
1. Introduction

The National Institute of Standards and Technology
(NIST) provides a calibration service for absolute
spectral-responsivity of optical-fiber power meters at
wavelengths between 400 nm and 1800 nm [1]. The
service is unique because it characterizes the optical-
fiber power meter, not just an optical detector, which is
normally coupled to a laser with an optical fiber. We
rely on two measurement systems for a single calibra-
tion; one system to provide complete wavelength cov-
erage, the second to duplicate the systematic behavior
of coherent light exiting the fiber. In the first instance,
we rely on a broadband source and a monochromator
(the monochromator system) to cover the entire wave-
length range because a continuously variable laser
source is not currently available. In the second instance,
several laser-diode sources, independently coupled to
optical fiber (the fiber system), provide the optical input
for measurements at discrete wavelengths. The refer-

ence detector for the monochromator system is a pyro-
electric wedge-trap detector and the reference detector
for the fiber system is an electrically calibrated pyro-
electric described elsewhere [2].

Figure 1 displays typical measurement results from
the monochromator system and the fiber system.
Measurements from the monochromator system
consist of the meter’s relative responsivity (A/W) at
10 nm increments (transmitted through air) over the
entire wavelength range of the meter. Measurements
from the fiber system represent the absolute responsiv-
ity at several laser wavelengths, typically at 850 nm,
1310 nm, and 1550 nm. In each calibration procedure,
measurements from the monochromator system are
normalized to higher accuracy measurements made
with the fiber system. That is, the results from the mono-
chromator-based measurement are adjusted (multiplied
by a constant) so that they agree as closely as possible
with the fiber-based measurements. The uncertainty of
the meter’s calibration depends on the disagreement
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between the fiber-based and the adjusted mono-
chromator-based results, as well as the uncertainties of
the independent measurements. Independent uncertain-
ty analysis of the fiber-based and monochromator-
based measurements, including various type A and type
B evaluations of uncertainties due to the working stan-
dard and optical sources, is given in [1]. In the present
work, we describe procedures for calculating the nor-
malized spectral responsivity and its uncertainty at each
wavelength increment. The procedures consist of a
least-squares estimation of the adjustment and a ratio
estimation of the spectral responsivity. We compare
two methods for calculating the uncertainty of the nor-
malized spectral responsivity. We use an example to
illustrate the procedures.

2. Measurement Adjustment

Determination of the adjustment is based on the
common spectral-responsivity measurements made at
selected laser wavelengths. Let k be the number of laser
wavelengths used, and (x i , y i), i = 1, ... , k, be the
fiber-based (xi ) and monochromator-based ( yi )
measurements at these laser wavelengths. Since the
measurement errors in xi are negligible relative to the

measurement errors in yi , an adjustment factor c can be
obtained by minimizing the sum of squares

and is given by

Once c is obtained, the monochromator-based
measurements yj are normalized by

(1)

Also, based on the standard regression analysis, the
square of the standard uncertainty of c is given by

with vc = k – 1 degrees of freedom.

3. Uncertainty Analysis

When one calculates the uncertainty of a ratio
estimate like y~j in (1), two distinct scenarios must be
recognized. The first involves dependent measurements
where the quantities in the numerator and denominator
are measured in the course of a single measurement
experiment. In this scenario, it is expected that common
sources of error exist that contribute to errors in esti-
mating both quantities. Hannig et al. [3] calculated the
uncertainty of the ratio estimate of dependent measure-
ments based on the method proposed in the ISO Guide
to the Expression of Uncertainty in Measurement
(GUM) [4] and used it to construct confidence inter-
vals. They compared the resulting GUM intervals with
intervals obtained from an exact method, known as
Fieller’s method [5], and concluded that the GUM
interval is very similar to the exact Fieller interval and
can be recommended in metrological applications.

For measurement experiments where the quantities
in the numerator and denominator are uncorrelated, as
in the case of y~j in this application, there is no exact
interval available. (The reason they are not correlated is
that c is determined from the measurements at laser
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Fig. 1. Spectral-responsivity measurements of a commercially
available optical fiber power meter based on a 5 mm diameter,
germanium photodiode. The empty circles are obtained from the
monochromator system. The solid circles are results from the fiber
system. The solid line represents the meter's spectral responsivity
calibration.
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wavelengths, while the yj used in calculating y~j are the
monochromator-based measurements at non-laser
wavelengths.) In this paper we first consider the GUM
approach and calculate the uncertainty of y~j as

where u (yj) is the combined standard uncertainty of the
monochromator-based measurement yj , which is dis-
cussed in detail in [1]. To obtain the expanded uncer-
tainty we need to obtain the effective degrees of free-
dom associated with u (y~j). The GUM recommends the
use of the Welch-Satterthwaite formula to evaluate the
degrees of freedom, which is given by

where ν b is the degrees of freedom corresponding to
u (yj).

In spectral-responsivity measurements, a single
relative uncertainty is calculated and reported for the
entire measurement curve due to the multiplicative
nature of the measurement equation [1]. That is, if we
use the symbol ur(y j) to denote the relative uncertainty
of y j , then

where b is a constant and does not depend on index j.
Similarly, the relative uncertainty of c is

As a consequence, we obtain the relative uncertainty of
the normalized measurement y~j as

(2)

and its associated effective degrees of freedom,

(3)

The relative expanded uncertainty of y~j is then given by

(4)

where t 0.975, ν is the 0.975 quantile of the t distribution
with ν degrees of freedom.

The Welch-Satterthwaite approximation in (3) is
known to be effective when the two degrees of freedom
ν b and ν c are of about the same order of magnitude [6].
Since in our calibration experiments, the number of
laser wavelengths used is typically equal to three, i.e.,
ν c = 2, and ν b is much larger than 2, we also consider
two alternative methods for calculating the relative
expanded uncertainty of y~j . The first alternative
method we consider is a fiducial procedure [7]-[11],
and the second is the method from Supplement 1 to the
GUM [12]. For the current application, these two alter-
native methods produce identical results, so we will
discuss only the Supplement 1 method here.

The Supplement 1 method obtains a probability
density function (pdf) for the measurand by propagat-
ing the pdf’s of the input quantities appearing in the
measurement equation.

The resulting pdf describes one’s knowledge of the
measurand given the observed data and assumptions
made in assigning the joint pdf of the input quantities
used in propagation. Once the pdf is obtained, a 95 %
uncertainty interval for the measurand can be construct-
ed by finding two limits such that the area under the pdf
between these limits is 95 %. For example, the limits
can be the 0.025 and 0.975 quantiles of the distribution.
The measurand for this problem is the true spectral
responsivity at each wavelength. Using the Supplement
1 approach, it can be shown that the pdf of the measur-
and is equivalent to the distribution of

where Tvb
(1) and Tvc

(2) are independent random variables
from the t distributions with ν b and ν c degrees of
freedom, respectively. We can also express Yj using the
relative uncertainties of yj and c as

(5)

Let z l and z 2 be the 0.025 and 0.975 quantiles of the
distribution of Yj ; then (z l , z 2 ) is a 95 % uncertainty
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interval for the true spectral responsivity at wave-
length j . Let

(6)

then

Since u r (yj) = b, Q r is free of index j . Consequently,
(z 1, z 2) = (y~j q1 , y~j q2 ), where q l and q 2 are the 0.025 and
0.975 quantiles of the distribution of Q r . Note that
q l and q 2 are the same for the entire wavelengths. To
obtain the expanded uncertainty from the uncertainty
interval (y~j q1 , y~j q2 ), we note that in a 95 % symmetric
interval of the form x ± U (x), the expanded uncertainty
U (x) is half of the interval width. We write

(7)

Since the interval (7) is not symmetric about y~j we
use the maximum of (1 – q l ) y~j and (q 2 – 1) y~j as the
expanded uncertainty of y~j . As a consequence, the
relative expanded uncertainty of y~j based on the
Supplement 1 method is given by

(8)

The quantiles q l and q 2 are most conveniently
estimated by use of a Monte Carlo approach. This
involves generating a large number of realizations
from the distribution of Q r and determining q l and q 2

empirically. A single realization may be generated as
follows:

1. Generate a realization of Tvb
(1) of a t random variable

with ν b degrees of freedom.
2. Generate a realization of Tvc

(2) of a t random variable
with ν c degrees of freedom, independent of Tvb

(1).
3. Calculate Q r as in (6).

We conduct a simulation study to compare the
coverage probabilities of the uncertainty intervals
constructed using U r and U*

r . The coverage probabili-
ties depend on the values of ν b and ν c , as well as the
true relative uncertainties of the monochromator-based
spectralresponsivity measurements (denoted by σ rm)
and of the adjustment factor (denoted by σ rc ). Table 1
displays the coverage probabilities of the GUM
and Supplement 1 intervals for various combinations
of σ rm , σ rc , ν b and ν c . The simulation parameters

used here are closely related to those we observed in
our calibration experiments. The standard error in each
entry of Table 1, based on the assumption of
binomial distribution and 10000 simulation runs, is

The above study indicates that the GUM intervals
perform well even for the extreme cases where ν b = ∞
and ν c = 2. The Supplement 1 intervals are more
conservative, which implies that U *

r is greater than
U r for the cases considered here. This is due to the
symmetrization of the Supplement 1 intervals that
expands the size of the intervals. As a consequence, we
use U r as the relative expanded uncertainty for the
absolute responsivity in the final calibration report.

4. An Example

We use the data shown in Fig. 1 to illustrate the
procedures described in Sec. 3. Measurements were
made at 10 nm increments over wavelengths from
750 nm to 1800 nm by use of a monochromator-based
system. A detailed uncertainty analysis for the system
[1] yielded a relative standard uncertainty of 0.62 %
with practically infinite degrees of freedom.
Measurements were also made at wavelengths 850 nm,
1310 nm, and 1550 nm by use of a fiber-based system
with a relative uncertainty of 0.25 %. The three pairs of 
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Table 1. Coverage probabilities of nominally 95 % GUM and
Supplement 1 intervals

σ rm (%) σ rc (%) ν b ν c GUM Sup 1

0.5 0.1 10 2 0.9515 0.9667
1 0.1 10 2 0.9471 0.9539
2 0.1 10 2 0.9500 0.9530
0.5 0.5 10 2 0.9509 0.9801
1 0.5 10 2 0.9567 0.9816
2 0.5 10 2 0.9527 0.9694
0.5 0.1 30 2 0.9497 0.9639
1 0.1 30 2 0.9501 0.9564
2 0.1 30 2 0.9489 0.9515
0.5 0.5 30 2 0.9447 0.9753
1 0.5 30 2 0.9493 0.9747
2 0.5 30 2 0.9510 0.9666
0.5 0.1 ∞ 2 0.9493 0.9628
1 0.1 ∞ 2 0.9522 0.9579
2 0.1 ∞ 2 0.9499 0.9529
0.5 0.5 ∞ 2 0.9451 0.9749
1 0.5 ∞ 2 0.9487 0.9751
2 0.5 ∞ 2 0.9504 0.9665



spectral-responsivity measurements (xi , yi ) (in A/W) at
these wavelengths are (0.233, 0.2307), (0.7125,
0.7119), and (0.8073, 0.7986). The adjustment factor
based on these three pairs of measurements is found
to be c = 0.9934193, with the standard uncertainty
u (c) = 0.00344334 or u r (c) = 0.346615 %. The line in
Fig. 1 shows the normalized spectral responsivity.

To calculate the uncertainty of the normalized
responsivity, we first calculate the effective degrees of
freedom in (3) as

The relative expanded uncertainty is then given by

For comparison, the relative expanded uncertainty found
by use of the Supplement 1 method is U *

r = 1.90 %
based on 500000 Monte Carlo samples.

5. Conclusion

In this paper we described procedures for calculating
the normalized spectral responsivity and its relative
expanded uncertainty. The normalization is based on
the common spectral responsivity measurements made
at some selected laser wavelengths. We compared two
methods based on the GUM and Supplement 1 to the
GUM for calculation of uncertainty. We used a simula-
tion study to demonstrate that the uncertainty intervals
constructed using the expanded uncertainty obtained
from the GUM approach maintain the nominal level of
95 % for all the parameters we encountered in our
experiments. Thus, the GUM-based expanded uncer-
tainty is given in the calibration report.
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