Focusing on Al2O3, Ledbetter, Lei, and
Datta [23] gave a theory for void effects on elastic
constants. Principal results include the following:
Voids soften the bulk modulus more than the shear
modulus. In the dilute limit, for spherical voids,
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our results agree with the classical results of Mackenzie
[24]:

(11)

(12)

Here, c denotes void volume fraction and ν0 the
void-free-state Poisson ratio. However, we emphasize
that the often-used rule-of-thumb that elastic stiffness
varies as mass density is true only in the dilute limit.
Void shape plays a key role, especially if the voids
possess an oblate-spheroid (disc) shape. Dunn and
Ledbetter [25] focused on the interesting, unexpected
effects of voids and cracks on the Poisson ratio. Other
authors addressed this problem using various approxi-
mations [26].

4. Conclusions

1. Our elastic-stiffness-coefficient measurements on
titanium diboride support the report of Spoor and
colleagues rather than the older (now handbook)
values of Gilman and Roberts. The principal differ-
ences in the two previous Cij sets lie in C12 and C13.

2. From the Cij we computed several additional use-
ful physical properties:
(i) sound velocities; (ii) Debye temperature;
(iii) Grüneisen parameter.

3. Our computed acoustic Debye temperature, 1217 K,
is about 20 % lower than the handbook calorimetric
value.

4. Our computed Grüneisen parameter, 1.71, suggests
the importance of Ti-B bonds along with B-B
bonds.

5. Using the C66 /C44 ratio as a shear-mode elastic-
anisotropy criterion, TiB2 shows low shear-
mode anisotropy, 1.15. A surprise because of the
B-Ti-B … layer crystal structure.

6. Our elastic constants estimated for a full-dense
polycrystal depart strongly from those given in
Munro’s review [2], especially in the uncertainties.
For example, Munro proposed a 70 % uncertainty

in the Poisson ratio and a 24 % uncertainty in the
bulk modulus. Our polycrystal results differ from
the Spoor et al. result by only 2 %. This finding
agrees with the well-known fact that modern
measurement methods give the elastic-stiffness
coefficients easily within one percent.

7. Finally, we are surprised by the low elastic shear
anisotropy shown by such a strongly layered
crystal structure. Reference [8] gives a possible
explanation. Part of the boron-atom p-obitals lie in
a p-d hybridized band, weakening the p-electron
contribution to B-B bonding. If the bonding weak-
ens, the anisotropy decreases.
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