
1. Motivation and Approach

Tomography became an important field about 40
years ago with the application x-rays to human subjects
to detect tumors [1]. In the classical Computerized
Axial Tomography (CAT) scan, a line of x-ray sources
and detectors are rotated about the patient. The practice
quickly spread to electron microscopy, although in this
case the sample rather than the beam is rotated. The
principal contrast mechanism in x-ray scattering is
absorption which follows Beer’s Law, i.e., the rule of
exponential attenuation. Although it was necessary to
develop radically different algorithms for tomography
using magnetic resonance imaging or ultrasound [2],
the electron microscopy community imported the
assumptions of a probe traveling in a straight line

through a sample with exponential attenuation. The
assumption is valid for thin samples [3]. It was long
recognized that for thick samples multiple scattering
would play a role and render these assumptions invalid
[4]. Recently, Levine noted that near the onset of
multiple scattering (as the sample thickness under con-
sideration increases), there is a regime in which the pro-
jective assumption remained valid, but the transmission
as a function of thickness deviated significantly from
Beer’s Law [5,6]. In particular, in simulation excellent
reconstructions of an 8 µm square sample of a photon-
ic band gap material were achieved using the multiple
scattering transmission function [5]. The work assumed
that scans were available through a tilt angle of 180°,
and the filtered backprojection algorithm was used.
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The vast majority of the developments
in tomography assume that the transmis-
sion of the probe through the sample
follows Beer’s Law, i.e., the rule of expo-
nential attenuation. However, for transmis-
sion electron microscopy of samples a few
times their mean free path, Beer’s Law is
no longer an accurate description of the
transmission of the probe as a function of
the sample thickness. Recent simulations
[Z. H. Levine, Appl. Phys. Lett. 82, 3943
(2003)] have demonstrated accounting for
the correct transmission function leads to
superior tomographic reconstructions for a
photonic band gap sample 8 µm square.

Those recent simulations assumed that
data was available at all angles, i.e., over
180°. Here, we consider a limited-angle
case by generalizing the Bayesian formal-
ism of Bouman and Sauer to allow an

arbitrary transmission function. The new
formalism is identical to that of Bouman
and Sauer when the transmission function
obeys Beer’s Law. The examples, based on
140° of data, suggest that using the physi-
cal transmission function is a requirement
for performing limited angle reconstruc-
tions.
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In practice, it is often not possible to obtain data
throughout a 180° angular range; in practice, data are
acquired over a range of 90° to 160°. In this case, the
filtered backprojection algorithm is subject to strong
streak artifacts. Such an algorithm amounts to zeroing
out the Fourier components of the reconstructed image
in the unmeasured angular range. The issue of how to
recreate the missing information has been a lively topic
for at least two decades. One approach is the constraint-
based projection onto convex sets (POCS) [7]. Various
forms of regularization have been considered [1]. Here,
we will follow the lead of Bouman and Sauer and use
the Bayesian approach known as the generalized
Gaussian Markov random field (GGMRF) [8]. The
principal features of the GGMRF formalism are: a prior
distribution based on correlations of neighboring pixels
(or voxels in 3D) in which the smoothness of the recon-
struction may be adapted to the sample and a quadratic
approximation to the log of the likelihood derived from
Poisson statistics. In their formulation, Sauer and
Bouman assume the Beer’s Law relation [9]. Here, we
will make a more general assumption: that the trans-
mission is any known function, with sufficient differen-
tiability, of a linear combination of the material param-
eters of the sample. A projection is a special case of this
general relation which happens to lower the algorithmic
complexity. The transmission functions derived from
multiple scattering theory [5,6] represent the special
case which motivated the development of the present
formalism.

We will generalize the formulation of Bouman and
Sauer [8,9]. We will reconstruct the density of the mate-
rial in each pixel; these real parameters are collectively
called f, or fi for an individual component. Various
observations are made—in practice, these are projec-
tions often indexed by a tilt angle θj and an offset
parameter τj, but other parameterizations could be
indexed within the theory. (The (θj ,τj) will be distinct
only when considered pairwise.) Collectively the
observations are denoted by n, and individually by nj.
The solution of the maximum likelihood (ML) problem
is

(1)

where L0 is the logarithm of the likelihood.
Constructing L0 requires both a physical model to relate
the material parameters f to the observations n and sta-
tistical assumptions; here, the observations are taken to
be counts with a Poisson distribution. The presence of
the monotonic function ln does not shift the maximum
argument compared to the likelihood exp L0(n| f ). In

the Bayesian case, specifically maximum a posteriori
(MAP) estimation, we wish to maximize the joint prob-
ability over the possible reconstructions f with the
observations n held fixed, i.e.,

(2)

where L(n, f ) is the log-likelihood of the joint a priori
probability distribution. The joint log-likelihood may
be expressed as a sum of the conditional log-likelihood
of (1) and the prior probability distribution g(f ), hence

(3)

If g( f ) is assumed to be a constant, then the MAP
reduces to the ML. In the present work, we retain the
GGMRF prior distribution of Bouman and Sauer [8],
i.e.,

(4)

here, 〈ik〉 defines a sum over pairs of pixels in the vari-
ous neighborhoods, 1 < p ≤ 2, and λ, ai, and bi,k are pos-
itive definite constants. The property bi,k = bk,i is
required to obtain a Markov random field.

Only the ML term [9] will be modified. Sauer and
Bouman [9] proposed a quadratic approximation to the
log-likelihood L and show that it is an excellent approx-
imation for the range of counts typically employed in
tomography. Following Sauer and Bouman, we expand
the log-likelihood to second order as

(5)

For a function with a minimum, we may choose f (0)

such that

(6)

So f (0) = fML. The log-likelihood L is taken to be that
associated with the Poisson distribution

(7)

where we introduce the dosage Ij , defined as the
Poisson parameter governing the number of particles
entering the sample for scan parameters j and the trans-
mission function for each observation T̄j (f ). When the
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log-likelihood has the form of (7), the gradient compo-
nents of the log-likelihood may be expressed as

(8)

We elect to expand about a solution to (6) which obeys

(9)

although other solutions may exist in particular cases.
The Hessian of the log-likelihood is given by

(10)

At f = f (0), the final term vanishes due to (9), so

(11)

When we perform reconstructions from projections,
it is useful to call Pj the projection, defined to be the
sums over the reconstructed pixels

(12)

where A is a matrix which defines the projections. In
the examples in this work, we follow the common prac-
tice [1] of taking Aji to be the length a given line
indexed by j is inside a given pixel indexed by i.
Although we do not require it for the general theory, in
practice A will be a sparse matrix. Nor do we need to
assume anything about the projections representing
approximations to straight line integrals, although that
key case is certainly included. We assume that

(13)

where Tj is a scalar function of a scalar variable; Tj will
be known for a particular reconstruction problem. The
components of the gradient of (13) are given by

(14)

where the prime denotes the derivative with respect to
the argument. When (12) and (13) apply, (14) allows us
to rewrite (11) as

(15)

where Pj
(0) = Σi Aji fi

(0) in analogy with (12). From (9)
and (13), we find Pj

(0) = Tj
–1(nj /Ij); note that we have

knowledge of Pj
(0) for all j without knowledge of the

values fi
(0) individually.

Beer’s Law may be introduced at this stage by mak-
ing the association Tj(z) = e–z. In this case,

(16)

and (15) reduces to Eq. (9) of Sauer and Bouman [9].
Since the prior is unchanged, (3) will reduce to the
GGMRF of Bouman and Sauer [8] as well. Because we
retain the quadratic approximation of Sauer and
Bouman [9], the convergence proofs of Bouman and
Sauer [8] should apply to the generalized formalism
presented here as well.

In the example of the present work the transmission
functions are independent of the observation index j,
i.e., T = Tj . However, we retain Tj so that the final for-
mula will be applicable to the case of heterogeneous
detectors. For example, many electron microscopes
record a bright-field signal and a dark-field signal
simultaneously ( j would then represent the scan
parameters and the detector channel); this work will
allow both data sets to be exploited once a calibration
of the transmitted signal as a function of the material
thickness is performed, say on a well-characterized
wedge sample, assuming the correlations between the
two channels may be neglected. Note that we did not
assume Tj(Pj) was a monotonic. However, when the
slope vanishes, the observations have zero weight in
the likelihood. Dark-field detectors will have a single
peak for the case of scattering through amorphous sam-
ples.

2. Algorithm

An implementation of the limited-memory Broyden,
Fletcher, Goldfarb, and Shanno (L-BFGS) method was
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employed to solve our large-scale unconstrained opti-
mization problem [10]. The L-BFGS method is often
viewed as an extension of the conjugate gradient
method where a small amount of additional storage can
accelerate the convergence. The L-BFGS method can
also be seen as storage-restricted version of the BFGS
quasi-Newton method [11]. The method is particularly
attractive for the problem at hand because the cost of
each iteration of the algorithm and the storage used can
be controlled by the user. First derivatives must be
computed to evaluate the gradient, but no a priori
knowledge of the second derivatives is required,
although an approximate Hessian matrix is determined
as the algorithm proceeds.

In our implementation, the pixels are arranged in a
simple square lattice. We find the pixels associated with
each observation using the algorithm of Amanatides
and Woo [12]. The neighborhood of each pixel is taken
to include all the pixels with a common edge (but not
merely a common corner). We augment the pixels
whose material densities are to be determined by a sur-
face of pixels which are fixed to have density zero. We
take the aj in (4) to be 0, as suggested by Bouman and
Sauer [8], and the single scalar value w is given by
w = –λpbj,k , independent of j and k.

If we consider a domain of size N d, where N is the
number of pixels along an edge of the domain and d is
the dimension of physical space, assuming that Aji is
non-zero for O(N) values of i (i.e., pixels) for each
observation j, it is possible to compute the gradient of
the log-likelihood in O(N d+l) steps and the prior in
O(N d) steps. The situation is similar for local updates:
each of N d pixels typically is influenced by O(N) obser-
vations, so updating the log-likelihood will take
O(N d+1) steps for a full sweep through the grid.
Assuming the local update scheme is augmented by a
multigrid method, we expect the two classes of algo-
rithms to yield comparable run times. However, we
favor the global updates because of the relative simplic-
ity of the coding and the possibility of a straightforward
extension to cases in which the geometry or observa-
tions are heterogeneous. Note also that the iterations of
(15) require no more time or storage than the original
method of Bouman and Sauer [8,9] because the Pj

(0) are
known.

3. A Representative Example

As an example, we consider a simulation based on a
photonic band gap crystal. A 6 µm by 6 µm material

and void pattern is shown in Fig. 1; this is our test
object or “phantom.” The image has various features
which make it a non-trivial test case: small and large
circles, which may be slightly overlapping or slightly
split, in addition to having a global inhomogeneity in
the form of approximate stripes running parallel to the
x = –y line in the sample. Moreover, the system is sev-
eral times larger than those used typically in electron
microscopy. The developments in this paper are moti-
vated by enabling experiments in this regime.

The response of a typical bright-field detector of 300
keV electrons through a polymer material [5] is given in
Fig. 2. The key feature of the transmission curve is that
the detected signal deviates considerably from Beer’s
Law. A considerable amount is understood about the
relationship of the transmission to the underlying cross
sections and the functional form of the transmission
curve [6], but for the present, all that is required is the
transmission function and its logarithmic derivative.

Scan data was obtained through Monte Carlo multi-
ple scattering, using a code presented earlier [5,6]. The
data was collected at 192 angles uniformly distributed
over 140°. There are 361 uniformly spaced offset
parameters (τ values) at each tilt angle, and a 1000 elec-
trons per scan parameter (a tilt-angle-offset pair) were
simulated.

We performed a MAP reconstruction using (3), and a
maximum likelihood reconstruction using (1). We also
found a reconstruction using the unmodified Bouman-
Sauer formalism, i.e., using Beer’s Law instead of the
transmission function given in Fig. 2. The result bears
no relationship to the phantom [13]. However, in other
test cases, described elsewhere, [13] in which scan data
was generated using Beer’s Law, the code performed
very well, so we attribute the poor reconstruction to the
use of the wrong transmission function. The poor per-
formance of Beer’s Law is in contrast to the case in
which the filtered backprojection algorithm was used
on the same sample with 180° of data and gave a recon-
struction with global artifacts but captured most of the
medium and fine structure of the phantom [5].

The Bayesian reconstruction is shown in Fig. 3. The
reconstruction was performed using the parameters p =
1.1, which is known to give good results for the mate-
rial reconstruction problem [8] and w = 0.002. The
value for w was chosen from the set {0.001, 0.005,
0.01, 0.1, 0.2, 0.4} by a subjective optimization of the
quality of the reconstructed image. The ML reconstruc-
tion is equivalent to w = 0. The choices w = 0.001,
0.005 or 0.01 yield reconstructions very similar to the
one presented; w = 0.1 and 0.2 lead to a considerable
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fusion of the fine structures, but correctly represent all
the large circles. The case w = 0.4 fails to give a recog-
nizable reconstruction. Convergence to near machine
precision (10–12) was achieved in 226 iterations using
the L-BFGS algorithm, restarting the construction of
the approximate Hessian matrix after every sixth itera-
tion. No attempt was made to optimize the conver-
gence. It took approximately 13 minutes to perform this
reconstruction on a 2.8 GHz computer.

The reconstruction is generally of a very acceptable
quality. In particular, the reader may wish to examine
the presence of some of the smaller circles in the orig-
inal target presented in Fig. 1 in the reconstruction of
Fig. 3 as well as some of the narrow separations.
Certain artifacts are also seen to be present, such as the
vertical whitish stripes indicating a lack of density.

The ML result with 224 iterations, approximately the
same number of iterations as used for Fig. 3, is shown
in Fig. 4. Less convergence was achieved in this case,
as illustrated in Fig. 5. The reconstruction of Fig. 4
gives the features of the phantom nearly as well as Fig.
3. However, the contrast is lower. The ML case was
allowed to run for 4200 iterations; the result is present-
ed in Fig. 6. Curiously, the result is worse, although the
objective function is lower. The artifacts build gradual-
ly through the course of the iterations. We attribute the
behavior to the property of the L-BFGS algorithm that
it resolves lower spatial frequencies before higher ones.
So the partially converged result represents a kind of
low-pass filter of the more fully converged result, and
hence is less noisy. The Bayesian prior itself is a regu-
larization or low-pass filter which explains the rapid
convergence of the L-BFGS procedure in this case. Our
findings are similar to those of Sauer and Bouman [9]
who found a local-update algorithm (which they denote
“Gauss-Seidel”) outperformed conjugate gradient
(which, like L-BFGS, is a global-update algorithm) for
the maximum likelihood case, but was comparable for
the MAP case. The local-update algorithm converges
the high-frequencies best and may need to be augment-
ed by multigrid methods [14] to achieve good low-fre-
quency behavior.

4. Summary

We have presented a generalization of the quadratic
approximation to the log-likelihood of Sauer and
Bouman [9] which may be applied to any transmission
function, not only Beer’s Law as assumed in the origi-
nal work. The new formulation reduced to the old in the
case in which the transmission function is Beer’s Law.
The new formalism may be applied to the generalized
Gaussian random Markov field model of Bouman and
Sauer [8]. We have demonstrated through Monte Carlo
simulation that the new formalism may be applied to a
limited-angle tomographic tilt series acquired from a
scanning transmission electron microscope on a sam-
ple, which is large compared to the usual practice in
electron tomography. The GGMRF yields a superior
image to a maximum likelihood reconstruction in the
case studied.
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Fig. 1. The simulated target (or “phantom”) is a finite section of a
quasiperiodic pattern of columns of a polymer which arise from cut-
ting a 3D model of a photonic band gap crystal at an irrational angle
and extending the exposed plane translationally in the third dimen-
sion. The scale bar is 1 µm. The material is dark. The void is light.
The figure is a subset of the one used in Ref. 5.

Fig. 2. The transmission function was derived from a Monte Carlo
simulation of the 4 million 300 keV electrons passing through a poly-
mer into a bright-field detector with a 10 mrad half-angle of accept-
ance. Multiple scattering manifests itself from the significant devia-
tions compared to Beer’s Law, i.e., a straight line on this semi-log
plot. See Ref. 5 for further details.

Fig. 3. Reconstructed reverse gray scale image of Fig. 1 using the
Bayesian approach outlined in the text. The image has 400×400 pix-
els; observations were taken with 361 uniformly spaced offset values
at 298 angles distributed uniformly over a 140° range; 226 iterations
were used. The parameters p = 1.1 and w = 0.002 were selected. The
saturation values are taken to be the values at the 5th and 95th per-
centiles of the pixels in the image.

Fig. 4. Reconstruction similar to Fig. 3, using 224 iterations of the
maximum likelihood objective function.
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Fig. 5. The objective function is normalized by mapping the range
of the fully converged value to the initial value to 0 to 1. The fully
converged value is taken from iteration number 226 for the Bayesian
case (when very stringent convergence criteria were satisfied) and
iteration number 4200 for the maximum likelihood case.

Fig. 6. Reconstruction similar to Fig. 3, using 4200 iterations of the
maximum likelihood objective function.


