
1. Introduction

Flow control and optimization has been an experimen-
tal science for well over 100 years, with an early exam-
ple being the work by Prandtl [1] in the early 1900s. The
bulk of the early work on flow control and optimization
fall into two categories: attempts to control fluid motion
without the use of sophisticated fluid models involving
partial differential equations (e.g., design of heating and
cooling systems in a building) and attempts to control
fluid motion without the use of sophisticated optimiza-
tion techniques (e.g., boundary layer control), but using
sophisticated fluid models. More recently, because of a
better understanding of the equations governing fluid
flow, more robust and better optimization algorithms
have been employed, together with sophisticated fluid
models to solve very complicated flow control and flow
design problems. (see for example [2-3] ).

Flow in or through a circular annulus driven by rota-
tion of the inner cylinder has been of interest since the
work of Taylor [4]. One way to influence this flow is
to change the geometry of either the inner or outer cylin-
der. Rotation of a shaft with axially-varying radius gives
rise to a radial velocity component at any non-zero rota-
tion rate, which in turn provides convective mixing in the
radial direction. It has been shown that for the case of
axisymmetric, axially-periodic variation of the inner
cylinder radius, one can achieve significant modification
of the flow [5]. By contrast, at rotation rates below the
onset of Taylor vortices, a constant-radius shaft provides
no radial mixing beyond diffusion. This, and the absence
of sharp edges, may make this approach attractive for
applications where cell damage must be avoided; thus
controlling this flow is of interest.

Selecting an objective function to optimize is an
application and problem specific challenge. The
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governing Navier-Stokes equations are highly nonlin-
ear partial differential equations (quadratic in the veloc-
ity), making simulation a computationally demanding
task. Moreover, provisions must be made for changes in
the shape of the boundary. This can be dealt with by
using a grid that includes the entire domain (i.e., grid
the solid and fluid portions of the domain) and a grid
spacing that does not change from one geometry to
another [2]. This method could be inefficient in that
grid points in the solid portion of the domain would
either need to be removed by algebraic manipulation or
have their velocity components set to zero. A fictitious
domain method could be employed [2].

In simulation-based optimization settings, a comput-
er simulation must be run repeatedly, in order to com-
pute the various quantities needed by the optimization
algorithm. The resulting simulation output must then be
postprocessed in order to evaluate the cost function.
The cost of computing the cost function is small when
compared with that of obtaining derivatives for gradi-
ent-based methods, but in many cases these derivatives
are not accurate, not available, or simply too costly to
calculate [6]. Although automatic differentiation tools
have been shown to be effective for some types of
simulation-based problems, they are not universally
applicable [7]. Results of complex calculations may fail
to have the level of precision necessary for a reliable
finite-difference approximation to the gradient, elimi-
nating Newton or quasi-Newton methods as possible
optimization algorithms. In general, features such as
adaptive algorithms, stopping tests in iterative schemes
inside the simulation, and the inevitable effect of float-
ing point arithmetic are among the culprits that cause
smooth problems to appear nonsmooth [6]. For these
reasons, and the fact that one can parameterize a large
class of shapes with a small number of parameters (in
this case no more than five), a direct search method can
be employed to efficiently and effectively find optimal
shaft shapes.

The paper is organized as follows: the fluid dynam-
ics problem is reviewed in §2, followed by a descrip-
tion of the optimization approach in §3. Results and
discussion are presented in §4, followed by conclusions
in §5.

2. Flow

This section provides a brief review of the formula-
tion and the numerical method used in computing
axisymmetric solutions (i.e., solutions that are invariant 

along the azimuthal coordinate) of the incompressible
Navier-Stokes equations for flow between a fixed outer
circular cylinder and a rotating coaxial inner shaft with
either rectangular or sinusoidal shape.

Work on extended (i.e., periodic or random) radius
variation includes experimental work [8-19], while
related work on the effect of localized radius variation
has been reported in [20-22]. The most detailed of the
experimental investigations are those of [8] and [9] (see
[5] for a detailed review of previous work). On the
computational side, the most detailed calculations are
those of [5], in which bifurcation behavior results as a
function of flow rate were presented for a radius ratio
of η = R^

i /R0 = 0.5 (where R^
i and R0 are defined

below) and several values of the radial amplitude.

2.1 Formulation
In this section, we define the governing equations

without specifying the exact shape of the boundary. In
general, the geometry of interest is that of a fixed outer
circular cylinder and an inner coaxial rotating shaft
with topography. Axisymmetric steady flows in this
geometry are determined by solving the full Navier-
Stokes equations in the actual domain. The governing
equations and boundary conditions are nondimension-
alized by scaling the dimensional coordinates R and Z
with the outer radius, R0, and the axial wavelength, L,
respectively, while the velocity and pressure are nondi-
mensionalized using Ωi R^

i and ρΩ i
2 R^

i
2, respectively;

where ρ is the fluid density, Ωi is the angular velocity
of the inner shaft, and R^

i is an appropriate measure of
the inner radius (e.g., the mean inner shaft radius).
Radius R^

i will be defined more precisely, later in this
section when the shaft cross-sectional shapes are
introduced.

In an inertial reference frame, the dimensionless
continuity and momentum equations are

(1a)

(1b)

(1c)

(1d)
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where

(2)

β = R0 /L is the length scale ratio, and Ta = (Ωi R^
i R0)/ν

is the Taylor number, where ν is the kinematic viscosi-
ty of the fluid.

We enforce no-slip conditions on the rigid imperme-
able inner shaft and outer circular cylinder

(3a,b)

(3c,d)

(3e,f)

and the flow is assumed to be axially periodic

(4a)

(4b)

(4c)

In this work two shaft shapes are considered; an
azimuthal groove of rectangular cross section (Fig. la)
and an azimuthal groove of sinusoidal cross section
(Fig. lb). In a plane passing through the symmetry axis of
the outer cylinder, Figs. la and lb show the two shaft geo-
metries considered. In Fig. la, (ζ = (R0 – Rl)/(R0 – Ri) is
the clearance ratio, and τ = l/L is the groove width ratio,
where R1 is the radius of the flight and l is the groove
width. This geometry is fully defined by setting β, η, ζ,
and τ. Figure lb shows the sinusoidal inner shaft geome-
try with the inner radius varying according to

(5)

where ε is the amplitude of the radial modulation. This
geometry is fully defined by setting β, η, and ε.

Note that the precise value of R^
i depends on the

geometry considered. For the rectangular groove case
the radial length scale was chosen to be the hub radius
(i.e., R^

i = Ri), while for the sinusoidal groove case the
mean inner radius (i.e., R^

i = R–i) is used. Thus, the pre-
cise definitions of η and Ta also depend on which
geometry one is considering.

2.2 Numerical Method

The momentum and continuity equations are solved
numerically using a finite-element method, employing
isoparametric quadrilateral elements with quadratic
velocity and discontinuous linear pressure interpolation
(cf. [23-25]); a consistent penalty method to satisfy
incompressibility Eq. (la) and a 5 × 5 Gaussian quadra-
ture rule for numerical integration. A structured ortho-
gonal mesh with the capability to adjust mesh density
throughout the computational domain provides flexibil-
ity to locally add more points to resolve relevant flow
structures.
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Fig. 1. Shaft geometry and computational domain. (a) azimuthal
groove of rectangular shape, (b) azimuthal groove of sinusoidal
shape.



Discretization of Eq. (1) leads to a quadratically non-
linear algebraic system of the form

(6)

which is solved by Newton iteration. If needed, con-
verged solutions at one spatial resolution (or lower Ta)
can be interpolated to get an initial iterate for the next-
higher resolution. The convergence criteria were that
both ||R|| and ||vn + 1 – vn|| / ||vn|| be less than 10–4, where
||⋅|| denotes an L2-norm [25], R is the residual vector
used by the Newton iteration, and v is the velocity
vector. A grid convergence study has been performed
for various geometric parameter combinations span-
ning the ranges considered in the work. Grid spacing
gives well converged solutions (i.e., changing less than
1 % with increased spatial resolution) for any para-
meter combination considered. Results given in this
paper are converged to the number of significant
figures shown. See [5] for convergence results.

3. Optimization

Scalar measures of the flow and an objective func-
tion are defined in this section. The problem of finding
optimal shapes is considered in two stages; simulation
of the fluid dynamics and parameter optimization. A
finite element method, as described in the previous
section, can be used to perform the simulation computa-
tions, while a direct search software package, APPSPACK
[26], is employed to estimate optimal flow parameters.

3.1 Formulation

Consider the volume averaged L2-norm squared of
the velocity (γυ) and vorticity vectors (γω)

(7a)

(7b)

where w is the vorticity vector. We note that these
measures, for example, could be used to investigate
mixing using only the velocity field, thus they have not
been arbitrarily chosen.

We define the following objective function

(8)

where J = αγυ + (1 – α)γω is a convex combination of
Eqs. (7a) and (7b), α is a constant taking on values
between zero and one, Jd is a desired value of J, and Γ
is a measure of the topography. We note that Γ differs
between shaft shapes, with it being the dimensionless
flight height, (1 – η)(1 – ζ), for the rectangular groove
and the dimensionless amplitude, ε, for the sinusoidal
groove. Minimumization of Eq. (8) over the geometric
parameter space allows one to find the shaft shape that
gives a value of J closest to the desired value, while
also trying to keep the topography to a minimum. We
note, for the sinusoidal groove case, that there exists a
relationship between η and ε that must be taken into
consideration. This relationship takes the form of a con-
straint on ε

(9)

Because the software package APPSPACK is
employed, which handles only bound constraints, the
constraint Eq. (9) must be handled by other means. In
this work, constraints are handled through a special
penalty function in the same way as employed by [2].
The penalty function penalizes infeasibility but returns
a smaller function value for points that simultaneously
reduce the objective function and infeasibility. In this
way, the algorithm steers iterates away from points that
are not physically possible (e.g., the gap width goes
negative).

4. Results and Discussion

In this work, the simplest axisymmetric flow possi-
ble is investigated and optimal shaft shapes are calcu-
lated. For a smooth shaft, the location of the first bi-
furcation from purely azimuthal flow to something
more complex (e.g., for η = 0.5 the first bifurcation is
to a steady and axisymmetric secondary flow and takes
place at about Ta = 68.19) is strongly dependent on the
value of the radius ratio. Significant modifications in
solution topology have been shown to take place after
the first bifurcation [5]. It is also known that the loca-
tion of the first bifurcation decreases with increasing
radius ratio [27-29]. Previous results [5] suggest that
the location of the first bifurcation is significantly
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affected by topography, where for large amplitude
cases results show that the location of the first bifurca-
tion relocates to higher values of Ta (i.e., the modified
Couette flow is much more stable than the smooth
walled case). Computational results for Ta = 10 are
presented. This value was selected, in part, because it
lies below the first bifurcation for any smooth shaft
case for the combinations of geometric parameters
considered here. This insures that solutions remain on a
single solution branch, allowing for the optimal shaft
shape to be solution branch independent (see [5] for
solution branch details).

In order to gage the effect β has on the flow field, we
have defined an aspect ratio based on the gap and axial
wavelength Λ = H/L, where H = (R0 – Ri) for the rec-
tangular azimuthal groove case and H = (R0 – R–i) for
the sinusoidal azimuthal groove case. This ratio can
also be written in dimensionless form as Λ = β (1 – η),
where η is defined differently for each shaft shape, as
discussed in §3. We note that figures are shown with
respect to this aspect ratio.

4.1 Rectangular Groove
In this section, optimal shaft shapes for the rectangu-

lar groove case are calculated. Geometric control
parameters needed to fully define this geometry take on
values in the following ranges

(10a, b)

(10c, d)

For each α, F is minimized for both attainable and
unattainable choices of Jd , demonstrating that one can
compute an optimal topography that generates this
value without changing the rotation speed of the shaft.
The results for α = 0.5 are qualitatively similar to those
for α = 0; thus, results for α = 0.5 are not shown.

αα = 0. For α = 0, Figs. 2(a-d) show streamfunction
and υφ (contour values range from 0 to 1.1) contours for
the set of geometric parameters that minimize and
maximize J, and minimize F, given an attainable
and unattainable Jd , respectively. As seen in Fig. 2a
(Λ = 0.35) for β = 0.5, η = 0.294, ζ = 0.8, and τ = 0.8,
minimizing J (1.62) leads to a shaft shape with minimal
topography and small radius ratio. It is not surprising
that the optimal shape would be one of large flight
clearance and groove width, given that a measure of the
vorticity field is being optimized. In the limit of zero
flight height, the flow is unidirectional with only one

nonzero vorticity component at this Ta. The magnitude 
of azimuthal shear decreases with decreasing η. As seen 
in Fig. 2b (Λ = 0.5) for β = 2.5, η = 0.8, ζ = 0.2, and
τ = 0.2, maximizing J (473) leads again to a shaft shape
with minimal topography. In contrast to the results
shown in Fig. 2a when minimizing J, the topography
maximizing J has a large radius ratio and small groove
width. Because the azimuthal velocity component of the
shaft goes as Ωi R, having a large radius ratio and small-
groove width maximizes the magnitude of this compo-
nent over most of the axial length.
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Fig. 2. Streamfunction and υφ contours for optimal shaft shapes
for Ta = 10 and α = 0. a) Parameter set that minimizes J: β = 0.5,
η = 0.29, ζ = 0.8, and τ = 0.8. b) maximizes J: β = 2.5, η = 0.8,
ζ = 0.2, and τ = 0.2. c) minimizes F given an attainable Jd: β = 0.59,
η = 0.2, ζ = 0.2, and τ = 0.5. d) minimizes F given an unattainable
Jd: β = 2.5, η = 0.8, ζ = 0.2, and τ = 0.2.
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Topography can also fix the measure of the flow
field to a desired value. This is of interest, for example,
in mixing of biological agents, where excessive shear is
known to cause damage. If one knows at what shear
rate damage becomes significant, topography control
can be used to avoid the maximum shear seen in the
field, without changing the rotation rate. As seen in
Fig. 2c (Λ = 0.48) for β = 0.59, η = 0.2, ζ = 0.2, τ = 0.5,
and an attainable Jd , minimizing F leads to a shaft shape
that gives a value of J closest to the desired value while
limiting changes in the topography to a minimum. For
this case, F = 0.52 and Γ = 0.64. Thus, there is less than
a 1 % difference between the J (200.45) that minimizes 

F and the desired value (Jd = 200). On the other hand,
as shown in Fig. 2d (Λ = 0.5), minimizing F, given an
unattainable value of Jd larger than possible at these
rotation rates, leads to a shaft shape (β = 2.5, η = 0.8,
ζ = 0.2, τ = 0.2) that is identical to that found when
maximizing J.

αα = 1. For α = 1, Figs. 3(a-d) show streamfunction
and υφ (contour values range from 0 to 1.1, with there
being ten divisions) contours for the set of geometric
parameters that minimize and maximize J, and mini-
mize F, given an attainable and unattainable Jd , respec-
tively. As seen in Fig. 3a (Λ = 0.4) for β = 0.5, η = 0.2,
ζ = 0.8, and τ = 0.8, minimizing J once more leads to a 
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Fig. 3. Streamfunction and υφ contours for optimal shaft shapes for Ta = 10 and α = 1. a) Parameter set that minimizes J: β = 0.5,
η = 0.2, ζ = 0.8, and τ = 0.8. b) maximizes J: β = 2.5, η = 0.2, ζ = 0.2, and τ = 0.33. c) minimizes F given an attainable Jd : β = 1.5,
η = 0.2, ζ = 0.43, and τ = 0.35. d) minimizes F given an unattainable Jd : β = 2.5, η = 0.2, ζ = 0.2, and τ = 0.33.

a)
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shaft shape with minimal topography. The optimal shaft
shape turns out to be one of large flight clearance and
groove width, and small radius ratio. This is consistent
with what one would expect when minimizing a meas-
ure of the kinetic energy. As seen in Fig. 3b (Λ = 2) for
β = 2.5, η = 0.2, ζ = 0.2, and τ = 0.33, maximizing J
leads to a shaft shape having significant topography
(i.e., a deep thin groove). This differs from the α = 0
results, where the radius ratio was large.

As shown in Fig. 3c (Λ = 1.2) for β = 1.5, η = 0.2,
ζ = 0.43, τ = 0.35, and an attainable Jd , minimizing F
leads to a shaft shape having medium flight clearance
and small groove width. For this case, F = 0.23 and
Γ = 0.46. Also, for this case we have used the topo-
graphy to exactly match the desired value of Jd = 3. We
note that this value of β is significantly different than
the values found for α = 0. The results (see Fig. 3d
where Λ = 2) for an unattainable value of Jd are similar
to those for α = 0.

4.2. Sinusoidal Groove
In this section, optimal shaft shapes for the sinu-

soidal groove case are calculated. Geometric para-
meters needed to fully define this geometry are con-
strained to take on values in the following ranges

(11a, b)

(11c)
where the upper bound on ε is taken to be 1/2 of the
maximum value of the right-hand-side of Eq. (9).

A minimum gap between the inner and outer cylinders
of 0.05 is enforced. This is required for numerical rea-
sons, because numerically it is desirable that a suffi-
cient number of elements are present inside the gap to
yield accurate solutions. The results for α = 0.5 are
again qualitatively similar to those for α = 0, as was the
case for the rectangular groove case, and again are not
shown.

αα = 0. For α = 0, Figs. 4(a-b) show streamfunction
and υφ (contour values range from 0 to 1.1, with there
being ten divisions) contours for the set of geometric
parameters that maximize J and minimize F given an
attainable Jd, respectively. The optimal shaft shape that
minimizes J has no topography. In the limit ε → 0, the
flow is unidirectional at this Ta and has only one nonze-
ro vorticity component. For any nonzero value of ε,
there are three nonzero velocity components, and thus
all three vorticity components are nonzero. As seen in
Fig. 4a for β = 2.5, η = 0.70, and ε = 0.25, maximizing
J leads to a shaft shape with significant topo-
graphy. With Λ = 0.76, the mean gap is smaller than
the axial wavelength. We note that as β increases
while maintaining a constant mean gap width, the
gradients in the flow also increase. This, along with
the fact that wr scales with β, causes γw to increase
as well. This optimal shaft shape is very similar to
those found for the rectangular groove case, with
β being the same, η about 12 % less, and the minimum
gap width chosen in each case. In contrast, the
overall aspect ratio (Λ) is very different for these two
cases.
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Fig. 4. Streamfunction and υφ contours for optimal shaft shapes for Ta = 10 and α = 0. a) Parameter set that maximizes J: β = 2.5, η = 0.70, and
ε = 0.25. b) minimizes F given an attainable Jd : β = 1.25, η = 0.65, and ε = 0.25.

a) b)
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As seen in Fig. 4b for β = 1.25, η = 0.65, ε = 0.25,
and an attainable Jd , minimizing F leads to a shaft shape
that gives a value of J closest to the desired value, while
keeping the topography to a minimum. For this case,
F = 0.17 and Γ = 0.25. As was the case for all the rec-
tangular groove cases, there is less than a 1 % differ-
ence between the J (25.09) that minimizes F and the
desired value (Jd = 25). On the other hand, as was also
the case for the rectangular groove case, minimizing F,
given an unattainable value of Jd leads to a shaft shape
(β = 2.5, η = 0.70, and ε = 0.25), identical to that found
when maximizing J.

αα = 1. For α = 1, Figs. 5(a-b) show streamfunction
and υφ (contour values range from 0 to 1.1, with there
being ten divisions) contours for the set of geometric
parameters that maximize J and minimize F, given an
attainable Jd , respectively. As was the case for α = 0, the
shaft shape that minimizes J has no topography. As seen
in Fig. 5a for β = 2.5, η = 0.35, and ε = 0.30, maximiz-
ing J leads to a shaft shape with moderate topography
compared to the α = 0 case. As seen in Fig. 5a, Λ = 1.63
for this case, thus the mean gap width is much larger
than the wavelength.

As seen in Fig. 5b for β = 2.5, η = 0.8, ε = 0.125, and
an attainable Jd , minimizing F leads to a shaft shape
that gives a value of J closest to the desired value, while
again keeping the topography to a minimum. For this
case, F = 0.08 and Γ = 0.125. There is about a 39 %
difference between the J (0.98) that minimizes F and

a desired value (Jd = 0.6). This value is significantly
larger than the value found for α = 0 and any of the rec-
tangular groove cases. For α = 1, the range of J is much
smaller than that found for α = 0, making it more diffi-
cult to find the topography that gives the desired value.
On the other hand, as was also the case for α = 0 and all
the rectangular groove cases, minimizing F, given an
unattainable value of Jd leads to a shaft shape (β = 2.5,
η = 0.35, and ε = 0.30) identical to that found when
maximizing J.

5. Conclusions

It has been demonstrated that boundary shape
can be used to influence the characteristics of the
flow field, such as its velocity component distribution,
kinetic energy, or even vorticity. The geometric
parameters investigated in this work are those
associated with mixing machinery and instruments
being developed and used today. The work here
provides a first step in designing an optimization tool
for designing experiment and operation specific fluid
mixing instruments. This ability to influence flow
fields through boundary shape may be employed
to improve microfludic mixing, maximize through
flow while trying to improve low speed mixing, or
possibly to minimize shear in biological applications
(e.g., separations or downstream of artificial heart
valves).
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Fig. 5. Streamfunction and υφ contours for optimal shaft shapes for Ta = 10 and α = 1. a) Parameter set that maximizes J: β = 2.5, η = 0.35, and
ε = 0.30. b) minimizes F given an attainable Jd : β = 2.5, η = 0.8, and ε = 0.125.
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