
1. Introduction

Aspheres and free-form optics are high performance
optical products, but their use is limited by the difficul-
ty and high costs of measuring their shapes. For spher-
ical or flat surfaces, full-aperture interferometry com-
bines fractional nanometer resolution with wide-rang-
ing shape utility and is the preferred way of easily and
precisely measuring optical form or profile. For aspher-
ic and free form surfaces, full-aperture interferometry
is neither simple nor inherently accurate. The problems
with general interferometry are the instrument’s limited
dynamic range and non-common path errors; as an
example of the effects of the three problems, see Fig. 2.
Engineering a reference wave front to closely match the
test part’s true shape minimizes all three problems, but

this means full-aperture interferometry requires a null
optic. When spherical and flat optical surfaces are
measured a calibration-grade sphere or flat serves as
the reference. With aspheric and free form optics a null
is expensive to make and needs special care in the use.
Four recognized methods to measure aspheric optics
are: full aperture interferometry with a computer gener-
ated hologram (CGH) as the null, sub-aperture interfer-
ometry using “stitching” to make a composite from
many sub-aperture interferograms, which have small
deviations to a sphere or flat [1]; the coordinate meas-
uring machine (CMM), when mechanical probing of
the surface is acceptable [2]; and often, a contacting or
non-contacting long trace form profilometer for meas-
uring either the part’s slope or profile [3].
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We are developing an instrument, the
Geometry Measuring Machine (GEMM),
to measure the profile errors of aspheric
and free form optical surfaces, with meas-
urement uncertainties near 1 nm. Using
GEMM, an optical profile is reconstructed
from local curvatures of a surface, which
are measured at points on the optic’s sur-
face. We will describe a prototype version
of GEMM, its repeatability with time, a
measurements registry practice, and the
calibration practice needed to make
nanometer resolution comparisons with
other instruments. Over three months, the
repeatability of GEMM is 3 nm rms, and
is based on the constancy of the measured
profile of an elliptical mirror with a radius
of curvature of about 83 m. As a demon-
stration of GEMM’s capabilities for curva-
ture measurement, profiles of that same
mirror were measured with GEMM and

the NIST Moore M-48 coordinate measur-
ing machine. Although the methods are far
different, two reconstructed profiles differ
by 22 nm peak-to-valley, or 6 nm rms.
This comparability clearly demonstrates
that with appropriate calibration, our pro-
totype of the GEMM can measure com-
plex-shaped optics.

Key words: asphere and free form optics;
form-profilometry; optical calibration
metrology; surface metrology.

Accepted: June 16, 2006

Available online: http://www.nist.gov/jres



2. Prototype Geometry Measuring
Machine (GEMM)

Using reconstructions of geometry from curvature
measurements, the developing GEMM instrument
explores another alternative. Differential geometry
offers curvature as a way to measure form or profile,
and use of curvature has already had a brief history [4-
17]. Curvature is an intrinsic geometric property of
curves and surfaces, which means curvature can com-
pletely determine an object’s form regardless of its ori-
entation relative to an external reference. This is an
important help to nanometer level metrology of com-
plex surfaces. Considering the simplest definition of
curvature, the curvature of a circle or sphere is the
reciprocal of the radius of the circle or sphere. For
aspheric and free form optical metrology a rigorous
definition is needed. Curvature can be defined, for a
Cartesian coordinate system, using Eq. (1). This is a
non-linear differential equation relating a one-dimen-
sional profile z(x) to its curvature, K(x), for any value
of x [18]:

(1)

Measuring curvature requires solving mathematical
obstacles to ensure the accuracy of a reconstructed pro-
file, but compensates with wide-ranging shape measur-
ing versatility and reduced mechanical implementation
problems. Considering the potential advantages of cur-
vature and following the successes of the Physikalisch-
Technische Bundesanstalt (PTB) with the Large
Aperture Curvature Sensor (LACS) and other instru-
ments [6-14], NIST committed itself to investigating
the use of curvature to measure form.

LACS and GEMM differ in design and primary use.
The LACS uses a rotating air bearing supported arm to
swing the curvature sensor in an arc over the optic.
There is a wrist at the sensor mount, which orients the
sensor normal to the optic’s surface, a requirement of
the measurement. When the sensor is normal to the sur-
face or the slope is zero, Eq. (1) simplifies to K(x)
equals the second derivative of the surface form.
GEMM uses a Stewart platform to position and orient
the sensor. GEMM is to be a 3D shape-measuring
instrument. Figure 1 shows GEMM schematically. The
NIST instrument is installed within a temperature-con-
trolled laboratory on a vibration-isolated granite table.
It uses a commercial, miniature, Twyman-Green phase-
measuring interferometer as curvature sensor. The
Stewart platform workspace restricts the prototype to

test parts with a maximum diameter of 110 mm. The
sensor’s objective lens temporarily restricts use of the
prototype GEMM to optics with > 4 m radius of curva-
ture (ROC), or < 0. 25 m–1 curvature [17]. The sensor
measures a local topography at many sites along a sym-
metry line on the part’s surface. Using the 512 sensor
pixels lying on the center-line of the field of view, cur-
vature extraction fits a circle to the site topography and
assigns that curvature to the site.

To move the sensor along the scan line, and position
it normal to the surface, GEMM uses a commercial
Stewart platform. This is a stiff, stable motion system
with six degrees of freedom, less than 2 µm positioning
uncertainty for translation and less than 20 µrad angu-
lar positioning uncertainty for rotation, and a useful
robotic intelligence [19]. The high-level language com-
patible robot has two setup uses. It helps register the
GEMM coordinate axes to the part, and precisely aligns
the scan line to the center of symmetry of the part. This
alignment is of key importance when comparing pro-
files obtained from different instruments [17], and
especially for establishing the correct position and ori-
entation of the profile on the part. Setup starts with
manually placing an optic onto a vertical stage, lifting
it into the objective lens image plane, moving the optic
within sensor view, and finally centering the sensor
over three sample fiducial markings on the fixture. The
robot remembers and uses these later to define the scan
line and measurement sites. During a measurement, the
robot has other duties. It moves the sensor along the
scan line and aligns the sensor normal to the surface at
each site. Finally, the sensor software—in
process—does the image analysis, reducing the phase
map at each site to a representative curvature, and stor-
ing the measurement data.
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Fig. 1. Schematic drawing of the NIST Geometry Measuring
Machine



3. From Curvatures to a Profile

In Cartesian coordinates, a non-linear differential
equation relates the one-dimensional profile z(x) to its
curvature K(x) at each point x [18]:

(2)

When the curvature K(x) is measured, Eq. (1) must be
solved to determine the profile. This can be accom-
plished using one of the standard methods for solving
differential equations. Alternatively, an integration pro-
cedure described by Elster et al. [16] can be used to
solve Eq. (1), which is now briefly reviewed.

Let P(x) = z′(x).

Then P′(x) = K(x)[1 + P(x)2]3/2.

Thus 

So 

but 

Now let ψ (x) = ∫K(x)dx.

We then have 

And finally 

To summarize the process, the first derivative of the
profile is expressed as a function of the integration of
curvature, and the profile calculated with a simple inte-
gration of the first derivative function. Because the
measured curvatures are a sequence of point measure-
ments, numerical integration is applied to the curvature
measurements to get the (x) function and the z(x) pro-
file. For a numerical integration method, we use the
cubic spline method followed by Simpson’s rule for
integration. The unknown integration constants deter-
mine the position and orientation of the profile, but
these are not relevant.

4. Description of the Test Mirror

The test piece for this study is a free-form optic, an
elliptical torus, and is one of two in a Kirkpatrick-Baez
imaging system used in an x-ray beam-line at the
Advanced Photon Source (APS) of the Argonne
National Laboratory (ANL). A photo of the APS#1 mir-
ror and an interferogram obtained using the eXtremely
accurate CALIBration InterferometeR (XCALIBIR) at
NIST, are shown in Fig. 2. XCALIBIR is a 300 mm
aperture multi-configuration interferometer developed
to calibrate flats and spheres for figure errors, spheres
for radius of curvature, and more importantly to cali-
brate aspheres and free-form optics for figure. In all
cases, the expectation is fractional nm accuracy.
XCALIBIR is an extraordinarily precise instrument
located in a very stable environment. To use XCALI-
BIR with aspheres and free-forms, both stitching and
CGH methodologies are used. However, the interfero-
gram shown in Fig. 2 was made full-aperture, using a
flat as the reference, and without a null condition. The
intention is to show the difficulties of measuring even
this weak free-form optic without an appropriate null,
or using stitching or CGH methods as the correction.
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Fig. 2. The APS #1 Mirror together with the corresponding full-aperture XCALIBIR interferogram. The interferogram has three
deficiencies: the interferometer is not at null; the image—to right of center—has too many fringes, which means a spherical devi-
ation beyond XCALIBIR’s working range; and last the ghost images indicate non-common path errors.



The silicon substrate is a 90 mm long, 19 mm wide,
and 20 mm tall block. The reflective top surface of the
block was polished to approximately 84 m radius of
curvature. To give the mirror the elliptical profile, a
gold coating of varying thickness was deposited onto a
spherical base. The shape varies from nearly spherical
at one end to elliptical at the other. Because the “true”
elliptical profile of this mirror is unknown, we chose to
compare the profile measured with GEMM to the pro-
file measured with the NIST Moore M-48 CMM.

5. Moore M-481 CMM

The M-48 coordinate measuring machine (CMM) is
shown in Fig. 3, and is one of the most accurate
CMMs—for its size—in the world. The machine struc-
ture consists of a heavy cast iron, jig-grinder base set on
three vibration-damping mounts. The X-axis table and
the Y-axis cross-carriage motions are carried out by
high-precision lead screws immersed in oil baths,
which are guided by precision double-“V” roller ways,
and assisted by constant force springs to reduce back-
lash to insignificant levels. The Z-axis motion is
achieved through a counterweighted ceramic ram hung
from another precision lead screw and guided by air

bearings and constant force springs. Laser interferome-
ters are used on all three axes.

A 200 mm thick, kinematically-mounted granite sur-
face plate on the machine table transforms complex
table bending errors into more easily corrected rigid
body motion errors. The machine is housed in a very
stable laboratory environment. The room is maintained
at 50 % humidity and 20 +/– 0.01 °C degrees
Centigrade. For still finer assessment of the thermal
environment, the local machine temperature is moni-
tored with 14 sensors placed in and around the
machine. The probing system uses hydraulically
damped and independently deformable parallelograms
for all three axes of motion and provides repeatability
at the level of 10 nm. The vertical or z axis resolution is
10 nm. Redundant error mapping and process control
techniques achieve 2D positioning accuracy over an
area of 600 mm × 600 mm of better than 50 nm for opti-
cal and touch probe measurements.

6. Measurement Details

Previously, the Argonne National Laboratory/APS
Long Trace Profiler, an optical non-contacting pro-
filometer, NIST XCALIBIR, Moore M-48 and GEMM,
were all used to profile the APS#1 mirror. The profiles
agreed within 20 nm peak-to-valley (P-V), but the aver-
age radius of curvature of the optic could not be report-
ed with high precision [17]. The problem was the meas-
urements were not registered to a common coordinate
axes for the four measurement traces, nor were the sites
for the curvature values exactly the same. This meant
the profiles had unknown lateral shifts, resulting in
unknown relative biases in the average radius. This
time we made the comparison using two improve-
ments: forced registry of the coordinate axes, which
meant the measurements were made at the same sites
along the same symmetry line, and more importantly an
integral calibration of the curvature sensor was used to
improve the curvature value accuracy.

6.1 Measurement Uncertainty

Using Monte Carlo simulations, the uncertainty
associated with GEMM metrology was extensively
analyzed [17]. Profiling is sensitive to two types of
uncertainty: sensor positioning error and curvature esti-
mation. Sensor positioning error is a mix of two error
sources. One is poor registry of the part within GEMM
and another instrument, because different scan lines
were used. The other is the GEMM robot inaccurately
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Fig. 3. Photograph of the Moore M-48 Coordinate Measuring
Machine at NIST1

1 Certain commercial equipment, instruments, or materials are iden-
tified in this document. Such identification does not imply recom-
mendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the products are identified are nec-
essarily the best available for the purpose.



positions the sensor at the sites or the robot does not
orient the sensor normal to the surface at the sites. We
have already considered the specific effects for the
APS#1 mirror and GEMM 10 mm objective. Past prac-
tice was greater than 150 µm coordinate axes registry
error, but current practice results in a mismatch of less
than 20 µm between GEMM and the Moore M-48. This
is mainly due to the pixel resolution of GEMM’s inter-
ferometer. This should cause an estimated 8 nm (P-V)
profile deviation for APS#1. Giving the robot full con-
trol reduces site-positioning errors to within 2 µm, and
sensor orientation errors to within 20 µrad [19]; so the
estimated reconstruction profile uncertainty is fractions
of a nanometer for APS#1; see Fig. 4. Separation error
and random noise, which bias the curvature sensing and
extracted value, respectively, are two other large error
sources. Separation error or bias in the curvature sensor
causes a circular error in reconstructed profiles. As
shown in a later section, calibration of the curvature
sensor significantly reduces separation error. Noise is
an end product of the irreproducibility of the curvature
extraction process. Related to the interferometer’s res-
olution, the 4 nm random error of the 10 mm objective
lens, is low enough for reconstructions of less than a 10
nm (PV) uncertainty with 10 m or larger radius parts
[17].

6.2 Test Part Coordinates

To compare the profiles measured here, GEMM and
the Moore M-48 were forced to use the same part coor-
dinate axis system through a simple sample-mounting
fixture. The fixture allows both instruments to measure

the part profile in the same place. To define the coordi-
nate system, the fixture has three circular posts with 8
mm diameter, which define the x and y axes of the coor-
dinate system, and make point contact with the test
part; see Fig. 5. At the center, each post has a 125 µm
diameter hole. The CMM probes the post perimeters to
define their centers and align the coordinate axes. The
GEMM operator uses the interferometer to image the
three holes, and the robot defines the coordinate axes
for the measurements, and in this way the M-48 and
GEMM become registered.

6.3 Sensor Calibration

GEMM uses a two-step measurement procedure.
First the sensor is calibrated using three spherical arti-
facts of known curvature, and second the optic is pro-
filed. The need to calibrate the interferometer each time
is easily explained. Small errors arise from residual
power in the sensor’s reference flat. The largest error
results from small laboratory environmental fluctua-
tions. Likely, the fluctuations affect the objective lens
assembly geometry, which then has a strong and spuri-
ous effect on the separation value or bias of the curva-
ture sensor. Because double integration is used to
obtain the profile from curvature, a biased curvature
sensor yields a circular error in the reconstructed pro-
file, and the peak-to-valley value of that error increases
rapidly with part diameter. The simplest relationship
between the true curvature, K, of a test surface, and the
measured value, Km, is a polynomial function:

K = α + β · Km + γ · Km
2... (4)

To obtain the needed profile accuracy, the calibration
coefficients α, β, γ, ... are determined as an integral part
of the profile measurement. To calibrate GEMM, five
spherical artifacts are available and range from the
largest 0.125 m–1 curvature, down to zero curvature, a
flat.

To initially assign a true curvature value, K, for use
with Eq. (4), and to better understand the details of the
curvature calibration of GEMM, all five were profiled
with the Moore M-48, and Fig. 6a plots K (CMM) ver-
sus Km (GEMM). The curve in Fig. 6a is a best-fit line
to the five CMM evaluations, with a slope of 1.022.
Although a power function could be used, the linear
approximation of Eq. (4) yields a sufficiently good
description of the sensor bias, and simplifies the use.
Figure 6b shows the deviations of the five M-48 CMM
true curvature values to the best-fit line. Repeated
measurements were made with three of the artifacts; so
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Fig. 4. The reconstruction error is shown as function of sensor posi-
tion uncertainty



standard deviations are available for only three, and
these are shown in Fig. 6b. Additionally the nominal,
best-fit line, and M-48 CMM true curvature values are
numerically summarized in Table 1. Because the arti-
facts are less than perfect spheres, forced registry of the
sample fixture in the two instruments was necessary
and assured the accuracy of the definition of the over-
all calibration of GEMM.

Calibration is the first step in profiling a test part, and
as a first step uses only three of the artifacts to update
the coefficients, α, β, of Eq. (4). The flat is always
used, because it defines the offset or sensor bias, and

the test part’s nominal curvature determines the choice
of the others. The selection has the test optic lying
somewhere between the artifact pair. Repeated 3-arti-
fact-calibrations with GEMM show the offset coeffi-
cient changes markedly over several days, but the slope
of the line is essentially constant. So bracketing the test
piece with two artifacts coupled with interpolation
enhances the precision of the GEMM curvature defini-
tion.
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Fig. 5. (a) A schematic showing how the fixture aids defining the coordinate system, and (b) The APS #1 mirror placed in the fixture
and ready for profiling

Fig. 6. (a) The M-48 CMM-GEMM calibration curve was made using the 0.125 m–1, 0.05 m–1, 0.020 m–1, and 0.01 m–1 curvature and flat arti-
facts. The best-fit line is indicated; and (b) the same data with the best-fit line subtracted to show the residuals for each of the artifacts. The error
bars in this figure indicate the standard uncertainty for three of the artifacts.



6.4 GEMM Long Time Repeatability

Starting early-December 2005 and running through-
out February 2006, a series of four profiles of APS #1
were measured to estimate the repeatability of GEMM.
Our measure of repeatability is the deviation of the
individual profiles with respect to their overall averages
and the individual deviations. The distribution of the
repeatability error of the four profiles is plotted in Fig.
7a. The one standard deviation of the repeatability is
3.12 nm. As shown in detail in Fig. 7b the error is
almost normally distributed.

7. Measurement of the APS #1 Mirror

The Moore M-48 and GEMM measured the elliptical
mirror four times each to determine whether the two
instruments would obtain the same profile. The test
strategy was for the CMM to define for both instru-
ments: the common coordinate axes to use; with respect
to the width of the mirror, the mid-span location of the
scan line to use; and the 33 sites for the curvature meas-
urements each spaced 2 mm apart. The maximum error

in the relative position of the profiles is estimated to be
smaller than 20 µm, and is mainly due to not exactly
registering the small three sample fiducials in GEMM.
The two average profiles are plotted in Fig. 8a; which
covers the full scan trace, or thirty-three measurement
sites.

7.1 Analysis of the Profiles

With respect to a common best-fit fourth order poly-
nomial through all profiles, Fig. 8b shows the average
deviation and replication standard deviation for both
the GEMM and M-48 profiles. The full set of 33 sites
is reported, and the maximum difference between the
GEMM and the CMM profiles is 22 nm (P-V).
Considering Figs. 8a and 8b, the two profiles seem
indistinguishable from one another and so the question
becomes are they statistically indistinguishable?
Whether the two profiles are indistinguishable and the
statistical confidence level was tested using variations
of the Student’s t-test and two ways of viewing the 33
measurements.
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Table 1. A Comparison of the Nominal, Best-Fit Line, and M-48 CMM estimate of the true curvature of the five artifacts. (Curvature
× m–1)

Nominal Value 0.00 0.010000 0.020000 0.050000 0.125000
Line Best Fit Value –0.0003237 0.01080734 0.02542557 0.06253948 0.12354971
Moore M-48 Value –0.0002415 0.0105773 0.02561730 0.06248850 0.01235563

Fig. 7. GEMM repeatability (a) a histogram showing the measured error distribution, and (b) GEMM error against the Standard Normal Quantiles
to test for a normally distributed error.

a b



Student’s t-test uses the null hypothesis, standard
error of the mean and a sample size weighted-lumped
standard deviation to learn the statistical significance,
at a confidence level, for the difference in two means.
Importantly, the traditional Student’s t-Test assumes the
variances of the two means are roughly equal.
Considering Fig. 8b, the GEMM and M-48 variances
are different and often the M-48 values are larger. But
we will start answering the statistically evaluated com-
parability question, using traditional Student’s t-test.
Later in the Appendix, we revisit the comparability
question, but with far more care and statistical ele-
gance. There we take into account the variances are dif-
ferent, and more importantly our consideration of the

33 measurement pairs as a set. Addressing unequal
variances and 33 measurements as one, requires solv-
ing a Behrens-Fisher problem [23], and just how we do
that is detailed in the Appendix. Either way the same
conclusion results; the GEMM and CMM profiles are
statistically indistinguishable.

To compare the profiles with Student’s t-test, we
chose to use the site values for our analysis rather than
comparing two best-fit curves to the GEMM and CMM
data. The choice was deliberate. Given the large radius
of curvature of APS #1 we expected the best-fit curves
would minimize registry and positioning errors, and
that would be inappropriate. The measurement sites
were tested for failure to meet the null hypothesis in
two ways: Consider the profiles as a series of 33 fully
independent mean differences, and second consider the
data as a single set with 33 values, which is the less
stringent test. Figure 9 shows the results of using the t-
Test in the two ways. In Fig. 9, the t-values are calcu-
lated for each mean difference and then plotted against
the site location. The upper-lower green boundaries
define the 99 % confidence interval for individual site
differences, and the blue boundaries define the 99 %
confidence interval when the 33 value set is considered.
As expected, individual sites require a lower t-value
(< 3), or the GEMM and CMM mean need to be very
little different for “indistinguishable.” But there are
four outliers.

When the data are considered as a set then t need
only be < 7, and with one outlier. The difference in the
t-values is expected, and is an end product of the mul-
tiplicity effect. This is both explained in detail and
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Fig. 8a. The GEMM and the M-48 CMM average profiles for the
APS #1.

Fig. 8b. Deviation from a common best-fit fourth order polynomial
of the CMM and GEMM profiles against the measurement sites The
error bars are 1 standard deviation for the GEMM and M-48 meas-
urements at each site.

Fig. 9. The 33 t-values considered either independently or as set.
The upper-lower green boundaries define the 99 % confidence inter-
val for individual site differences, and the blue boundaries define the
99 % confidence interval when the 33 values set is considered.



properly addressed in the Appendix. Notably, consid-
ered individually with Student’s t-Test or as a set, and
with the care described in the Appendix, the two are
“indistinguishable” at the 99 % confidence level.

8. Summary and Conclusions

The repeatability of GEMM was evaluated over
three months and is 3 nm rms. The cause of this uncer-
tainty is mainly laboratory environmental changes
and—to a lesser extent—interferometer resolution.
Profiling < 0.25 m–1 curvature or > 4 m radius of curva-
ture optics is a temporary limitation of this prototype of
GEMM. The Twyman Green sensor requires GEMM
hold an exact separation distance between sensor and
surface as LACS can, or measure this distance and cor-
rect the curvature value. A new NIST-designed sensor,
the Small Aperture Digital Interferometer (SADI), is
under construction and will expand the working range
of curvatures. SADI will use a single 5 mm objective
lens, is a Fizeau design, has a simplified optical assem-
bly to reduce random noise, and needs two common
path interferometers to enable simultaneous form and
distance measurements.

Using this prototype of GEMM and the Moore M-48
at NIST, the profile of an elliptical mirror was meas-
ured with a difference of 21 nm (P-V). Using Student’s
t-tests, the null hypothesis is found to be true; at all
measured sites, the two profiles are the same. The com-
parability is attributed to two recent improvements of
GEMM. One is calibrating GEMM for curvature as a
preliminary to determining the profile. The other is
achieving better measurement registry between GEMM
and the M-48. A sample holding fixture and fully utiliz-
ing the robot’s capabilities ensures registry of the
GEMM and M-48 coordinate axes a key requirement
for comparison. Better registry reduced the positioning
uncertainty of the part from more than 150 µm with no
fixture to less than 20 µm with the fixture.

The GEMM prototype and M-48 reporting the same
profile for APS#1 is significant. First, the comparabili-
ty shows calibration, and especially calibration as a
step in the measurement process, allows GEMM to
measure a complex shaped optic to the same accuracy
as the Moore M-48 CMM; and more importantly—in
principle—curvature measurements now show promise
for the calibration of complex optical surfaces.

9. Appendix

9.1 Student t-Test with Unequal Variances

The data populations are four profile measurements
each, which were made with the M-48 CMM and
GEMM. To describe the statistical methods, we denote
the M-48 CMM profiles by f1i(x) and GEMM profiles
by f2i(x), where i = 1, 2, 3, 4 and x takes on one of the
33 measured locations. The mean profiles from the two
instruments are given by:

The standard deviations from the repeated measure-
ments at a given location are given by

Thus, the combined standard error for the difference
is given by

(5)

At a given location x, the test statistic for comparing
two mean measurements is based on the t-statistics
(ratios):

(6)

Accepting the null hypothesis that the two mean pro-
files are the same, the t-statistics should follow the
standard t-distribution with six degrees of freedom.

At any given location x, the null hypothesis of
f1(x) = f2(x) is rejected if

(7)

where α is the pre-chosen level of significance. Here
Ft6

–1(q) denotes the inverse of the cumulative distribu-
tion function at probability q, which is the qth quantile
of the standard t-distribution with six degrees of free-
dom. In addition, at a given location x, a point wise
(1 – α) × 100 % confidence interval for f1(x) – f2(x) is
provided by:
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(8)

Equivalent to the rule provided by (7), we can reject the
null hypothesis of f1(x) – f2(x) = 0 at the significance
level α if 0 is not contained in the interval provided by
(8). Thus, rules (7) and (8) can be used interchangeably
for hypothesis testing.

We need to point out two cautions in the use of the
t-test based comparison procedure described above.
First, the standard t-test procedure for two-sample is
based on the equal variance assumption and uses a
combined variance estimator (cf. Ch. 6, [20]). Since the
variance for the M-48 CMM is typically much larger
than the GEMM measurements, the equal variance
assumption is obviously violated. Strictly speaking, the
inequality of variances at some locations means we
should use the Behrens-Fisher distribution [23] in (7)
and (8). Because the Behrens-Fisher distribution
depends on the unknown ratio of variances, using it is
quite involved and requires special tables. A simple
approach is to use the Satterthwaite formula to give the
approximate degree of freedom (dof) for using the stan-
dard t-distribution as described in Ch 6 of [20]. Table 2
shows the results of the first eight smallest P-value cal-
culations based on the Satterthwaite approximation.
There are 11 sites with P-value<0.05, and 4 sites with
P-value<0.01. However, this does not guarantee that
the profiles at these sites are truly significantly differ-
ent. This means that pure chance from measurement
errors alone can produce these spurious small P-values.
This is due to the effect of multiplicity when there are
many (33) hypotheses being considered at the same
time. In next section, we discuss how to adjust for the
multiplicity effect so as to reduce the number of false
positives.

9.2 Adjustment of Multiplicity of Testing at Many
Sites

If more than one site is tested at the same time, the
probabilistic statements in (7) and (8) are not correct. If
there are many sites to be considered at the same time,
the number of false positives due to using (7) and (8)

can be substantial. For example, if all 33 sites are con-
sidered as a whole, the type I error can be as high as
33 × α, and the number of expected false positives is
33α. Accounting for the multiplicity effect is important,
when the number of hypotheses being considered is
large. On the other hand, one should be careful of over-
adjusting since a very large threshold can lead to
accepting anything, and lead to higher type I error, that
of failing to detect a significant difference in the alter-
native [21]. Correctly setting the appropriate threshold
for multiple testing can be tricky and is still active
research issue in Statistics. Significant complication
arises when there is potential dependency among the
spatially contiguous sites. If dependence is ignored, one
can apply standard multiple test procedure such as the
Bonferroni or Simes’ modified Bonferroni test [22]
based on ordered P-values. For testing a given number
of hypotheses, say m=33, if any P-value of a given
hypothesis is less than α/m, the joint null hypothesis is
rejected at level of significance α, according to the
Bonferroni procedure. However, usually the Bonferroni
procedure gives a too small cutoff threshold. Simes
[22] proposed an improved procedure: order the P-val-
ues according to P(1) ≤ P(2) ≤ ... ≤ P(m) , then the joint
null hypothesis is rejected if P(j) ≤ jα /m for any j =
1, 2, ..., m. Simes’ test is less stringent and so will detect
more alternatives, and this is especially true when there
are multiple hypotheses being rejected.

Table 2 shows for the first eight sites with the lowest
P-values based on the Satterthwaite’s approximate
dof’s for t-distribution approximation (for the 11 sites
with P-values<0.05 see Fig. 10), the corresponding p-
values, and Simes’ cutoff values at α = 0.05 and α =
0.01.

At α = 0.05, there are two significance sites accord-
ing to both the Bonferroni procedure and the Simes’s
procedure. At α = 0.01, there is no significant differ-
ence based on either the Simes’ test or the Bonferroni
test. Notice that, α indicates the overall type I error of
the multiple tests—a smaller α implies that the test has
a smaller type I error, but has a larger type II error, or a
lower probability of detecting the alternatives, thus
explaining why we found two significance sites at α =
0.05 but failed to find any significance site at α = 0.01.
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Table 2. The results (for the eight sites with lowest P-values) of testing multiple (33) hypotheses based on Simes’ modified Bonferroni procedure
using the approximate t-distribution based on Satterthwaite formula for degree of freedom

Sites 25 4 14 33 11 28 8 23
Approx. dof 5 4.2 5.7 5.7 5.5 5.9 5.3 5.3
P value 0.0008 0.0012 0.0061 0.0068 0.0174 0.0254 0.0261 0.0371
Simes’ cutoff point (at 0.05) 0.0015 0.0030 0.0045 0.0061 0.0076 0.0091 0.0106 0.0121
Simes’ cutoff point (at 0.01) 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018 0.0021 0.0024
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Fig. 10. The results for the eleven sites with lowest P-values of test-
ing hypotheses
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