
1. Introduction

In 2000, Hurly and Moldover published a compre-
hensive report on the application of fundamental
physics to the calculation of the thermophysical proper-
ties of low-density helium [1]. The present paper is an
extension to and update of parts of that paper. We
developed a new model potential for the interaction of
helium atoms, φ07(r), based on the most recent theoret-
ical values of φ(r). This potential was used to calculate
several important properties of 4He: The density virial
coefficient B(T) and its first two temperature deriva-
tives, the zero-density viscosity, and the zero-density
thermal conductivity.

Our improved potential and calculations have signif-
icantly reduced the uncertainty of the thermophysical
properties of helium. For example, at 300 K, the uncer-
tainty of the second virial coefficient is now 1/7 of that

reported in Ref. [1] and the uncertainty of the thermal
conductivity is 1/3 of that reported in Ref. [1].

The new potential includes the diagonal correction to
the Born-Oppenheimer model (DBOC). In addition to
the use of this correction, recent discussions of the adi-
abatic model [2,3] recommend the use of atomic, rather
than nuclear, masses in the calculations of atomic inter-
actions. We have examined the sensitivity of the ther-
mophysical properties to this replacement, as well as to
the DBOC and to the uncertainties of the theoretical
calculations of φ.

In the temperature range 3 K to 933 K, helium gas
thermometry [4] played a leading role in the formation
of the internationally accepted temperature scale, ITS-
90. Subsequently, improved gas thermometry has
measured T – T90, the differences between the thermo-
dynamic temperature and ITS-90. Thus improved gas
thermometry [5] may lead to a future, improved tem-
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perature scale. Each form of gas thermometry (constant
volume, dielectric, acoustic) requires the extrapolation
of measured gas properties to zero pressure, where
gases become “ideal.” In this work, we use fundamen-
tal principles to calculate the second density virial coef-
ficient of helium B(T) and the second acoustic virial
coefficient of helium βa(T) with smaller uncertainties
than can be achieved by direct measurements. Our tab-
ulated values for B(T) and βa(T) can be used to con-
strain the extrapolations to zero pressure; thereby lead-
ing to more accurate values of the thermodynamic tem-
perature. Acoustic gas thermometry also requires accu-
rate values of the thermal conductivity, which we have
tabulated for helium. Recently, May et al. [6] have
shown how to combine ab initio values of the viscosity
of helium with comparatively simple viscosity-ratio
measurements to obtain values of the thermal conduc-
tivity of argon that are more accurate than can be
achieved by direct measurements. Thus, our tabulation
of the viscosity of helium will also facilitate more accu-
rate argon-based acoustic thermometry. Finally, we
mention programs to redetermine the Boltzmann con-
stant [7] and to develop an atomic standard of pressure
[8] based on accurate measurements of the dielectric
constant of helium at the temperature of the triple point
of water (TTPW = 273.16 K). Both of these programs
will benefit from the reduced uncertainties of B(T).

In the following sections, we first describe the poten-
tial and the way it was developed. We summarize the
quantum-statistical formulas used for calculating the
thermophysical properties of interest, then describe the
numerical procedures used for the calculations. We
conclude with some comparisons of our theoretical
thermophysical properties with recent experimental
results.

Standard notation conventions are followed in this
paper. All quantum-mechanical formalism is expressed
in atomic units except when noted otherwise.
Interaction potentials are expressed in hartrees in the
formalism, but converted to temperature units (K) for
comparison with relevant literature. The CODATA-

2002 values of the fundamental constants [9] were used
in all calculations.

2. Model Potential φφ 07

The potential model is expressed as the sum of a
repulsive term and an attractive term

(1)

(2)

(3)

In these equations the cut-off radius r0 = 0.3 bohr is
chosen to exclude the unphysical behavior of the poten-
tial model at small r; A = 1 hartree (Eh) defines the
units; the an and δ are fit parameters; the C2n are fixed
parameters; and the functions f2n account for relativistic
retardation. The attractive part of the potential is the
sum of multipole attractive terms multiplied by the uni-
versal damping functions of Tang and Toennies [10].

The dipole-dipole and higher multipole parameters
Cn for n ≤ 10 (Table 1) are fixed at the values calculat-
ed by Zhang et al. [11]. The coefficients Cn for helium
with the mass of 4He were used in all calculations
except those which investigated corrections to the
Born-Oppenheimer model. The coefficients C2n for n >
5 were estimated using the three-term recursion formu-
la of Thakkar [12].

Zhang et al. [11] include an extensive tabulation of
previous calculations for comparison. The fractional
differences between the fixed-nucleon parameters of
Zhang et al. and those of Bishop and Pipin [13] are
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Table 1. Attractive interaction coefficients [11] for helium atoms with 4He and infinite mass
nucleii

4He ∞He

C6 (hartree-bohr6) 1.462122853192 1.460977837725
C8 (hartree-bohr8) 14.12578806 14.11785737
C10 (hartree-bohr10) 183.781468 183.691075
C12 (hartree-bohr12) 3267.13274 3265.256092
C14 (hartree-bohr14) 76501.2887 76571.26764
C16 (hartree-bohr16) 2277412.86 2276292.717
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2.6 × 10–8 for C6, 1.7 × 10–7 for C8, and –9.5 × 10–7 for
C10. If these fractional differences are taken as esti-
mates of uncertainties, the total uncertainty in the
potential is less than 3 × 10–8 K, and the total fractional
uncertainty is less than 5 × 10–8, for r > 10 bohr.

A further, and more significant, source of uncertain-
ty is the extrapolation formula used to estimate C2n for
n > 5 from the lower-n values of C2n. Thakkar [12] rec-
ommends the use of either his Eqs. (29) or (33), with
the latter more appropriate for helium (based on the
value of C6C10/C8

2 ). With the alternative formula, the
estimated values of C12, C14, and C16 are 1.3 %, 5.2 %,
and 13 % larger. If these differences are used as esti-
mates of the uncertainties of the corresponding poten-
tial contributions, the total uncertainty in the potential
is less than 4 × 10–5 K, and the total fractional uncer-
tainty is less than 6 × 10–5, for r > 10 bohr.

In principle, the use of the Tang-Toennies damping
terms [10] is an additional source of uncertainty.
However, these functions differ from unity only for r ~
10 bohr and below, where the quality of the fit potential
can be judged directly by comparison with theoretical
potentials. (See Fig. 2.)

The retardation functions f6, f8, and f10 have been cal-
culated by Chen and Chung [14]. Their results for f6 are
in excellent agreement with the calculations of
Jamieson et al. [15], whose results differ from those of
Chen and Chung by a maximum fraction 1.5 × 10–5.
The retardation functions satisfy f2n(0) = 1; f6 decreases
to ½ for r ≈ 500 and approaches 328.47/r for large r; f8

decreases to ½ for r ≈ 660 and approaches 420.62/r for
large r; and f10 decreases to ½ for r ≈ 810 and approach-
es 508.43/r for large r. The functions f2n have the effect,
for example, of converting the dipole-dipole interaction
from a 1/r6 dependence to a 1/r7 dependence.
Retardation has, at most, a marginal effect on all terms
except the dipole-dipole term. At r = 660 bohr, the ratio
C8 f8 /r8 to φ07 is less than 3 × 10–5; similarly, at r = 810
bohr, the ratio of C10 f10 /r10 to φ07 is less than 4 × 10–10.
Accordingly, the factors f12, f14, and f16, were safely
approximated as unity. The code for computing the
potential uses cubic spline interpolation of the results of
Chen and Chung [14] for f6, f8, and f10.

The parameters δ and aj, –2 ≤ j ≤ 2 were determined
by fitting the potential model (1)–(3) to selected theo-
retical values weighted to account for their estimated
uncertainties. The retardation functions f2n were set to
unity in these fits. Several fits were made. The first was
to the selected data set described below, and will be
referred to as φ07. The second and third fits accounted
for the uncertainties of the theoretical values, also
described below. The corresponding potentials are des-
ignated φ07±. An additional fit was made to the potential
values without applying the diagonal Born-
Oppenheimer correction [16]. The corresponding
potential is φnboc. The values of δ and the aj determined
by these fits are listed in Table 2.

2.1 Theoretical Values of φφ

Table 3 lists values of the potential φ and their uncer-
tainties based on our review of the recent literature
[17–26]. The values selected for determination of φ07(r)
represent a compromise based on availability of calcu-
lations at each r, the uncertainty claimed by the authors,
and the internal agreement of various calculations for
nearby r. The theoretical values were obtained within
the Born-Oppenheimer model for fixed nuclear separa-
tions. Uncertainties were assigned to each of the select-
ed values. When only a single datum was available, the
authors’ uncertainty estimate was used, provided that it
was consistent with neighboring values; otherwise the
uncertainty was adjusted upward. When several values
were available at an r-value, generally the unweighted
mean and standard deviation of the more recent calcu-
lations was used. The upper-bound potentials of
Komasa [19] were used only at small r, where they are
in excellent agreement with the quantum-Monte-Carlo
calculations of Ceperley and Partridge [17], which have
much larger uncertainties.

The diagonal Born-Oppenheimer correction calcula-
tions of Komasa, Cencek and Rychlewski [16] were
interpolated using a cubic spline and added to the fixed-
nucleon potentials.

Relativistic [27] (+15.4 mK) and radiative [28] (–1.3
mK) corrections to the potential have recently been
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Table 2. Variable (fit) potential coefficients

Potential a–2 a–1 a0 a1 a2 δ
(bohr2) (bohr) (–) (bohr–1) (bohr–2) (bohr–1)

φ07 0.081212 –0.28755 2.14735 –1.97272 –0.051787 1.992657
φ07– 0.097486 –0.32441 2.17654 –1.98206 –0.050505 2.006175
φ07+ 0.065002 –0.25089 2.11837 –1.96343 –0.053050 1.980020
φnboc 0.072490 –0.26814 2.13133 –1.96754 –0.052524 1.985551



evaluated only at r = 5.6 bohr. Without additional
results at other r we decided, for consistency, to omit
these corrections from the determination of φ07. The
sum of these corrections is small compared with the
scatter of the r = 5.6 bohr potentials in Fig. 3, but of the
same order as the assigned uncertainty.

The model potential defined by Eqs. (1)–(3) was fit
to the sum of two quantities, the selected potentials and
the corresponding DBOC. The input potentials were
weighted by the inverse squares of the uncertainties
U(φ) in the fit. The coefficients determined in the fit are
listed in Table 2. The variance of the fit residuals in the
determination of φ07 was 0.6.

The upper part of Fig. 1 shows the potential φ07 and
the selected data used in its determination. The lower
part of Fig. 1 and Fig. 3 show fractional differences
between many recent theoretical potentials and φ07.
Figure 2 shows the normalized residuals (φ – φ07)/U(φ).

To assess the uncertainty of φ07 and the propagation
of this uncertainty into computed thermophysical prop-
erties, the potentials φ07+ and φ07– were developed. The
potential was refitted to theoretical potentials shifted by
their uncertainties, that is, to φ + ∆φDBOC ± U(φ).
Similarly, the effects of the diagonal Born-
Oppenheimer correction were assessed by determining

the potential φnboc through fits to the theoretical φ values
without adding the correction.

The uncertainty of φ07 is difficult to quantify. Figure
2 shows that all but one of the theoretical potentials
used in fitting φ07 differs from φ07 by less than the cor-
responding uncertainty, consistent with the fit variance
of 0.6. Figure 3 shows that all of the theoretical values
at r = 4 bohr and r = 5.6 bohr that were used in the fit
either fall in the range between φ07– and φ07+ or have
uncertainties overlapping this range. These observa-
tions suggest that the uncertainty in φ07 should be inter-
preted as having a large coverage factor [29] ku ≈ 2.
Table 4 summarizes the properties of the potentials
used in this work, and the bound state energies (for
angular momentum index = 0) determined from the
potential.

3. Atomic Interactions

The thermophysical properties of helium can be
evaluated using the formalism of quantum statistical
mechanics. In particular, the virial coefficient of the
equation of state, the viscosity, and the thermal conduc-
tivity can be expressed in terms of the phase shifts
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Table 3. Theoretical potential values used to determine φ07. The model potential φ07 was fit to the sum
of the theoretical potential φ and the diagonal Born-Oppenheimer correction ∆φDBOC with weighting
equal to the inverse square of the uncertainty U(φ). When a single source is listed, the uncertainty is gen-
erally that stated in the source. When multiple sources are cited, the unweighted mean and standard devi-
ation of the set is used. In some cases, indicated by an asterisk, the uncertainty was adjusted upward to
account for disagreement with neighboring values.

r (bohr) φ (K) U(φ) (K) ∆φDBOC (K) Source(s)

1 286435 25 158 [19]
1.5 104320 20 36 [19]
2 36144.6 10 11.8 [19]
2.5 11962.0 1.0 4.1 [19,23]*
3 3786.0 20 1.37 [17,19,23,24]
3.5 1111.0 1.0 0.41 [19,20,23]*
4 292.64 0.10 0.10 [20–23,25,26]
4.5 58.400 0.10 0.009 [19,20,23,24]
5 –0.500 0.10 –0.013 [19,20,23,24]
5.1 –4.534 0.025 –0.014 [20,23]
5.6 –10.991 0.011 –0.012 [20–26]
6 –9.671 0.009 –0.011 [20,23]*
6.5 –6.887 0.005 –0.008 [23]
6.6 –6.340 0.020 –0.007 [20,24]
7 –4.619 0.007 –0.005 [26]
7.5 –3.073 0.005 –0.004 [20,23,25]*
8 –2.066 0.002 –0.002 [23]*
9 –0.989 0.001 –0.002 [25]

10 –0.5130 0.0002 –0.001 [23]*
12 –0.166 0.0010 0.000 [25]
15 –0.0423 0.0002 0.000 [25]
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Fig. 1. Top: The model potential φ07 (solid line) and theoretical values of φ (open circles) used in its determination.
(The vertical scale is proportional to sinh–1(5φ/K), which is approximately logarithmic for large φ and linear for small
|φ|.) Bottom: Fractional differences between theoretical values of φ and the model potential φ07, with error bars as
assigned by the authors (when available). The data sources are [17], * [18], × [19], + [20], [23], [24], 
[25], [26]. The potentials φ07± and φ00 [1] are shown as solid lines.
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Fig. 2. Differences between the theoretical potential values used in fitting φ07 and the potential, divided
by the uncertainties of the potential values (See Table 3).

Fig. 3. Comparisons of theoretical values of φ with the (unretarded) model potential φ07. The
plotted values, arranged chronologically by date of publication, are from the following sources:
* [18], × [19] (upper bound), + [20], [21], [22], [23], [25], [26]. The dotted lines
represent φ07±. These bounds encompass the eight values of φ(r) published since 1999
[19–23,25,26], or overlap the authors’ ku = 1 uncertainty estimates. The values of φ07 less the
diagonal Born-Oppenheimer correction are (292.64 ± 0.13) K at 4 bohr and (–10.996 ± 0.015) K
at 5.6 bohr.



associated with the interaction of a pair of helium
atoms. The theory and equations used in determining
the thermophysical properties are summarized in Sec.
3.1. The following section 3.2 describes the computa-
tional techniques used to determine the thermophysical
properties.

3.1 Formalism

The interaction of two atoms with a spherically sym-
metric potential φ(r) is described by a quantum
mechanical wave function Ψ (r)Y m /r, where r is the
separation distance and Y m is a spherical harmonic. The
radial function satisfies

(4)

where µ is the reduced mass of the He-He system, me is
the electron mass, lengths are expressed in units of the
Bohr radius a0, and energies are expressed in units of
hartree (Eh).

The solutions to Eq. (4) fall into three ranges. For
small r, where the potential is much larger than the
angular-momentum term, the solutions must be deter-
mined numerically. In the second region of intermedi-
ate r, the potential is negligible but the angular momen-
tum term is significant, so Eq. (4) takes the form

(5)

where

(6)

that is, κ is just the wave number k = κ/a0 in atomic
units. The general solution of Eq. (5) is

(7)

where j (ξ) and y (ξ) are spherical Bessel and Neumann
functions. For large κr the asymptotic form of χ . is

(8)

which can be recognized as the solution to Eq. (4) in the
third region, where both the potential and the angular
momentum term are negligible. The thermophysical
properties of interest depend on the phase shifts δ (E).
The virial coefficient of 4He depends on the sum

(9)

The convergence of this sum is discussed in the next
section. The viscosity and thermal conductivity depend
on the quantum cross-sections [30] which are expressed
in terms of much more rapidly converging sums.

3.2 Numerical Techniques

Numerical solutions of the radial equation (4) were
determined with Numerov’s method using an integra-
tion step size

(10)

This step size was determined empirically to insure that
phase shifts obtained with step sizes h0/2 or h0/4 did not
differ from those determined with step size h0 within
the error criterion |∆δ | < 10–9. Calculations were made
for a series of discrete energies in the range 10–11 ≤
E/Eh ≤ 1. The discrete energies were distributed uni-
formly on a logarithmic scale.

For each discrete energy, Eq. (4) was integrated
upward in r, for = 0, 2, . . . 1. A series of nodes of
Ψ (r) were found at coordinates rn, n = 1, 2, . . . . The
phase shifts at node n, δ , n , defined by

Volume 112, Number 2, March-April 2007
Journal of Research of the National Institute of Standards and Technology

81

Table 4. The potential minima φmin = φ(rm) for the potentials used in this work, and the corresponding
bound-state energies. (The retardation corrections f2n were included in these calculations.)

Potential φmin (K) rm (bohr) He mass Ebound (mK)

φ07 –10.999 5.608 Atomic –1.555
φ07– –10.983 5.608 Atomic –1.667
φ07+ –11.014 5.607 Atomic –1.438
φnboc –10.985 5.608 Atomic –1.550
φ07 –10.999 5.608 Nuclear –1.520
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(11)

were determined successively. The asymptotic phase
shift as rn → ∞ was obtained when the phase shifts
evaluated at a series of nodes agree to within the preset
convergence criterion. Convergence was accelerated by
using the semi-classical (JWKB) approximation
[31,32]. The convergence criterion was that the stan-
dard deviation of three successive values of δ , n was
less than 10–9. The maximum angular momentum index

1 was the minimum of either 1000 or the index when
|δ | became less than 10–9.

Equation (11) only determines the phase shift within
an additive multiple of π. Two conditions were used to
get the total phase shifts needed in the sum (9). (1) The
limiting values were limE→0δ0(E) = π and limE→0δ (E) =
0 for > 0; and (2) δ (E) is a continuous function of E
[33].

Figure 4 shows the dependence of the phase shifts on
and E. It is clear that for small E, the sum (9) is dom-

inated by the = 0 term. For larger E many terms con-
tribute to the sum. The Born approximation

(12)

(see, e.g. Eq. (38.14) of Ref. [34]) for the phase shift is
useful in considering the rate of convergence. For small
κr the spherical Bessel function can be approximated
by the leading term in the Taylor series, (κr) /(2 + 1)!!.
The contribution to the integral in Eq. (12) for small r
thus decreases rapidly with . The spherical Bessel
function has a maximum for κr near + 1. For larger 
the Born approximation thus becomes dependent main-
ly on the weaker attractive part of φ(r) The contribu-
tions from power-law potential terms have a simple
form:

(13)

which has the values

(14)

and

(15)
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Fig. 4. Representative phase shifts as functions of energy. The phase shifts are all positive for small E;
δ0 has a zero-E limit of π, otherwise δ (0) = 0. The lines represent, from left to right, = 0, 2, 4, 10, 20,
40, 100, 200, 400, and 1000.
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for the dipole-dipole interaction with and without retar-
dation. The infinite sums of these terms are

(16)

(17)

These can be used to get upper and lower limits for the
contributions of the C6 f6 /r6 term to the truncation error
of the sum (9). The following test was made to check
the summation error. For E ≥ 0.001 hartree, Eq. (12)
was used to obtain phase shifts for 1 = 1000 < ≤ 2 =
3000, and the corresponding contributions to the sum
(9) were evaluated numerically. Equations (16) and
(17) were then used with 1 → 2 to estimate the trunca-
tion error of these numerical sums. The results so
obtained were then compared directly with upper and
lower limits based on Eqs. (16) and (17). The numeri-
cal sums were found to lie very close to the product of
C6 and the right-hand side of Eq. (16). The reason is
that asymptotic phase shifts for = 1000 are obtained
when r is some multiple of 2π/κ beyond the first zero
of the spherical Bessel function j1000(κr), which occurs
near r = 1000.5/κ ≈ 11.7/√–E. For E > 0.001 hartree this
is reached before retardation is significant. For smaller
E, the nodes rn where Eq. (11) is evaluated occur at
larger radii where retardation may be important, but the
phase shifts decline sufficiently rapidly with increasing

that convergence is obtained for 1000.

4. Virial Coefficients

The second virial coefficient of 4He is [33]

(18)

where

(19)

(20)

(21)

(22)

and

(23)

In these equations, Λ = √–2λT , where

(24)

is the thermal de Broglie wavelength, and –Tb is the
bound state energy in K (Table 4). The temperature
derivatives of B(T) can be evaluated directly from Eqs.
(18)–(24). Numerical evaluation of the derivatives
requires the integrals I2 and I4 in addition to I0.

The thermal contributions Bth(T) require numerical
integration over κ. The integrals could formally be
written with E as the integration variable. However, the
dependence of the sum terms in the integrand for small
κ was found to be approximately linear in κ ∝ √–E, so a
better spline approximation was obtained by using κ as
the independent variable.

Formally, the upper limit of integration is infinite. In
practice, the phase shifts become increasingly difficult
to calculate at higher energies. Calculations were made
only up to E = 1 hartree. The argument of the exponen-
tial factor in the integrand, –ακ2/T, has a maximum
value at E = 1 hartree equal to –3.16 × 105 K/T, so the
integrand is vanishingly small at κmax, even at T =
10000 K (exp(–31.6) ≈ 1.9 × 10–14). The upper limit of
integration can thus be safely set at κmax.

Numerical integrations were required for the inte-
grals I0, I2, and I4. For each case, the sum S(κ) was
approximated by cubic splines. The number of knots
per decade of energy E was 40 for all except E > 0.1,
where 80 knots were required in order to resolve the
rapid dependence of the phase shifts. The integrals
were calculated as the sum of a series of integrals with
κ-limits 0–0.01, 0.01–0.1, 0.1–1, 1–10, and 10–κmax.
This procedure insures sufficient sampling of the inte-
grands, whose peak values depend strongly on T.

Figures 5–7 and Table 5 show the virials and the first
two temperature derivatives as calculated in this work.
Note that the effects of φ07± on the results is approxi-
mately symmetrical. Half of the difference of each cal-
culated property, as computed with φ07+ and φ07–, was
chosen as a conservative (ku ≈ 2) estimate of the uncer-
tainty U(x) of property x. These uncertainty estimates
are well-represented by functions of the form

(25)
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Fig. 5. Virial coefficient of 4He, calculated under various assumptions. The plots of ±B(T) = ±B07(T) were calculated with φ07 and
atomic masses. The plotted differences are ∆x = Bx – B07, where x designates the way the virials were calculated; x = 00, 07±, and nboc
indicates the use of atomic masses and the potentials φ00, φ07±, and φnboc; x = nm indicates calculations with φ07 and nuclear, rather than
atomic masses.



Volume 112, Number 2, March-April 2007
Journal of Research of the National Institute of Standards and Technology

85

Fig. 6. First temperature derivative B′(T) for 4He, plotted as TB′. The plotted differences are ∆x = T(Bx′ – B′07), where x designates the
type of calculation (See caption to Fig. 5.)
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Fig. 7. Second temperature derivative B″(T) for 4He, plotted as T2B″. The plotted differences are ∆x = T2(B″x – B″07), where x designates
the type of calculation (See caption to Fig. 5.)
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Table 5. Thermophysical properties of 4He calculated in this work. Calculated quantities are printed with at least one
excess figure as an aid in smooth interpolation; for the uncertainties of B and its derivatives use Eqs. (25) and Table 6;
for the uncertainties of η and λ use Eq. (37).

T B TB′ T2B″ η λ
(K) (cm3mol–1) (cm3mol–1) (cm3mol–1) (µPa·s) (mWm–1K–1)

1.0 –475.05 669.19 –1790.42 0.3292 2.632
1.2 –369.75 495.66 –1294.92 0.3405 2.720
1.4 –301.99 388.71 –986.65 0.3583 2.845
1.6 –254.99 318.11 –783.24 0.3844 3.033
1.8 –220.53 268.92 –642.77 0.4183 3.283
2.0 –194.14 233.07 –542.07 0.4586 3.588
2.25 –168.70 200.19 –451.94 0.5161 4.030
2.5 –148.92 175.86 –387.37 0.5791 4.519
2.75 –133.07 157.15 –339.36 0.6457 5.037
3.0 –120.06 142.28 –302.48 0.7141 5.569
3.5 –99.90 120.06 –249.71 0.8511 6.637
4.0 –84.96 104.14 –213.73 0.9834 7.666
4.5 –73.42 92.10 –187.46 1.1078 8.636
5.0 –64.23 82.63 –167.31 1.2239 9.542
6.0 –50.48 68.63 –138.19 1.4339 11.184
7.0 –40.683 58.72 –117.98 1.6209 12.650
8.0 –33.346 51.328 –103.05 1.7919 13.992
9.0 –27.646 45.582 –91.55 1.9514 15.244
10 –23.090 40.984 –82.39 2.1023 16.427
11 –19.366 37.216 –74.93 2.2463 17.556
12 –16.267 34.069 –68.73 2.3846 18.641
14 –11.407 29.105 –58.988 2.6472 20.699
16 –7.776 25.358 –51.679 2.8947 22.638
18 –4.965 22.423 –45.981 3.1299 24.481
20 –2.729 20.060 –41.408 3.3550 26.244
22 –0.911 18.113 –37.653 3.5715 27.939
23 –0.125 17.262 –36.014 3.6768 28.764
24 0.592 16.479 –34.509 3.7804 29.575
25 1.250 15.757 –33.121 3.8824 30.374
26 1.855 15.088 –31.837 3.9828 31.160
28 2.928 13.888 –29.537 4.1795 32.700
30 3.850 12.841 –27.534 4.3709 34.199
35 5.663 10.729 –23.496 4.8301 37.793
40 6.986 9.123 –20.432 5.2659 41.204
45 7.985 7.860 –18.024 5.6828 44.466
50 8.758 6.838 –16.077 6.0837 47.603
60 9.860 5.286 –13.117 6.8465 53.570
70 10.586 4.1591 –10.967 7.5673 59.208
80 11.0827 3.3033 –9.329 8.2549 64.585
90 11.4314 2.6306 –8.038 8.9149 69.746
100 11.6795 2.0876 –6.994 9.5519 74.726
120 11.9830 1.2650 –5.403 10.7689 84.240
140 12.1311 0.6715 –4.2464 11.9245 93.272
160 12.1903 0.2235 –3.3667 13.0310 101.919
180 12.1956 –0.1262 –2.6743 14.0968 110.248
200 12.1673 –0.4063 –2.1150 15.1284 118.308
225 12.1026 –0.6863 –1.5506 16.3769 128.062
250 12.0183 –0.9096 –1.0953 17.5862 137.510
273.16 11.9301 –1.0791 –0.7458 18.6765 146.027
275 11.9228 –1.0913 –0.7205 18.7620 146.695
298.15 11.8289 –1.2315 –0.4280 19.8245 154.994
300 11.8212 –1.2418 –0.4065 19.9084 155.649
325 11.7167 –1.3680 –0.1398 21.0288 164.400
350 11.6113 –1.4752 0.0893 22.1260 172.970
375 11.5063 –1.5671 0.2883 23.2024 181.375
400 11.4026 –1.6465 0.4626 24.2598 189.633



with coefficients listed in Table 6. The table also
includes an uncertainty calculation for the acoustic vir-
ial

(26)

where γ0 = 5/3 for helium. Equation (25) represents the
uncertainties of B, TB′, and T2B″ within 2 %, 3 %, and
2 % (rms), respectively, and with a maximum error less
than 10 %. The uncertainty of βa is represented within
2 % (rms) with a maximum error of 5 %. As noted pre-
viously, the uncertainty of φ07 has a large coverage fac-
tor ku ≈ 2; a similar coverage factor applies to the
uncertainties expressed in Eq. (25) and Table 6.

Figures 5–7 show that that the effects of neglecting
the diagonal Born-Oppenheimer correction are no larg-
er than the uncertainties so assigned, and that the effect
of using nuclear rather than atomic masses is less than
the uncertainties except at the highest temperatures.
The differences between values of B(T) calculated with
φ07 and φ00 [1] differ by less than the combined uncer-
tainties (Eq. (25), Table 6 of Ref. [1]).

As noted above, the integrals required for Bth and its
temperature derivatives were done numerically. The
automatic integration routine was controlled by speci-

fying an error criterion, which was set sufficiently low
that errors in B and its derivatives due to the numerical
integrations were negligible. This process only insures
that the spline-approximated integrand is integrated
accurately. It is of more interest to insure that the
approximation of the sum term by a spline does not
introduce a significant error into the calculation. To
estimate this, the number of knots was reduced by elim-
inating alternate knots, and recalculating B(T) and its
derivatives with the cruder spline approximation. The
absolute fractional differences of the two evaluations of
B(T) was less than 3 × 10–7 except near the zero of B(T).
The maximum absolute fractional differences of the
two evaluations of TB′(T) was 4 × 10–7, and the maxi-
mum absolute fractional differences of the two evalua-
tions of T2B″(T) was 2 × 10–6.

We recommend the use of cubic spline interpolation
for estimation of B(T) between temperatures listed in
Table 5. Our tests of such interpolations indicate that
the fractional interpolation error is generally much less
than 10–4 except at the temperature extremes.
(Interpolation near the extremes can be improved by
using the tabulated higher derivatives to set the end
conditions.)
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Table 5. Thermophysical properties of 4He calculated in this work. Calculated quantities are printed with at least one
excess figure as an aid in smooth interpolation; for the uncertainties of B and its derivatives use Eqs. (25) and Table 6;
for the uncertainties of η and λ use Eq. (37)—continued.

T B TB′ T2B″ η λ
(K) (cm3mol–1) (cm3mol–1) (cm3mol–1) (µPa·s) (mWm–1K–1)

450 11.2008 –1.7763 0.7531 26.3241 205.753
500 11.0082 –1.8771 0.9850 28.3298 221.413
600 10.6523 –2.0209 1.3306 32.1959 251.596
700 10.3332 –2.1157 1.5740 35.9049 280.550
800 10.0462 –2.1802 1.7529 39.4880 308.517
900 9.7867 –2.2251 1.8887 42.9671 335.670
1000 9.5505 –2.25660 1.9943 46.3584 362.135
1200 9.1354 –2.29376 2.1455 52.924 413.367
1400 8.7804 –2.31003 2.2454 59.256 462.771
1600 8.4715 –2.31430 2.3139 65.402 510.71
1800 8.1990 –2.31131 2.3617 71.395 557.46
2000 7.9559 –2.30378 2.39552 77.259 603.20
2500 7.4448 –2.27457 2.44221 91.470 714.02
3000 7.03314 –2.23916 2.45852 105.185 820.95
3500 6.69073 –2.20239 2.45921 118.527 924.97
4000 6.39902 –2.16616 2.45129 131.578 1026.70
4500 6.14591 –2.13125 2.43847 144.394 1126.60
5000 5.92310 –2.09794 2.42281 157.018 1224.99
6000 5.54615 –2.03623 2.38740 181.810 1418.18
7000 5.23652 –1.98063 2.35026 206.135 1607.72
8000 4.97538 –1.93035 2.31346 230.116 1794.54
9000 4.75070 –1.88461 2.27786 253.835 1979.31
10000 4.55433 –1.84276 2.24378 277.355 2162.52

2 2
0 0 02 2( 1) ( 1) / ,a B TB T Bβ γ γ γ′ ′′= + − + −



5. Viscosity and Thermal Conductivity

The kinetic coefficients depend on the quantum
cross-sections [30] defined by

(27)

and

Equations (27)–(29) converge rapidly; numerical
evaluation was straightforward. The collision integrals
needed for computation of kinetic coefficients are
expressed in terms of normalized cross sections,
defined for even n > 0 by

(30)

where rm (actually an arbitrary length) is the radial posi-
tion of the potential minimum. The collision integrals
are defined as

(31)

where β ≡ Eh /(kBT). Collision integrals with n = 2, s =
2, 4, . . . 10; n = 4; s = 4, 6, 8; and n = 6, s = 6 are need-
ed for the fifth-order calculation of viscosity and ther-

mal conductivity [35]. The collision integrals were cal-
culated by using cubic spline representations of the col-
lision integrals, and dividing the integrals in Eq. (31)
into 11 sub-intervals, with limits 0–10–10, 10–10–10–9,
. . . 0.1–1. This division insured adequate sampling of
the integrands, whose peak locations vary rapidly with
temperature. (The errors introduced by truncating the
infinite integral are neglibible.)

The viscosity is [35,36]

(32)

where fη
(n) is obtained by solving a set of linear equa-

tions

(33)

for ξ1 ≡ fη
(n)/b11. The components of the symmetric

matrix B are listed in Appendix A of Ref. [35]. In par-
ticular, since b11 = 4Ω(2,2)*, the viscosity can be
expressed as

(34)

Similarly, the thermal conductivity can be determined
from the solution of

Aζζ = e1, (35)

where the components of A are defined in Appendix B
of Ref. [35], and ζζ is a column vector with components
ζj . The thermal conductivity depends only on ζ1:

(36)
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Table 6. Coefficients in Eq. (25) for estimating the uncertainty of B(T) and its temperature derivatives.

Property c0 c1 c2 c3 c4

B 0.1341 –1.4474 0.0960 –0.00327 –
TB′ 0.6612 –1.8415 0.2173 –0.02476 0.00128
T2B″ 1.8238 –2.2109 0.3379 –0.04263 0.002166
βa 0.2661 –1.4560 0.1134 –0.00479 –
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To insure that the complicated formulas for the com-
ponents of B (and the corresponding matrix for the
thermal conductivity) were transcribed accurately, the
following procedure was followed. The formulas were
extracted from an electronic copy of Ref. [35]. These
were further edited to conform with Fortran notation.
Subsequently, Viehland provided Fortran codes that
generated the Fortran code for calculating the matrices
directly [37]. Numerical evaluations using the two
implementations were identical within machine preci-
sion.

Errors in the numerical integrations required for cal-
culating η and λ were estimated by eliminating alter-
nate knots in the spline representations of the collision
integrals and repeating the calculations. The two values
of η(T), and the two values of λ(T) so determined had
an absolute fractional difference of less than 3 × 10–6 at
T = 1 K. This difference declined with T and remained
below 1.2 × 10–7 for T > 20 K.

The viscosities and thermal conductivities deter-
mined in this work are listed in Table 5. Figure 8 and a
nearly identical figure for ∆λ /λ show the sensitivity of
the calculations to the choice of potential and the
choice of nuclear instead of atomic masses. The effects
of using potential φ07± is nearly symmetric. Half of the
differences between values of η or λ calculated with
these two potentials approaches 0.35 % at low temper-
ature. The differences reverse sign near 42 K. Above
this temperature, the half-difference is bound by
0.02 %. A reasonable estimate of the the relative uncer-
tainty Ur in either η or λ is the minimum of 0.35 % and
the equation

kuUr(η) = kuUr(λ) = 0.0002 + 0.005 K/T. (37)

Values of the viscosity and thermal conductivity at
temperatures between those listed in Table 5 can be
obtained by interpolating with cubic splines. Our tests
indicate that cubic spline interpolation introduces a
fractional error of less than 10–5 except near the temper-
ature extremes.

6. Validation of Computations

The Fortran code used for calculating the phase
shifts and for subsequent calculation of the thermo-
physical properties was tested by an independent devel-
opment of new codes by one of us (Mehl) to test the
results of Hurly and Moldover [1]. The test demonstrat-
ed excellent agreement of the sum (9) and the quantum
cross-sections (27)–(29).

The test revealed two errors in the calculation of the
thermophysical properties reported in Ref. [1]. The first
was an incorrect sign assigned to the bound-state con-
tribution to the published virials, which mainly affect-
ed the low temperature results for 4He and for 3He-4He
mixtures. The second was due to inconsistent units con-
version. The code used by Hurly to calculate the ther-
mal conductivity was based on the equivalent of Eq.
(36) in Hirschfelder et al. [36]. Their Eq. (8.2-31) uses
a calorie unit in a numerical prefactor. Conversion of
this to J using a current definition of the calorie intro-
duced a factor of 1.000545 error in the thermal conduc-
tivity results published in Ref. [1]. The published val-
ues are high by this factor.

7. Comparisons With Recent
Experiments

Hurly and Moldover [1] compared their results with
a wide range of experimental results. Here we limit our
comparisons to a few accurate experiments published
since 2000. Figure 9 compares the recent second virial
measurements of McLinden and Lösch-Will [38]. The
agreement is excellent.

Figure 10 compares the recent measurements of the
acoustic virial by Pitre, Moldover and Tew [5]. The
measurements fall well within the combined (ku = 2)
uncertainty of the predicted slope βa and the experi-
mental uncertainty except at high temperatures, where
the disagreement is on the order of the scatter in the
measurements.

Berg’s high quality measurement of the viscosity
[39,40] at 298.15 K (expressed with a ku = 2 uncertain-
ty), (19.842 ± 0.014) µPa·s, and the calculated value
(19.824 ± 0.004) µPa·s differ by the sum of their ku = 2
uncertainties.

8. Concluding Remarks

As shown in Fig. 3, multiple research groups have
provided us with very accurate ab initio “data” at 4.0
and 5.6 bohr. In order to fully exploit these data, it
would be desirable to have theoretical potentials of
similar accuracy at nearby r. The most demanding gas
metrology is conducted near 273 K; thus, it would be
very desirable to generate ab initio values of the poten-
tial at, for example r = 3.89 and 4.13 bohr (correspon-
ding to φ = 200 K and 450 K) with uncertainties com-
parable to those already achieved at 4.0 and 5.6 bohr.
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Fig. 8. Sensitivity of the viscosity of 4He to various options in the calculations. The fractional difference between ηx and the value cal-
culated with φ07 and atomic masses is plotted as the fraction ∆η/η = (ηx – η07)/η07, where x specifies the type of calculation (See cap-
tion to Fig. 5.) A similar plot for the thermal conductivity differs from this plot only in minor details.
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Fig. 9. Second virial coefficients of 4He measured by McLinden et al. [38], compared with values cal-
culated with φ07± (dashed lines). Values calculated with φ07 fall between the dashed lines. The error bars
indicate the experimental ku = 1 uncertainties.

Fig. 10. Acoustic virial coefficient of Pitre et al. [5] compared with values calculated with φ07; ∆βa =
βa,expt – βa,calc. The dashed lines are plots of βa,07± – βa,07, and indicate the uncertainty of the theoretical
calculation. The error bars indicate the experimental (ku = 1) uncertainties. Other lines show ∆βa corre-
sponding to φnm, and φnboc. The acoustic virial is clearly sensitive to the differences between the various
potentials.



Acknowledgments

We thank Mike Moldover for his leadership, guid-
ance, useful comments, and careful reading of the man-
uscript, Bogumil Jeziorski, Eric May, Peter Mohr,
Laurent Pitre, and Krzystof Szalewicz for comments on
the manuscript, and Larry Viehland for sharing his
Fortran code. The work of James B. Mehl was support-
ed by the National Institute of Standards and
Technology.

9. References

[1] J. J. Hurly and M. R. Moldover, Ab initio values of the thermo-
physical properties of helium as standards, J. Res. Natl. Inst.
Stand. Technol. 105, 667 (2000).

[2] Nicholas C. Handy and Aaron M. Lee, The adiabatic approxi-
mation, Chem. Phys. Lett. 252, 425-430 (1996).

[3] Werner Kutzelnigg, The adiabatic approximation: I. The physi-
cal background of the Born-Handy ansatz, Mol. Phys. 90, 909-
916 (1997).

[4] R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M.
Steur, and C. A. Swenson, Thermodynamic basis of the ITS-90,
Metrologia 28, 9-18 (1991).

[5] Laurent Pitre, Michael R. Moldover, and Weston L. Tew,
Acoustic thermometry: new results from 273 K to 77 K and
progress towards 4 K, Metrologia 43, 142-162 (2006).

[6] Eric F. May, Michael R. Moldover, Robert F. Berg, and John J.
Hurly, Transport properties of argon at zero density from vis-
cosity-ratio measurements, Metrologia 43, 247-258 (2006).

[7] Bernd Fellmuth, Christof Gaiser, and Joachim Fischer,
Determination of the Boltzmann constant – status and
prospects, Meas. Sci. Technol. 17, R145-R159 (2006).

[8] R. Gavioso, Eric F. May, James W. Schmidt, Michael R.
Moldover, and Y. Wang, Towards an electrical pressure stan-
dard: Dielectric permittivity of helium and argon measured with
quasi-spherical microwave resonators and cross capacitors, in
Proc. Conf. on Precision Electromagnetic Meas. Turin, Italy 30
(2006).

[9] Peter J. Mohr and Barry N. Taylor, CODATA recommended val-
ues of the fundamental physical constants: 2002. Rev. Mod.
Phys. 77, 1-77 (2005).

[10] K. T. Tang and J. P. Toennies, An improved simple model for the
van der Waals potential based on universal damping functions
for the dispersion coefficients, J. Chem. Phys. 80, 3726-3741
(1984).

[11] J.-Y. Zhang, Z.-C. Yan, D. Vrinceanu, J. F. Babb, and H. R.
Sadeghpour, Long-range interactions for He(ns)-He(n′s) and
He(ns)-He(n′p), Phys. Rev. A 74, 14704 (2006).

[12] Ajit J. Thakkar, Higher dispersion coefficients: Accurate values
for hydrogen atoms and simple estimates for other systems, J.
Chem. Phys. 89, 2092-2098 (1988).

[13] David M. Bishop and Janusz Pipin, Dipole, quadrupole, octu-
pole, and dipole-octupole polarizabilities at real and imaginary
frequencies for H, He, and H2 and the dispersion-energy coeffi-
cients for interactions between them, Int. J. Quant. Chem. 45,
349-361 (1993).

[14] Ming-Keh Chen and Kwong T. Chung, Retardation long-range
potentials between two helium atoms, Phys. Rev. A 53, 1439-
1446 (1996).

[15] M. J. Jamieson, G. W. F. Drake, and A. Dalgarno, Retarded
dipole-dipole dispersion interaction potential for helium, Phys.
Rev. A 51, 3358-3361 (1995).

[16] Jacek Komasa, Wojciech Cencek, and Jacek Rychlewski,
Adiabatic corrections of the helium dimer from exponentially
correlated gaussian functions, Chem. Phys. Lett. 304, 293-298
(1999).

[17] D. M. Ceperley and H. Partridge, The He2 potential at small
distances, J. Chem. Phys. 84, 820-821 (1986).

[18] T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K.
Szalewicz, Helium dimer potential from symmetry-adapted
perturbation theory calculations using large gaussian geminal
and orbital basis sets, J. Chem. Phys. 104, 9 (1997).

[19] Jacek Komasa, Exponentially correlated gaussian functions in
variational calculations: Energy expectation values in the
ground state helium dimer, J. Chem. Phys. 110, 7909-7916
(1999).

[20] Tanja van Mourik and Thom H. Dunning, Jr,. A new ab initio
potential energy curve for the helium dimer, J. Chem. Phys. 111,
9248-9258 (1999).

[21] J. van de Bovenkamp and F. B. van Duijneveldt, MRCI calcu-
lations on the helium dimer employing an interaction optimized
basis set, J. Chem. Phys. 110, 11141-11151 (1999).

[22] Wim Klopper, A critical note on extrapolated helium pair poten-
tials, J. Chem. Phys. 115, 761-765 (2001).

[23] Robert J. Gdanitz, Accurately solving the electronic
Schrödinger equation of atoms and molecules using explicitly
correlated (r12–)MR-CI. VI. The helium dimer (He2) revisited,
Mol. Phys. 99, 923-930 (2001).

[24] James B. Anderson, An exact quantum monte carlo calculation
of the helium-helium intermolecular potential II, J. Chem. Phys.
115, 4546-4548 (2001).

[25] James B. Anderson, Comment on An exact quantum monte
carlo calculation of the helium-helium intermolecular potential,
J. Chem. Phys. 120, 9886-9887 (2004).

[26] Wojciech Cencek, Malgorzata Jeziorska, Robert Bukowski, and
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