
1. Introduction

The issue of measurement uncertainty is becoming
increasingly relevant to both calibration laboratories
and factory floor metrology. In some cases measure-
ment uncertainty has significant economic impact on
the cost of a product. For example, the ISO standard
14253-1 [1] (default condition) requires the expanded
uncertainty to be subtracted from both ends of the prod-
uct tolerance yielding a smaller “conformance zone.” A
measurement result must lie in this zone in order for the
manufacturer to distribute the product. Avoiding over-
estimation of the measurement uncertainty can result in
a larger conformance zone and hence lower product
cost. In some situations the finite resolution of a meas-
uring instrument is a significant contributor to the
uncertainty statement. For example, the manufacturers
of hand held digital calipers typically set the resolution

of the instrument such that repeated measurements of
the same quantity yield nearly the same result, within
one or two units of the least count (i.e., resolution) of
the instrument. In principle the caliper would be more
accurate with an additional display digit, however, cus-
tomers often perceive quality as the ability of the
instrument to yield the same value for repeated meas-
urements. The uncertainty budget of a measurement
performed with a hand held instrument typically con-
tains only a few significant influence quantities since
most quantities such as the accuracy of its calibration
(typically reported at 20 °C) and thermal effects associ-
ated with the measurement are usually small compared
to the instrument resolution. Therefore the inclusion (or
not) of the uncertainty associated with the finite resolu-
tion of the display can significantly affect the magni-
tude of the reported uncertainty. Similar issues may
arise with the finite resolution introduced by analog to
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digital conversion electronics where repeated sampling
of a signal differs by only one or two bits.

In this paper we first examine some general proper-
ties of the probability distribution associated with a
measurement recorded with finite resolution and per-
turbed with Gaussian noise. The distribution of the
measurement results is generated via computer simula-
tion so that we can control the underlying population
mean (true value) and standard deviation (of Gaussian
noise) and produce large quantities of recorded meas-
urement results. We then examine how the finite reso-
lution and measurement noise impacts the uncertainty
evaluation under different measurement scenarios.

The Guide to the Expression of Uncertainty in
Measurement (GUM) [2] identifies the finite resolution
of a measuring instrument as a contributor to measure-
ment uncertainty of a measurement from that instru-
ment. It further suggests that this effect should be eval-
uated by a (Type B) uniform distribution with a full
width of one resolution unit, resulting in a standard
uncertainty of in units of the resolution (GUM
F.2.2.1). The GUM also suggests that this contribution
is uncorrelated to other uncertainty sources and that it
should be added in a root-sum-of-squares (RSS) man-
ner in the uncertainty statement (e.g., see GUM H.6).

Alternatively, ISO 14253-2 [3] recommends examin-
ing the standard uncertainty of the resolution relative to
the standard deviation of repeated measurements and
then including the larger of the two in the uncertainty
evaluation and discarding the lesser of the two. The
rationale of this method is that the resolution is already
intertwined with the standard deviation of repeated
measurements, since that data is recorded with the res-
olution of the instrument.

We summarize these two procedures as:

Rule 1: RSS the standard uncertainty of the resolution
(Type B via a uniform distribution) with the
uncertainty associated with the standard devia-
tion of repeated measurements in the uncer-
tainty evaluation.

Rule 2: Include the larger of the following two: the
standard uncertainty of the resolution (Type B
via a uniform distribution) and the standard
deviation of repeated measurements in the
uncertainty evaluation and discard the smaller
of the two.

Clearly Rule 1 and Rule 2 cannot both simultaneously
be the best estimate of the uncertainty for all measure-
ment cases.

There are two measurement scenarios we will con-
sider. The “special test” scenario involves constructing
an uncertainty statement for one specific measurement
quantity. Typically this will involve repeated observa-
tions of the quantity, each recorded with finite resolu-
tion. The best estimate of the measurand is considered
to be the mean of the repeated observations (after all
corrections are applied) and the uncertainty statement
will be associated with this mean value.

The “measurement process” scenario involves con-
structing an uncertainty statement that will be applica-
ble to a series of future measurement results. This is
typical of commercial metrology where a large number
of nearly identical artifacts or workpieces are produced
and only a single measurement, having finite resolu-
tion, is recorded. In this scenario, the uncertainty state-
ment is developed once and then associated with each
future (single observation) measurement result. The
uncertainty evaluation process will involve, among
other things, repeated measurements of calibrated arti-
facts, recorded with finite resolution, and used to char-
acterize the measurement variation.

Without loss of generality we consider the case
where a resolution increment has the value of unity, and
the infinite resolution value of the measurement, μ, lies
between zero and one-half (all other cases are modulo
this problem). We consider the case where the measure-
ment is corrupted by noise from a Gaussian distribution
with standard deviation σ. The situation of interest will
be for σ < 1 since large σ is equivalent to infinite reso-
lution. Our approach will be to examine both the spe-
cial test scenario and the measurement process scenario
in the limit of large sample size.

2. Probability Distributions

In the limit of large sample size, expectation values
are estimated by sample statistics. Finite resolution
requires that only integer values will be observed.
Hence a continuous probability distribution function
(pdf) becomes a discrete pdf that can be written:

(1)
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where w is the probability mass function, δ (x – n) is a
delta function, and Φ is the cumulative probability dis-
tribution function. Figure 1 illustrates the quantization
(using Eq. (1)) of a Gaussian distribution with μ = 0.4
and σ = 1.

3. Descriptive Statistics: Mean and
Standard Deviation

Using the discrete probability distribution, expecta-
tion values can be calculated. The expected value of the

mean, x̄, and the standard deviation, s, can be calculat-
ed from:

(2)

Figure 2 displays plots of x̄ and s for relevant values of
μ and σ. The plot for x̄ shows the expected step func-
tion (due to the discrete resolution) at μ = 0.5 when
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Fig. 1. (a) A Gaussian distribution with μ = 0.4 and σ = 1 together with a comb function
representing the instrument’s finite resolution. (b) The corresponding discrete distribution
with values at the integer values equal to the probability mass function.
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σ → 0, and the expected behavior x̄ → μ for large σ.
Similarly, the plot for s displays the expected rapid rise
when μ → 0.5 and σ is small, and the expected behav-
ior s → σ for large σ.

An interesting and intuitive feature of Fig. 2 can be
more easily seen in Fig. 3, which shows the mean x̄ as
a function of σ for various values of μ. For any given
value of x̄ ≤ 0.5, which is a horizontal line on Fig. 3,

the possible values of μ are always greater than x̄.
(Equivalently stated, for 0 ≤ μ ≤ 0.5 and any σ, then
x̄ ≤ μ). Hence the observed discrete population mean is
always biased toward the closest resolution increment
regardless of the value of σ (for large σ this bias
becomes insignificant). For small σ, e.g., σ < 0.5, it is
incorrect to believe that uncertainty associated with the
sample mean approaches zero as a result of averaging a
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Fig. 2. Plots of (a) the sample mean, x̄, and (b) sample standard deviation, s, as a func-
tion of μ and σ for data recorded with a resolution of unity.

(a)

(b)



large sample; rather it approaches a fixed value result-
ing in a systematic error.

Figure 4 shows the dependence of s on σ for various
values of μ. As σ becomes large, s → σ, approaching it
from above. The slight overestimation of σ by s is well
known and the difference is called “Sheppard’s correc-
tion” [4]. We further point out that s ≥ σ when s >
regardless of μ. Similarly,    ≥ σ when s <    regard-
less of μ; hence Max[ , s] ≥ σ for all μ, a fact we will
make use of later.

What is not obvious from examining the previous
plots is the interaction of x̄ and s. In particular, there are
combinations of x̄ and s that are forbidden. We examine
this by creating a dense grid of (μ, σ) pairs over the
domain 0 ≤ μ ≤ 0.5 and 0 ≤ σ ≤ 0.5. For each (μ, σ) we
create (numerically, with a sample size of 10,000) a
finite resolution sample of Gaussian distributed values
and calculate the corresponding mean ( x̄ ) and standard
deviation (s). Figure 5 shows a plot of the resulting x̄, s
space, showing that there is a disk with a radius of one-
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Fig. 3. Plot of x̄ vs. σ for various values of μ; note that for any particular x̄ the possible values of μ are always
greater than x̄ resulting in a bias of x̄ toward the resolution unit.
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Fig. 4. Plot of the standard deviation of the finite resolution population as a function of the standard deviation
of the Gaussian noise.
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Fig. 5. (a) the value of x̄, s, and  x̄ – μ for all combinations of 0 ≤ μ ≤ 0.5 and 0 ≤ σ ≤ 0.5;
(b) the 2D plot of the x̄, s, coordinates shown in (a) using the same color coding for the
systematic error.
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half resolution unit, as described in Eq. (3), inside
which no combination of x̄ and s values can occur.

(3)

The dense set of x̄, s coordinates that occur on the disk
boundary is understood by considering values of n
where the equality in Eq. (3) holds, i.e., the disk bound-
ry. Since each term in the infinite sum in Eq. (3) must
be positive or zero, the equality can only hold when
infinite sum of the terms w(μ, σ, n)(n2 – n) is zero. This
occurs when the weight functions w(μ, σ, 0) + w(μ, σ,
1) = 1. That is, for any μ (0 ≤ μ ≤ 0.5) and σ such that
Φ(μ, σ, 1 ) – Φ(μ, σ, – ) = 1 then all of the probability
is contained in the weight functions w(μ, σ, 0) and
w(μ, σ, 1) and hence the infinite sum of the terms
w(μ, σ, n)(n2 – n) is zero. Hence, when the equality of
Eq. (3) holds the values of x̄ and s satisfy the equation
of a circle with a radius one half resolution unit. (Since
all Gaussian distributions have some probability, albeit
infinitesimal, to extend to infinity, the disk radius is
actually a limiting value.)

The Z dimension in Fig. 5 corresponds to the system-
atic (i.e., expected) error x̄ – μ that is associated with
each (μ, σ) point. As previously described, the expect-
ed error is always biased toward the resolution unit, i.e.,
the bias is negative as shown in the Z coordinate of Fig.
5. Furthermore, as seen in the figure, it is only the

values where that are significant-

ly biased while other values of x̄, s away from this disk
edge rapidly become an unbiased estimator of μ.

The magnitude of the systematic error, x̄ – μ, values
that lie on the disk edge of Fig. 5 is shown in Fig. 6(a).
Also shown in Fig. 6(a) is the lower bound of the
expected error given by x̄ – ½. Note that the range of
errors for a given x̄ results from different μ, σ points
mapping to the same value of x̄, but having different
systematic errors. Figure 6(b) shows the points in μ, σ
space that map to values of x̄, s that lie on the disk
boundary; this represents a significant region of μ, σ
space and thus gives rise to the density of x̄, s points on
the disk boundary shown in Fig. 5. The points shown in
red in Fig. 6(b) all map very close to the point x̄ = 0,
s = 0.

It is tempting to apply a correction for the average
systematic error (as a function of x̄ ) to obtain a better
estimate of μ. However, since the bias is nearly a step

function that rapidly approaches zero away from the
disk edge, applying such a correction based on the
proximity of the  x̄, s coordinate to the disk edge is sub-
ject to misapplication due to statistical variations
expected in any finite sample size. A simpler but crud-
er approximation would be to use the uncorrected value
of x̄ and consider the systematic error to be bounded
between zero and the line x̄ – 0.5 whenever s ≤ 0.6. We
will consider an uncertainty rule based on this approx-
imation for the special test scenario.

4. Errors and Level of Confidence

For the discrete pdf given by Eq. (1) with standard
deviation given by Eq. (2) we can explore the relation-
ship between the standard deviation and the level of
confidence, i.e., the coverage factor. Although we are
considering random Gaussian noise corrupting our
measurement result, the subsequent rounding due to
finite resolution significantly changes the level of con-
fidence for a coverage factor of k = 2, particularly when
σ < 0.5. We can gain some insight into this effect by
examining the magnitude of the error at the 95th per-
centile in relation to the magnitude of the standard
deviation. The magnitude of the error that occurs at the
95th percentile is given by the cumulative probability
distribution associated with Eq. (1) and evaluated to
determine the integer, n95% , and the corresponding error
value, ε95% , by increasing the number of terms in Eq.
(4) until the inequality just holds.

(4)

Clearly ε95% will depend on the particular values of μ
and σ, and we expect that ε95% will also display the dis-
creteness of the underlying discrete pdf. For example,
as σ increases with μ fixed, ε95% will remain fixed until
the inequality in Eq. (4) is violated forcing the addition
of another term to the cumulative probability and a cor-
responding jump in the value of ε95%. Figure 7(a) shows
the ε95% value over the region: 0 ≤ μ ≤ 0.5 and 0 ≤ σ ≤ 1.
Figure 7(b) displays the required coverage factor to
achieve a 95 % level of confidence, i.e., k = ε95% /s. For
μ small but nonzero and σ small, the coverage factor
approaches infinity since all the measured values of x
yield zero, resulting in s → 0 while x – μ remains finite.
One method to avoid infinite coverage factors is to
establish a finite lower bound for the standard uncer-
tainty; this is employed by Rules 1 and 2.
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(a)

(b)

Fig. 6. (a) the error ( x̄ – μ) for points on the disk boundary shown in Fig. 5 together with
the bounding curve x̄ – ½ shown in blue. (b) The points in μ, σ space that map to the disk
boundary; the red points all map very close to x̄ = 0, s = 0.



5. Measurement Process Scenario

In the measurement process scenario an uncertainty
evaluation is performed on a measurement system and
then a future (single observation) measurement result,
x, which represents the best estimate of the measurand
is assigned an uncertainty based on the prior evalua-

tion. Since x is a single reading from an instrument hav-
ing resolution R, and in this paper we take R = 1, hence
x must be an integer.

One complicating factor in this scenario is that the
reproducibility evaluation is conducted on a reference
artifact having some value μRef while the uncertainty
statement is relevant to a future measurement having a
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(a)

(b)

Fig. 7. (a) The 95th percentile error (in units of resolution) as a function of the true value
(μ) and the standard deviation of the Gaussian noise (σ); (b) the corresponding coverage
factor required to include the 95th percentile error.



different (infinite resolution) value μ, and the two val-
ues are independent. For example, consider calibrating
100 mm long artifacts with an instrument having
0.01 mm of resolution. The reference artifact on which
the uncertainty evaluation is based might be 100.002 mm
long, where as the artifacts to be measured in the future
will each have some other value, e.g., 99.997 mm.
Hence all of the measurements used in the uncertainty
evaluation to determine s (based on a large sample of
measurements) will depend on the particular value of
μRef , and different values of μRef will yield different val-
ues of s; see Fig. 2b. Note that the best estimate of the
reference artifact, x̄Ref , is discarded since it provides no
information about the value of the future measurement
result.

In this paper we will examine only two values for
μRef . It is frequently the case that reference artifacts
used in uncertainty evaluations have a value that is
exactly on a unit of resolution; we denote this case as
μRef = 0. An example of this would be a digital caliper
reading in units of inches that is evaluated by examin-
ing repeated measurements on gauge blocks from an
English (inch based) set. The caliper may have a reso-
lution of 0.001 inch and the gauge blocks will be with-
in a few microinches of some multiple of 0.001 inch.
(Note for this condition to hold, the systematic error of
the instrument must be small with respect to the resolu-
tion.)

Alternatively, we examine the case where the refer-
ence artifact has a uniform probability of being distrib-
uted between 0 and 0.5, we denoted case as μRef = Σμ.
In the previous example of the caliper, this could occur
when repeated measurements are made on several dif-
ferent metric gauge blocks using an inch based caliper,
and the results are pooled to obtain the standard deviation.

We consider three rules to evaluate the standard
uncertainty due to finite resolution and repeatability in
the measurement process scenario given in Eq. (5);

(5)

where R is the resolution (in this paper R = 1), and
s(μRef) is the standard deviation of a large sample of
measurements on an artifact with a (infinite resolution)
value μRef .

Rules 1 and 2 are based on the GUM and ISO 14253-2
respectively, as previously described. Rule 3 includes

the observation that Max[ , s] ≥ σ.

All three rules contain two quantities, one dependent
on R and the other on s, and a prescription to combine

them. The first quantity (with R = 1) has the value

and represents the standard uncertainty associated with
a uniform distribution with limits ± ½, representing the
fact that the single (future) observation x could be
located anywhere in the resolution interval. The second
quantity is an estimate of the underlying population
variance σ, which gives rise to the observed variation in
x. That is, the first quantity accounts for the ambiguity
due to the resolution and the second quantity accounts
for the reproducibility of the measurement result.

Rule 1 always uses the calculated standard deviation
as an estimate for σ. However, when σ is small, s can
underestimate σ, e.g., if μ = 0 and σ = 0.2 nearly all of
the repeated observations will be zero and hence s ≈ 0.
Rule 2 also estimates σ using s and then selects the
larger of s or the standard uncertainty of the resolution.
We can expect that by omitting one of the two uncer-
tainty sources, that Rule 2 will underestimate the uncer-
tainty associated with the measurand. We introduce
Rule 3 that estimates σ by selecting a quantity that is an
upper bound for σ, as previously noted in Sec. 3.

6. Testing the Uncertainty Rules for the
Measurement Process Scenario

We can estimate how effective these rules are in pro-
ducing expanded uncertainty intervals that contain the
reasonable values that can be attributed to the measur-
and. In the measurement process scenario, the single
measurement result, x, is determined by the value of μ
(which is a property of the object but is unknown), cor-
rupted by a random perturbation arising from σ, and
rounded to the resolution unit. We can imagine that this
measurement is repeated a large number of times and
then ask what fraction of the errors are contained in the
uncertainty statement, where the error is ε = x – μ, and
is due to the random Gaussian perturbation and the
rounding to an integer value. We will adopt this view-
point since, in commercial metrology, it is typical to
construct an expanded uncertainty using the coverage
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factor k = 2 and then expect that 95 % of the potential
measurement errors will be contained within this
interval.

One complicating factor in the measurement process
scenario is that the probability that a future measure-
ment result will be contained within the expanded
(k = 2) uncertainty interval is a function of three popu-
lation variables: μRef , μ, and σ. Our approach will be to
fix the population variables, evaluate the expanded
uncertainty, U, and then draw a large number of sam-
ples (each representing a future measurement) and
determine what fraction are contained within the
expanded uncertainty interval. We will then select
another set of population variables and continue this
methodology until we have examined the set of popu-
lation variables of interest.

Figure 8 displays the probability that a future meas-
urement result will be contained within the expanded
uncertainty interval evaluated by Rule 1 (the GUM
rule) with μRef = 0 over the domain 0 ≤ μ ≤ 0.5 and 0 <
σ ≤ 1. As seen in the figure, the surface consists of a rel-
atively flat mesa having a containment probability near
unity, interrupted by abrupt canyons of significantly
lower containment probability. The corresponding plots
using Rule 2 and Rule 3 are similar, but with broader
and deeper canyons, and narrower and shallower
canyons, respectively. We note that in Fig. 8, and in the

associated three statistics in Table 1, the containment
probability only addresses the question of what fraction
of errors (for a particular μ, σ) are contained in the
uncertainty interval; it does not address their relative
position within the interval. Hence the same contain-
ment probability would be assigned to two different
distributions having the same fraction of uncontained
errors, despite the fact that one distribution might have
the uncontained errors only slightly away from the
uncertainty interval and the other may have its uncon-
tained errors grossly away from the uncertainty interval.

Table 1 summarizes these results. Min P is the mini-
mum containment probability over the domain of pop-
ulation variables examined. That is, over the domain of
μ, σ values considered, find the particular value of μ, σ
that has the smallest containment probability and report
that value as Min P. For example, when Rule 1 is eval-
uated with μRef = 0, the minimum containment probabil-
ity occurs at σ = 0.15 and μ = 0.4; that is, for this set of
values a (randomly chosen) future measurement result
has only a 0.75 probability of being contained in the
expanded uncertainty interval of this rule. The Min P
value tells us something about the lowest point on the
surface shown in Fig. 8.

Avg P is the average probability of a measurement
error containment over all values of μ, σ considered;
for the previous example of Rule 1 with μRef = 0,
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Fig. 8. A plot of the probability that the measurement error of a single observation (hav-
ing value μ and corrupted by Gaussian noise of standard deviation σ) will be contained
within the expanded uncertainty of Rule 1 evaluated with μRef = 0.



Avg P(x ≤ U) = 0.97, hence the probability of error con-
tainment for most values of μ and σ is near unity.

Most metrologists expect approximately 95 % of the
potential measurement errors to be contained in the
expanded (k = 2) uncertainty interval. However, even
for the infinite resolution case of a Gaussian popula-
tion, 95 % is the expected fraction of error contain-
ment, and any finite sample size will have slightly
more, or slightly less, than 95 % of the deviations from
the mean contained within 2 s. As another measure of
the effectiveness of an uncertainty rule, we introduce
the percentage of the surface of Fig. 8 that does not
include at least a 94 % containment probability; this is
denoted % P ≤ 0.94. The value of 0.94 was selected
since, for the selected sample sizes, the corresponding
infinite resolution case always included at least this
fraction of the errors. Note both the % P ≤ 0.94 and
Avg P(x ≤ U) depend on the extent of the μ, σ domain
under consideration, hence they are relative metrics
that are only useful when comparing rules over the
same μ, σ domain. (All values in Table 1 and Table 2
were generated numerically, and used sample sizes of
10,000; the uncertainty in the results is estimated at
0.03 resolution units.)

From Table 1 we see that none of the three (ad hoc)
rules guarantees 95 % error containment for all values
of μ and σ, with Rule 2 failing this criteria 30 % of the
time for the μRef = 0 case. All of the three rules benefit-
ed from computing the standard deviation of the meas-
urement process using many reference standards with
different values and pooling the results, i.e., the μRef =
Σμ case. Indeed, for the μRef = Σμ case, Rule 1 (GUM)
performance approached that of Rule 3 without the
need to compare the relative size of s to the standard
uncertainty of the resolution, as required in both Rule 2
and Rule 3.

Also shown in Table 1 are three statistics that
describe the difference between the expanded uncer-
tainty and the magnitude of the 95th percentile error,
|ε95%|. This tells us something about the amount of the
over (or under) estimation of the uncertainty interval.

As might be expected for simple ad-hoc uncertainty
rules, none of the three rules adapts itself well to the
discontinuous nature of the discrete pdf, e.g., see Fig. 7,
and at some values of μ, σ they significantly overesti-
mate the magnitude of |ε95%|, while at other points they
underestimate its magnitude. These statistics will be of
more value for the special test measurement scenario.

7. Special Test Scenario

In the special test scenario, repeated observations are
used to calculate both the sample mean (which in gen-
eral will not be an integer) and the standard deviation,
and these can be expected to approach the discrete pop-
ulation mean and standard deviation x̄, s, in the limit of
large sample size. Hence, in this scenario the number of
observations used to calculate x̄, Nx̄ , is the same as the
number of observations used to calculate the standard
deviation s. In the special test scenario, see Eq. (7), the
GUM rule (Rule 1) combines the uncertainty of the res-
olution unit with the standard deviation of the sample
mean. For large samples, the uncertainty associated
with the resolution unit will clearly dominate since the
standard deviation of the mean scales as .
Similarly, the ISO rule (Rule 2) selects the larger of the
two terms; hence we expect these two rules to be simi-
lar since the uncertainty of the resolution unit domi-
nates the standard deviation of the mean in both cases.
Consequently, it is clear that for large sample sizes both
of these rules overestimate the uncertainty associated
with x̄.

For Rule 3 we use our observation that near the for-
bidden disk region (rather crudely described by the
region s ≤ 0.6) x̄ is a biased estimator of μ and the value
of μ is contained in the interval x̄ ≤ μ ≤ 0.5 as seen in
Fig. 3. While in principle a correction should be applied
to account for this bias, in practice the typical user is
unlikely to accommodate such an inconvenience.
Consequently, we describe the ignorance in the location
of μ by a uniform distribution as seen in Rule 3 of
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Table 1. Measurement Process Scenario

Rule 1 (GUM) Rule 2 (ISO) Rule 3 ∞ Resolution
μRef = 0 μRef = Σμ μRef = 0 μRef = Σμ μRef = 0 μRef = Σμ U = 2 s

Min P(x ≤ U) 0.75 0.84 0.65 0.74 0.85 0.91 0.94
Avg P(x ≤ U) 0.97 0.98 0.95 0.97 0.98 0.98 0.95
% P ≤ 0.94 13 % 7 % 30 % 19 % 10 % 5 % 0.00
Avg (U – |ε95|) 0.23 0.29 0.12 0.16 0.27 0.30 0.02
Max (U – |ε95|) 0.69 0.89 0.58 0.76 0.81 0.89 0.07
Min (U – |ε95|) –0.13 –0.25 –0.38 –0.48 –0.15 –0.14 0.00

1/ xN



Eq. (7). Furthermore, Rule 3 includes the observation

that Max[ , s] ≥ σ ; outside the disk region Rule 3

treats the uncertainty evaluation as the infinite resolu-
tion case.

(7)

8. Testing the Uncertainty Rules for the
Special Test Scenario

In the case of a large sample size the values of both
x̄ and s become relatively stable and consequently the
magnitude of the systematic error |x̄ – μ | and the uncer-
tainty rule become stable. Hence we can consider the
quantity U – |x̄ – μ | over a region of μ, σ values to
determine whether or not a particular uncertainty rule
contains the systematic error.

Table 2 displays the information regarding the con-
tainment probability for the three rules as applied to the
special test scenario. Both Rule 1 and Rule 2 greatly
overestimate the uncertainty associated with the mean
and hence always contain 100 % of the errors. Rule 3
more closely approaches the 95 % error containment
interpretation with a minimum containment probability
of 0.94 and an average (over the μ, σ values consid-
ered) of 0.98.

To consider the magnitude of the overestimation we
examine the expected values of the difference between
the expanded uncertainty and |ε95%|. As previously sug-
gested, Rule 1 and Rule 2 behave similarly, and both
typically overestimate |ε95%| by one-half a resolution
unit. Rule 3 does significantly better by more closely

matching the expanded uncertainty to the |ε95%| value,
with an average overestimation of 0.15 resolution units. 

Table 2. Special Test Scenario

Rule 1 Rule 2 Rule 3
(GUM) (ISO)

Min P(x ≤ U) 1.0 1.0 0.94
Avg P(x ≤ U) 1.0 1.0 0.98
% P ≤ 0.94 0 0 1 %
Avg U – |ε95| 0.51 0.50 0.15
Max U – |ε95| 0.58 0.58 0.58
Min U – |ε95| 0.18 0.18 –0.01

In the special test scenario with a large sample size,

Rule 1 and Rule 2 become identical with

and Rule 3 yields if s < 0.6 and u(x̄ ) → 0

if s ≥ 0.6. Elster [5] has examined the general solution
for the special test scenario using Bayesian calcula-
tions. He also considered the special case of data with
an equal number of ones and zeros (hence x̄ = 0.5 and
s = 0.25), and showed for large samples that the best
estimate of μ was the mean x̄ = ½ and u(x̄ ) → 0; this
result is given by Rule 3 but not by Rule 1 and Rule 2,

which yield

9. Conclusions

We have examined the statistics associated with data
recorded with finite resolution in the limit of large sam-
ple size. Due to finite resolution, there exists a disk

defined by inside which the val-

ues of x̄, s are forbidden. Furthermore, values of x̄ that
occur on the boundary of the disk are always (except
for the μ = 0 and μ = 0.5 case) systematically biased
toward the resolution unit. Away from the disk bound-
ary x̄ rapidly becomes an unbiased estimator of μ.

We have also considered three simple ad-hoc rules
for evaluating the uncertainty due to finite resolution,
including those recommended for the by the GUM and
ISO 14253-2.

For the measurement process scenario and using the
criterion that the (k = 2) expanded uncertainty should
include approximately 95 % of the potential errors, we
found that the ISO 14253-2 rule underestimates the
uncertainty for roughly 30 % of the μ, σ values, while
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the GUM rule and Rule 3 do significantly better.
Additionally, we pointed out that evaluating the stan-
dard deviation of repeated measurements using several
different reference artifacts, with values that are not
increments of the resolution unit, improves the contain-
ment probability for all the uncertainty rules examined. 

For the special test scenario, where a large number of
measurements are available to compute the mean value
and the standard deviation, both the GUM and ISO
14253-2 rules greatly overestimate the uncertainty of
the mean for large sample sizes. This overestimation
results from setting a lower limit for the uncertainty

equal to regardless of sample size or the value of

the standard deviation. Rule 3 more closely matches the
expanded uncertainty to the 95th percentile error while
still maintaining a 95 % error containment probability.
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